1. Consider the representation $\mathbf{n} \otimes \bar{\mathbf{n}}$ of SU(n). Explain why this is always reducible. Can you identify the irreducible representations and invariant subspaces?

solution: We can repeat the same derivation as done in the lecture for $\mathbf{2} \otimes \overline{\mathbf{2}}$. Writing a general element A of $\mathbf{n} \otimes \overline{\mathbf{n}}$ as

$$\sum_{ij} a_{ij} e_i \otimes f_j \tag{0.1}$$

using basis vectors e_i and f_j for the vector space living in the **n** and $\bar{\mathbf{n}}$, we get the transformation law

$$A \to gAg^{\dagger}$$
 (0.2)

for $g \in SU(n)$. The trace of A defines a subspace of the vector space spanned by all A, and we can work out

$$trA \to trgAg^{\dagger} = trA \tag{0.3}$$

so this is an invariant subspace **1**. The orthogonal complement of this subspace has complex dimension $n^2 - 1$ and transforms in the same way as (a complex version of) the adjoint is hence irreducible. Hence we can write $\mathbf{n} \otimes \bar{\mathbf{n}} = \mathbf{1} \oplus \mathbf{adj}_{\mathbb{C}}$.

- 2. (a) Find the transformation of elements of $\mathbf{2} \otimes \mathbf{2}$.
 - (b) Show that the representations $\mathbf{2}$ and $\mathbf{\overline{2}}$ are isomorphic by showing they are related by a change of basis

$$\boldsymbol{z}' = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \boldsymbol{z} \tag{0.4}$$

[Note: of course, \bar{v} transforms also as $\bar{v} \to \bar{g}\bar{v}$ if $v \to gv$. In a complex vector space, complex conjugation is not a change of basis however!]

(c) Use the above to argue that $\mathbf{2} \otimes \mathbf{2} = \mathbf{1} \oplus \mathbf{3}$. Can you identify the invariant subspaces?

solution:

(a) Using the general formula from the lecture, elements A of $2 \otimes 2$ written as a matrix transform as

$$A \to gAg^T \,. \tag{0.5}$$

(b) Let us assume that z lives in the 2, so that it transforms as

$$\boldsymbol{z} \to g \boldsymbol{z}$$
. (0.6)

Define the coords after the change basis as

$$\begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$
(0.7)

This means that the action of g on \mathbb{C}^2 after this basis change is

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} g \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} g \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \bar{a} & \bar{b} \\ -b & a \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$(0.8)$$

Hence this change of basis takes us from an action by g to one by \overline{g} . Note how the specific form of g was important here.

(c) After this change of basis on one of the factors of the tensor product $\mathbb{C}^2 \otimes \mathbb{C}^2$ we are considering, the action is exactly as it was for the $2 \otimes \overline{2}$! Then we are considering the same as the problem treated in the lecture (and above for the general case) and conclude that

$$\mathbf{2} \otimes \mathbf{2} \cong \mathbf{1} \oplus \mathbf{3} \tag{0.9}$$

again.

To explicitly find the singlet in the original version of writing things

$$A \to gAg^T \,. \tag{0.10}$$

we can proceed as follows: let $\epsilon_{12} = -\epsilon_{21}$. For $g \in SU(2)$ we can write

$$\det g = \epsilon_{ij} g_{i1} g_{j2} = 1 \tag{0.11}$$

or equivalently

$$\epsilon_{ij}g_{ik}g_{jl} = \epsilon_{kl} \tag{0.12}$$

Hence

$$\epsilon_{ij}a_{ij} \to \epsilon_{ij}g_{ik}g_{jl}a_{kl} = \epsilon_{kl}a_{kl} \tag{0.13}$$

is a singlet. You can find the same by mapping the trace of a matrix in $2 \otimes \overline{2}$ back to $2 \otimes 2$.