- 1. Consider the representation $\mathbf{n} \otimes \bar{\mathbf{n}}$ of SU(n). Explain why this is always reducible. Can you identify the irreducible representations and invariant subspaces?
- 2. (a) Find the transformation of elements of $\mathbf{2} \otimes \mathbf{2}$.
 - (b) Show that the representations $\mathbf{2}$ and $\overline{\mathbf{2}}$ are isomorphic by showing they are related by a change of basis

$$\boldsymbol{z}' = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \boldsymbol{z} \tag{0.1}$$

[Note: of course, \bar{v} transforms also as $\bar{v} \to \bar{g}\bar{v}$ if $v \to gv$. In a complex vector space, complex conjugation is not a change of basis however!]

(c) Use the above to argue that $\mathbf{2} \otimes \mathbf{2} = \mathbf{1} \oplus \mathbf{3}$. Can you identify the invariant subspaces?