1. Lets first discuss the key concepts of the MM lectures and how to check/show various basic things. If you were to make an exam, you might come up with 'bread and butter' questions that require you to use what is written below. Alternatively, a good exercise is to design a cheat sheet which contains the crucial things to have taken away from these lectures. The answers to the questions below are things you might want to include in such a cheat sheet.
(a) How can you show something is a Lie group?
answer:

- Check it is a group.
- It is a differentiable manifold. We only covered matrix Lie group, key theorem: (topologically) closed subgroups of $G L(n, \mathbb{R})$ (or $G L(n, \mathbb{C})$)are Lie groups.
(b) How do I check something is a subgroup?
answer: For a group G, say we take some subset of elements $H=\{h\}$. If using the group composition of G, H is again a group, H is called a subgroup of G. To check this, you need to make sure that
- id $\in H$
- $h^{-1} \in H$ if $h \in H$
- for any h_{1} and h_{2} in H, it follows that $h_{1} h_{2} \in H$
(c) How to find the Lie algebra \mathfrak{g} of a Lie group G ?
answer:
The Lie algebra is the tangent space at the identity with the commutator as the algebra composition.
- For every path $g(t)$ in G, compute

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} g(t)\right|_{t=0} \tag{1}
\end{equation*}
$$

where $g(0)=\mathrm{id}$.

- The dimension of the Lie algebra (as a vector space) is equal to the dimension of the group (as a manifold).
- compute $[\alpha, \beta]$ for all $\alpha, \beta \in \mathfrak{g}$
(d) How do you show r is a representation?
answer: For a vector space V, a representation is a group homomorphism $r: G \rightarrow G L(V)$. Check:
- $r(g)$ acts as a linear invertible map on V (i.e. r maps to $G L(V)$).
- $r(g h)=r(g) r(h)$
(e) How do you get the Lie algebra representation ρ corresponding to a group representation?
answer:
- Compute

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} r(g(t))\right|_{t=0} \tag{2}
\end{equation*}
$$

where $g(0)=\mathrm{id}$.

- It follows that

$$
\begin{equation*}
[\rho(\alpha), \rho(\beta)]=\rho([\alpha, \beta]) \tag{3}
\end{equation*}
$$

(defining property of Lie algebra representation)
(f) How to show a representation is irreducible?
answer:
check there are no invariant subspaces other than V and \emptyset.
(g) What are the complex irreducible representations of $U(1)$ and $S U(2)$? What irreducible representations of other Lie groups do you know?
answer:

- $U(1): r\left(e^{i \phi}\right)=e^{q i \phi}=g^{q}, q \in \mathbb{Z}$.
- $S U(2)$: there is a rep on \mathbb{C}^{n+1} for every $n \in \mathbb{Z}$. Act with $g \in S U(2)$ on z_{1}, z_{2} and define r_{n+1} by the action of g^{-1} on

$$
\begin{equation*}
P\left(z_{1}, z_{2}\right)=\sum_{k=0}^{n} z_{1}^{k} z_{2}^{n-k} a_{k} \tag{4}
\end{equation*}
$$

- For every group we discussed, there is the defining representation and the adjoint representation acting on the Lie algebra of the group.

2. Let \mathbb{C}^{*} be the set of non-zero complex numbers, $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.
(a) Explain why \mathbb{C}^{*} is a Lie group if we use multiplication as the group composition. Is \mathbb{C}^{*} also a Lie group if we use addition instead ?

answer:

Clearly this is a group under multiplication as introduced in the lecures. It is a Lie group because we can cover all of \mathbb{C}^{*} by a single coordinate chart in which we map to \mathbb{R}^{2}, giving it the structure of a differentiable manifold. The group composition (complex multiplication) is a differentiable map. Note that $\mathbb{C}^{*}=G L(1, \mathbb{C})$, so this being a Lie group is
also already covered by general theorems, and quoting them here would be enough.
The second part is a bit of a trick question. Under addition this is not even a group as we lack the identity element.
(b) Find the Lie algebra \mathfrak{c}^{*} of \mathbb{C}^{*}. Is the exponential map surjective?
answer:
The first part can be found in the lecture notes. Writing paths $g=e^{t x}$ shows that $\mathfrak{c}^{*}=\mathbb{C}$. Furthermore $[x, y]=0$ for all $x, y \in \mathbb{C}$. We can write any element g of \mathbb{C}^{*} as $g=e^{x}$ for $x \in \mathbb{C}$, so the exponential map is surjective.
(c) For $g \in \mathbb{C}^{*}$ define a map

$$
r_{k}: g \mapsto g^{k}
$$

for $k \in \mathbb{C}$. Find the values of k for which this is a representation of \mathbb{C}^{*} on \mathbb{C}.

answer:

