Problem class 1

- 1) (a) Show that SO(3) is a group using matrix multiplication as the group composition.
 - (b) Verify that acting with $g \in SO(3)$ on a vector $v \in \mathbb{R}^3$ as $v \to gv$ implies that the length of v stays invariant.
 - (c) For a matrix $g = e^{\gamma}$, what conditions do we need to put on γ such that $g \in SO(3)$?
 - (d) The group O(3) is the group of matrices g which map a vector $\boldsymbol{v} \in \mathbb{R}^3$ to

$$\boldsymbol{v} \mapsto S \boldsymbol{v}$$
 (0.0.1)

such that the inner form on \mathbb{R}^3 , $m{v}\cdotm{v}=\sum_i v_i^2$, stays invariant.

For a matrix g in the group O(3), show that det $g = \pm 1$.

Solution:

(a) The definition says $g^{-1} = g^T$ and det g = 1.

Assume $g \in SO(3)$. Then also $g^T = g^{-1} \in SO(3)$: if $g^T g = 1$ then also $(g^T)^T g^T = 1$. Furthermore det $g^T = \det g = 1$.

Clearly $1 \in SO(3)$ and group multiplication is associative.

Finally, if $g, g' \in SO(3)$ we have

$$(gg')^{-1} = g'^{-1}g^{-1} = g'^T g^T = (gg')^T$$
(0.0.2)

and

$$\det gg' = \det g \det g' = 1. \tag{0.0.3}$$

(b) Let $\boldsymbol{v}' = g\boldsymbol{v}$. Then

$$length^{2}(\boldsymbol{v}') = \boldsymbol{v}' \cdot \boldsymbol{v}' = v'_{i}v'_{i} = g_{ij}v_{j}g_{ik}v_{k} = v_{j}g^{T}_{ji}g_{ik}v_{k} = \boldsymbol{v}^{T}g^{T}g\boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{v}$$

= length²(\mathbf{v}) (0.0.4)

(c) We have $g^T = (e^{\gamma})^T = e^{\gamma^T} = g^{-1} = e^{-\gamma}$. Hence $\gamma^T = -\gamma$. Repeating the same steps as done in the proof given in the lecture for SU(2) shows that

$$1 = \det g = \det e^{\gamma} = e^{\operatorname{tr}\gamma} \tag{0.0.5}$$

so that we need the trace of γ to vanish.

(d) Recall O(3) is the group of 3×3 matrices with $g^{-1} = g^T$. Using $g^T g = 1$ we have that $1 = \det 1 = \det g^T g = \det g^T \det g = (\det g)^2$.

This implies that SO(3) has two disjoint components, one with det g = 1 and one with det g = -1. As the determinant is a continuous function of the components of the matrix, there is no way we there is a continuous path that takes us from matrices with det = -1 to those of det = +1. Hence O(3) has two connected components. One of these (the one with the +) containes the identity and is a subgroup called SO(3). The other one (the one with the -) does not contain the identity and is hence not a subgroup.

- 2) Decide if the following maps are group homomorphisms.
 - (a) For $g \in U(1)$, $f : g \rightarrow g^2 \in U(1)$.
 - (b) For $g \in SU(2)$, $f : g \rightarrow g^2 \in SU(2)$.
 - (c) For $g \in SU(2)$,

$$f:g \to \begin{pmatrix} g & 0\\ 0 & g \end{pmatrix} \in SU(2) \times SU(2)$$
(0.0.6)

Here $SU(2) \times SU(2)$ is the group of block-diagonal matrices of the form

$$\begin{pmatrix} g & 0 \\ 0 & h \end{pmatrix} \tag{0.0.7}$$

with $g \in SU(2)$ and $h \in SU(2)$.

Solution:

In each case, we need to check the homomorphism property. As all of these are multi-

plicative groups, we need to show f(gg') = f(g)f(g').

- (a) We have $f(gg') = (gg')^2 = gg'gg' = g^2(g')^2 = f(g)f(g')$. So this is a homomorphism as U(1) is an abelian group.
- (b) We have $f(gg') = (gg')^2 = gg'gg'$ but now this is not always equal to $g^2(g')^2 = f(g)f(g')$ as $gg' \neq g'g$ in general. So this is **not** a homomorphism as SU(2) is a non-abelian group.
- (c)

$$f(gg') = \begin{pmatrix} gg' & 0\\ 0 & gg' \end{pmatrix} = \begin{pmatrix} g & 0\\ 0 & g \end{pmatrix} \begin{pmatrix} g' & 0\\ 0 & g' \end{pmatrix} = f(g)f(g')$$
(0.0.8)

so this is a homomorphism.