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Revision Class MM 23/24

1. Lets first discuss the key concepts of the MM lectures and how to check/show
various basic things. If you were to make an exam, you might come up with
‘bread and butter’ questions that require you to use what is written below.
Alternatively, a good exercise is to design a cheat sheet which contains the
crucial things to have taken away from these lectures. The answers to the
questions below are things you might want to include in such a cheat sheet.

(a) How can you show something is a Lie group?
answer:

• Check it is a group.
• It is a differentiable manifold. We only covered matrix Lie group,

key theorem: (topologically) closed subgroups of GL(n,R) (or
GL(n,C))are Lie groups.

(b) How do I check something is a subgroup?
answer: For a group G, say we take some subset of elements H = {h}.
If using the group composition of G, H is again a group, H is called a
subgroup of G. To check this, you need to make sure that

• id∈ H
• h−1 ∈ H if h ∈ H
• for any h1 and h2 in H, it follows that h1h2 ∈ H

(c) How to find the Lie algebra g of a Lie group G?
answer:
The Lie algebra is the tangent space at the identity with the commu-
tator as the algebra composition.

• For every path g(t) in G, compute

∂

∂t
g(t)|t=0 (1)

where g(0) = id.
• The dimension of the Lie algebra (as a vector space) is equal to

the dimension of the group (as a manifold).
• compute [α, β] for all α, β ∈ g

(d) How do you show r is a representation?
answer: For a vector space V , a representation is a group homomor-
phism r : G→ GL(V ). Check:

• r(g) acts as a linear invertible map on V (i.e. r maps to GL(V )).
• r(gh) = r(g)r(h)

1



Andreas Braun
Geometry of Mathematical Physics III

Revision Class MM 23/24

(e) How do you get the Lie algebra representation ρ corresponding to a
group representation?
answer:

• Compute
∂

∂t
r (g(t)) |t=0 (2)

where g(0) = id.
• It follows that

[ρ(α), ρ(β)] = ρ([α, β]) (3)

(defining property of Lie algebra representation)
(f) How to show a representation is irreducible?

answer:
check there are no invariant subspaces other than V and ∅.

(g) What are the complex irreducible representations of U(1) and SU(2)?
What irreducible representations of other Lie groups do you know?
answer:

• U(1): r(eiφ) = eqiφ = gq, q ∈ Z.
• SU(2): there is a rep on Cn+1 for every n ∈ Z. Act with g ∈ SU(2)

on z1, z2 and define rn+1 by the action of g−1 on

P (z1, z2) =
n∑
k=0

zk1z
n−k
2 ak (4)

• For every group we discussed, there is the defining representation
and the adjoint representation acting on the Lie algebra of the
group.

2. Let C∗ be the set of non-zero complex numbers, C∗ = C \ {0}.

(a) Explain why C∗ is a Lie group if we use multiplication as the group
composition. Is C∗ also a Lie group if we use addition instead ?

answer:
Clearly this is a group under multiplication as introduced in the lecures.
It is a Lie group because we can cover all of C∗ by a single coordinate
chart in which we map to R2, giving it the structure of a differentiable
manifold. The group composition (complex multiplication) is a differ-
entiable map. Note that C∗ = GL(1,C), so this being a Lie group is
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also already covered by general theorems, and quoting them here would
be enough.
The second part is a bit of a trick question. Under addition this is not
even a group as we lack the identity element.

(b) Find the Lie algebra c∗ of C∗. Is the exponential map surjective ?

answer:
The first part can be found in the lecture notes. Writing paths g = etx

shows that c∗ = C. Furthermore [x, y] = 0 for all x, y ∈ C. We can
write any element g of C∗ as g = ex for x ∈ C, so the exponential map
is surjective.

(c) For g ∈ C∗ define a map
rk : g 7→ gk

for k ∈ C. Find the values of k for which this is a representation of C∗

on C.

answer:
We need this to be a group homomorphism from C∗ to GL(1,C) = C∗.
As ex = 1 for x = 2πin and n ∈ Z, it follows that

gk = ekx = 1 (5)

for x = 2πi, so that k ∈ Z. This can also be seen using the homomor-
phism property, observe that

exey = 1 (6)

if x+ y = 2πi, so that

rk(exey) = rk(1) = 1 (7)

as well. Hence
ekxeky = ek(x+y) = 1 (8)

and k(x+ y) = 2πi and we need k ∈ Z.
(d) For g = exp(γ) and γ ∈ c∗ define ρk(γ) by

rk(g) = exp (ρk(γ))

Find the map ρk(γ). For which values of k is this a representation of
the Lie algebra c∗ ?
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answer:
This is rather simple as ρk(x) = kx follows from the definition. Rescal-
ing a complex number is a linear map which preserves [x, y] = 0, so
this gives us an algebra representation for every k ∈ C.

3. Let G be the Lie group SU(3).

(a) For g ∈ G and φ in the adjoint representation of G, show that for an ar-
bitrary polynomial Q(φ) with complex coefficients, trQ(φ) is invariant
under the group action.
answer:
We observe that

trφk → trgφg†gφg† · · · gφg† = trgφkg† = trφk (9)

is invariant. For a polynomial Q we then have

Q(φ) =
∑
k

cktrφk →
∑
k

cktrφk = Q(φ) (10)

(b) Consider the vector space Vd of complex homogeneous polynomials of
degree d in 3 variables ~q = (q1, q2, q3):

P (~q) =
d∑
i=0

d−i∑
j=0

αijq
i
1q
j
2q
d−i−j
3

(here αij are complex numbers). Show that acting on ~q as ~q → g−1~q
defines a representation of SU(3) on Vd. In the following, we denote
this representation by Fd(h).
answer:
Such polynomials span a vector space Vd and the action is a linear
map on the coefficients, it is hence in GL(Vd). We need to see it is a
homomorphism. Let us write

Fd(g) : P (~q)→ P (g−1~q) .

Clearly Fd(1) = 1. Furthermore

Fd(gh)P = P
(
(gh)−1~q

)
= P

(
h−1g−1~q

)
= Fd(g)P (h−1~q) = Fd(g)◦Fd(h)P (~q)

(11)
so we have a homomorphism.
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(c) Show that SU(2) is a subgroup of SU(3) and that Fd(g) defines a
representation of the SU(2) subgroup you have identified as well.
answer:
First we need to identify SU(2). We can simply use block-diagonal
matrices

gSU(3) =

a b 0
c d 0
0 0 1

 =
(
gSU(2) 0

0 1

)
(12)

where
gSU(2) =

(
a b
c d

)
(13)

is in SU(2). Clearly gSU(2) ∈ SU(2) implies that gSU(3) ∈ SU(3).
The embedding above implies that we can act with SU(2) on Vd as
well using the same action and the argument above shows that this is
a representation as well.

(d) Show that Fd(h) is an irreducible representation or decompse it into
irreducible representations.
answer:
The crucial observation is that the action of SU(2) leaves subspaces
Vd,k invariant where Vd,k are spaces of polynomials of the form

d−k∑
i=0

αiq
i
1q
d−i−k
2 qk3 (14)

as the action on q3 is trivial. These are hence isomorphic to homoge-
neous polynomials in two variables and of degree d−k. The dimension
of Vd,k is d− k+ 1 and we have shown in the lecture that the action on
Vd,k gives irreducible representations rd−k of SU(2). The decomposition
we are after is hence

Fd = ⊕dk=0rd−k (15)
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