- 1. Lets first discuss the **key** concepts of the MM lectures and how to check/show various basic things. If you were to make an exam, you might come up with 'bread and butter' questions that require you to use what is written below. Alternatively, a good exercise is to design a cheat sheet which contains the crucial things to have taken away from these lectures. The answers to the questions below are things you might want to include in such a cheat sheet.
 - (a) How can you show something is a Lie group?

answer:

- Check it is a group.
- It is a differentiable manifold. We only covered matrix Lie group, key theorem: (topologically) closed subgroups of $GL(n, \mathbb{R})$ (or $GL(n, \mathbb{C})$)are Lie groups.
- (b) How do I check something is a subgroup?

answer: For a group G, say we take some subset of elements $H = \{h\}$. If using the group composition of G, H is again a group, H is called a subgroup of G. To check this, you need to make sure that

- $id \in H$
- $h^{-1} \in H$ if $h \in H$
- for any h_1 and h_2 in H, it follows that $h_1h_2 \in H$
- (c) How to find the Lie algebra \mathfrak{g} of a Lie group G?

answer:

The Lie algebra is the tangent space at the identity with the commutator as the algebra composition.

• For every path g(t) in G, compute

$$\frac{\partial}{\partial t}g(t)|_{t=0}\tag{1}$$

where g(0) = id.

- The dimension of the Lie algebra (as a vector space) is equal to the dimension of the group (as a manifold).
- compute $[\alpha, \beta]$ for all $\alpha, \beta \in \mathfrak{g}$
- (d) How do you show r is a representation?

answer: For a vector space V, a representation is a group homomorphism $r: G \to GL(V)$. Check:

- r(g) acts as a linear invertible map on V (i.e. r maps to GL(V)).
- r(gh) = r(g)r(h)

(e) How do you get the Lie algebra representation ρ corresponding to a group representation?

answer:

• Compute

$$\frac{\partial}{\partial t} r\left(g(t)\right)|_{t=0} \tag{2}$$

where g(0) = id.

• It follows that

$$[\rho(\alpha), \rho(\beta)] = \rho([\alpha, \beta]) \tag{3}$$

(defining property of Lie algebra representation)

(f) How to show a representation is irreducible?

answer:

check there are no invariant subspaces other than V and \emptyset .

- (g) What are the complex irreducible representations of U(1) and SU(2)? What irreducible representations of other Lie groups do you know? answer:
 - U(1): $r(e^{i\phi}) = e^{qi\phi} = g^q, q \in \mathbb{Z}$.
 - SU(2): there is a rep on \mathbb{C}^{n+1} for every $n \in \mathbb{Z}$. Act with $g \in SU(2)$ on z_1, z_2 and define r_{n+1} by the action of g^{-1} on

$$P(z_1, z_2) = \sum_{k=0}^{n} z_1^k z_2^{n-k} a_k \tag{4}$$

- For every group we discussed, there is the defining representation and the adjoint representation acting on the Lie algebra of the group.
- 2. Let \mathbb{C}^* be the set of non-zero complex numbers, $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.
 - (a) Explain why \mathbb{C}^* is a Lie group if we use multiplication as the group composition. Is \mathbb{C}^* also a Lie group if we use addition instead ?

answer:

Clearly this is a group under multiplication as introduced in the lecures. It is a Lie group because we can cover all of \mathbb{C}^* by a single coordinate chart in which we map to \mathbb{R}^2 , giving it the structure of a differentiable manifold. The group composition (complex multiplication) is a differentiable map. Note that $\mathbb{C}^* = GL(1, \mathbb{C})$, so this being a Lie group is also already covered by general theorems, and quoting them here would be enough.

The second part is a bit of a trick question. Under addition this is not even a group as we lack the identity element.

(b) Find the Lie algebra \mathfrak{c}^* of \mathbb{C}^* . Is the exponential map surjective ?

answer:

The first part can be found in the lecture notes. Writing paths $g = e^{tx}$ shows that $\mathfrak{c}^* = \mathbb{C}$. Furthermore [x, y] = 0 for all $x, y \in \mathbb{C}$. We can write any element g of \mathbb{C}^* as $g = e^x$ for $x \in \mathbb{C}$, so the exponential map is surjective.