We need this to be a group homomorphism from \mathbb{C}^{*} to $G L(1, \mathbb{C})=\mathbb{C}^{*}$. As $e^{x}=1$ for $x=2 \pi i n$ and $n \in \mathbb{Z}$, it follows that

$$
\begin{equation*}
g^{k}=e^{k x}=1 \tag{5}
\end{equation*}
$$

for $x=2 \pi i$, so that $k \in \mathbb{Z}$. This can also be seen using the homomorphism property, observe that

$$
\begin{equation*}
e^{x} e^{y}=1 \tag{6}
\end{equation*}
$$

if $x+y=2 \pi i$, so that

$$
\begin{equation*}
r_{k}\left(e^{x} e^{y}\right)=r_{k}(1)=1 \tag{7}
\end{equation*}
$$

as well. Hence

$$
\begin{equation*}
e^{k x} e^{k y}=e^{k(x+y)}=1 \tag{8}
\end{equation*}
$$

and $k(x+y)=2 \pi i$ and we need $k \in \mathbb{Z}$.
(d) For $g=\exp (\gamma)$ and $\gamma \in \mathfrak{c}^{*}$ define $\rho_{k}(\gamma)$ by

$$
r_{k}(g)=\exp \left(\rho_{k}(\gamma)\right)
$$

Find the map $\rho_{k}(\gamma)$. For which values of k is this a representation of the Lie algebra \mathfrak{c}^{*} ?

answer:

This is rather simple as $\rho_{k}(x)=k x$ follows from the definition. Rescaling a complex number is a linear map which preserves $[x, y]=0$, so this gives us an algebra representation for every $k \in \mathbb{C}$.
3. Let G be the Lie group $S U(3)$.
(a) For $g \in G$ and ϕ in the adjoint representation of G, show that for an arbitrary polynomial $Q(\phi)$ with complex coefficients, $\operatorname{tr} Q(\phi)$ is invariant under the group action.

answer:

We observe that

$$
\begin{equation*}
\operatorname{tr} \phi^{k} \rightarrow \operatorname{tr} g \phi g^{\dagger} g \phi g^{\dagger} \cdots g \phi g^{\dagger}=\operatorname{tr} g \phi^{k} g^{\dagger}=\operatorname{tr} \phi^{k} \tag{9}
\end{equation*}
$$

is invariant. For a polynomial Q we then have

$$
\begin{equation*}
Q(\phi)=\sum_{k} c_{k} \operatorname{tr} \phi^{k} \rightarrow \sum_{k} c_{k} \operatorname{tr} \phi^{k}=Q(\phi) \tag{10}
\end{equation*}
$$

(b) Consider the vector space V_{d} of complex homogeneous polynomials of degree d in 3 variables $\vec{q}=\left(q_{1}, q_{2}, q_{3}\right)$:

$$
P(\vec{q})=\sum_{i=0}^{d} \sum_{j=0}^{d-i} \alpha_{i j} q_{1}^{i} q_{2}^{j} q_{3}^{d-i-j}
$$

(here $\alpha_{i j}$ are complex numbers). Show that acting on \vec{q} as $\vec{q} \rightarrow g^{-1} \vec{q}$ defines a representation of $S U(3)$ on V_{d}. In the following, we denote this representation by $F_{d}(h)$.

answer:

Such polynomials span a vector space V_{d} and the action is a linear map on the coefficients, it is hence in $G L\left(V_{d}\right)$. We need to see it is a homomorphism. Let us write

$$
F_{d}(g): P(\vec{q}) \rightarrow P\left(g^{-1} \vec{q}\right) .
$$

Clearly $F_{d}(\mathbb{1})=\mathbb{1}$. Furthermore
$F_{d}(g h) P=P\left((g h)^{-1} \vec{q}\right)=P\left(h^{-1} g^{-1} \vec{q}\right)=F_{d}(g) P\left(h^{-1} \vec{q}\right)=F_{d}(g) \circ F_{d}(h) P(\vec{q})$
so we have a homomorphism.
(c) Show that $S U(2)$ is a subgroup of $S U(3)$ and that $F_{d}(g)$ defines a representation of the $S U(2)$ subgroup you have identified as well.
answer:
First we need to identify $S U(2)$. We can simply use block-diagonal matrices

$$
g_{S U(3)}=\left(\begin{array}{lll}
a & b & 0 \tag{12}\\
c & d & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
g_{S U(2)} & 0 \\
0 & 1
\end{array}\right)
$$

where

$$
g_{S U(2)}=\left(\begin{array}{ll}
a & b \tag{13}\\
c & d
\end{array}\right)
$$

is in $S U(2)$. Clearly $g_{S U(2)} \in S U(2)$ implies that $g_{S U(3)} \in S U(3)$.
The embedding above implies that we can act with $S U(2)$ on V_{d} as well using the same action and the argument above shows that this is a representation as well.
(d) Show that $F_{d}(h)$ is an irreducible representation or decompse it into irreducible representations.

answer:

The crucial observation is that the action of $S U(2)$ leaves subspaces $V_{d, k}$ invariant where $V_{d, k}$ are spaces of polynomials of the form

$$
\begin{equation*}
\sum_{i=0}^{d-k} \alpha_{i} q_{1}^{i} q_{2}^{d-i-k} q_{3}^{k} \tag{14}
\end{equation*}
$$

as the action on q_{3} is trivial. These are hence isomorphic to homogeneous polynomials in two variables and of degree $d-k$. The dimension of $V_{d, k}$ is $d-k+1$ and we have shown in the lecture that the action on $V_{d, k}$ gives irreducible representations r_{d-k} of $S U(2)$. The decomposition we are after is hence

$$
\begin{equation*}
F_{d}=\oplus_{k=0}^{d} r_{d-k} \tag{15}
\end{equation*}
$$

