Andreas Braun — Geometry of Mathematical Physics IIIl MM  Problem Class 3

Problem Class 3

Problem 1: In section 5.3. we have assumed for simplicity that ¢ transforms as
¢ — €%

under a global U(1) symmetry and then gauged this symmetry. Assume that ¢ is
acted on in a different complex irreducible representation of U(1) and adjust all
equations in section 5.3. accordingly.

solution:

First we need to recall what complex irreducible representations of U(1) are
like: parametrizing U(1) by €@, they are given by ry, : €' — ¢ for k € Z. A
field (ﬁ transforming under a gauge transformation associated with r; would then
transform as

& — e*@g, (0.1)
while the gauge field A, still behaves as
A, — (A, +0,)e ™ =A,+ 0, (0.2)

The key point in the construction of gauge invariant dynamics is 5.3. was the
covariant derivative

D,p =0,0—1A,0 (0.3)
which had the property that

D,¢— D;¢’ =e"D,o, (0.4)
i.e. it transforms the same way as ¢. Hence we now want that
D¢ — %D, . (0.5)

The construction of the covariant derivative was motivated by cancelling the
unwanted derivative of « by the shift, and we can do the same thing here with a
little tweak by defining

Dy = 0 — ikAud. (0.6)
Let us check this does what it should:
Db = Dyd = 0, (¢%6) = ik( A, + (Gucr))e™ g
= %29, + ike*$d,a — i A ke P — ike™$D, 0 (0.7)
= ike (al,,g?s - ikAu@ — " D,¢
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All we need to do is hence to use the covariant derivative D, = #(ﬁ — ikAugg
instead thoughout 5.3 and we are done. It is common to still write D, in the
understanding that a covariant derivative acts on a field depending on its trans-
formation behavior.

Note that the current j, and hence the coupling of ¢ to A, gets rescaled by a
factor of k, which can even be negative. For this reason k is called the charge of
the field ¢.

Problem 2: We have seen the Schroedinger action
S = / dtd*c — V- VO + ik (00 — O (0.8)

in the lectures which gave Schroedinger’s equation as the equation of motion
of a classical field theory, and observed that it has a global U(1) symmetry

Y — e (0.9)

which guaranteed conservation of the charge Q = [ d3x|v|? interpreted as proba-
bility conservation in quantum mechanics.

Turn this U(1) into a gauge symmetry by letting o = «(¢,x) and derive the
equations of motion of ¢ (we have made the dependence of o on both time and
space explicit, i.e. are using a non-relativistic notation here).

solution:
Again it is the derivatives which are an issue, but we can solve this in the same
way as done for a relativistic scalar. We simply replace

where Ag = ¢ and A = Ay, Ay, Az are the usual electrostatic and vector potential
appearing in a non-relativistic formulation of Maxwell’s equations. With these
replacements the gauged Schroedinger action reads (omitting a kinetic term for
the gauge field A,,):

§ = [dtd*s — Dy DY + ik (6D — D)

= [dtds — (V7 —iA)) - ((V +iA)0) + it (0, — i0)6 (0, + i6)0)
(0.11)
The Euler-Lagrange equations for ¢ are the complex conjugates of those of ¢, and
to get an equation for ¢ we work out those. To write down the Euler-Lagrange
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equations for @, we work out

0 1. . .
ol = VT 50w —iA- (V —iA)y
0 1.
goi” ~ 2" v
0

L= ((V —iA)),

00

where 0, = 0/0z;, j =1,2,3.
Hence the Euler Lagrange equation

) 0 )
Sy JR; Ny |, Ny g | 0.13
O 00, 700,10 (0.13)

gives

0=o¢y+ ;i@tw —A-(V—-iAp+ ;i@tl/J +V(V —iA)
=1iDy + DDv

(0.14)

To no surpise the e.o.m. contains covariant derivates only and is gauge covariant.
Note that we can rewrite this as

DDy + ¢pop = —iop) (0.15)
which means that in QM we would use
H=—(V—-iA?—¢ (0.16)

as the Hamilton operator. This is just the quantum version of the Hamiltonian
of a charged particle of mass 1/2 and charge —1 in an electro-magnetic field.

Problem 3: Repeat problem 2 for the Dirac action
S = / d*2 0 (148, + m) U (0.17)

Here we can use the same principle and replace d, — D,, := 0, — iA,,. resulting
in (again ignoring the kinetic term for the gauge field A,):

S = / d*a0 (V" D, +m) (0.18)

The e.o.m is simply
(YD, +m)¥ =0. (0.19)
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This is the Dirac equation describing a charged electron in an electro-magnetic
field and can be used to find the celebrated result that the magnetic moment of an
electron (or rather the so-called g-factor) is 2. Combining the ideas of the spin—%
'representation’ of the Lorentz group and gauge invariance forces us to write down
the above version of the Dirac equation, which in turn explains and experimental
result which had been a mystery before.