(c) For $g \in \mathbb{C}^*$ define a map

$$r_k: g \mapsto g^k$$

for $k \in \mathbb{C}$. Find the values of k for which this is a representation of \mathbb{C}^* on \mathbb{C} .

answer:

We need this to be a group homomorphism from \mathbb{C}^* to $GL(1, \mathbb{C}) = \mathbb{C}^*$. As $e^x = 1$ for $x = 2\pi i n$ and $n \in \mathbb{Z}$, it follows that

$$g^k = e^{kx} = 1 \tag{5}$$

for $x = 2\pi i$, so that $k \in \mathbb{Z}$. This can also be seen using the homomorphism property, observe that

$$e^x e^y = 1 \tag{6}$$

if $x + y = 2\pi i$, so that

$$r_k(e^x e^y) = r_k(1) = 1 (7)$$

as well. Hence

$$e^{kx}e^{ky} = e^{k(x+y)} = 1 (8)$$

and $k(x+y) = 2\pi i$ and we need $k \in \mathbb{Z}$.

(d) For $g = \exp(\gamma)$ and $\gamma \in \mathfrak{c}^*$ define $\rho_k(\gamma)$ by

$$r_k(g) = \exp\left(\rho_k(\gamma)\right)$$

Find the map $\rho_k(\gamma)$. For which values of k is this a representation of the Lie algebra \mathfrak{c}^* ?

answer:

This is rather simple as $\rho_k(x) = kx$ follows from the definition. Rescaling a complex number is a linear map which preserves [x, y] = 0, so this gives us an algebra representation for every $k \in \mathbb{C}$.

- 3. Let G be the Lie group SU(3).
 - (a) For $g \in G$ and ϕ in the adjoint representation of G, show that for an arbitrary polynomial $Q(\phi)$ with complex coefficients, tr $Q(\phi)$ is invariant under the group action.

answer:

We observe that

$$\mathrm{tr}\phi^k \to \mathrm{tr}g\phi g^{\dagger}g\phi g^{\dagger}\cdots g\phi g^{\dagger} = \mathrm{tr}g\phi^k g^{\dagger} = \mathrm{tr}\phi^k \tag{9}$$

is invariant. For a polynomial Q we then have

$$Q(\phi) = \sum_{k} c_k \mathrm{tr} \phi^k \to \sum_{k} c_k \mathrm{tr} \phi^k = Q(\phi)$$
(10)

(b) Consider the vector space V_d of complex homogeneous polynomials of degree d in 3 variables $\vec{q} = (q_1, q_2, q_3)$:

$$P(\vec{q}) = \sum_{i=0}^{d} \sum_{j=0}^{d-i} \alpha_{ij} q_1^i q_2^j q_3^{d-i-j}$$

(here α_{ij} are complex numbers). Show that acting on \vec{q} as $\vec{q} \to g^{-1}\vec{q}$ defines a representation of SU(3) on V_d . In the following, we denote this representation by $F_d(h)$.

answer:

Such polynomials span a vector space V_d and the action is a linear map on the coefficients, it is hence in $GL(V_d)$. We need to see it is a homomorphism. Let us write

$$F_d(g): P(\vec{q}) \to P(g^{-1}\vec{q}).$$

Clearly $F_d(1) = 1$. Furthermore

$$F_d(gh)P = P\left((gh)^{-1}\vec{q}\right) = P\left(h^{-1}g^{-1}\vec{q}\right) = F_d(g)P(h^{-1}\vec{q}) = F_d(g)\circ F_d(h)P(\vec{q})$$
(11)

so we have a homomorphism.

(c) Show that SU(2) is a subgroup of SU(3) and that $F_d(g)$ defines a representation of the SU(2) subgroup you have identified as well.

answer:

First we need to identify SU(2). We can simply use block-diagonal matrices

$$g_{SU(3)} = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} g_{SU(2)} & 0 \\ 0 & 1 \end{pmatrix}$$
(12)

where

$$g_{SU(2)} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{13}$$

is in SU(2). Clearly $g_{SU(2)} \in SU(2)$ implies that $g_{SU(3)} \in SU(3)$.

The embedding above implies that we can act with SU(2) on V_d as well using the same action and the argument above shows that this is a representation as well.

(d) Show that $F_d(h)$ is an irreducible representation or decompse it into irreducible representations.

answer:

The crucial observation is that the action of SU(2) leaves subspaces $V_{d,k}$ invariant where $V_{d,k}$ are spaces of polynomials of the form

$$\sum_{i=0}^{d-k} \alpha_i q_1^i q_2^{d-i-k} q_3^k \tag{14}$$

as the action on q_3 is trivial. These are hence isomorphic to homogeneous polynomials in two variables and of degree d-k. The dimension of $V_{d,k}$ is d-k+1 and we have shown in the lecture that the action on $V_{d,k}$ gives irreducible representations r_{d-k} of SU(2). The decomposition we are after is hence

$$F_d = \bigoplus_{k=0}^d r_{d-k} \tag{15}$$