1) Consider a Lorentz vector with components x^{μ} , which transforms under Lorentz transformations as

$$x^{\mu} \to x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$$

Note that throughout this problem we are using summation convention.

- a) Let $f^{\mu\nu} \equiv x^{\mu}x^{\nu}$. Find the transformation behavior of $f^{\mu\nu}$, $f^{\mu}_{\ \nu} = x^{\mu}x_{\nu}$ and $f_{\mu\nu} = x_{\mu}x_{\nu}$ under Lorentz transformations.
- b) For another Lorentz vector y^{μ} , find the transformation behavior of $f^{\mu\nu}y_{\mu}$ under Lorentz transformations.
- c) Compute

$$\sum_{\mu} \frac{\partial}{\partial x^{\mu}} x^{\mu} \, .$$

d) Work out the transformation behavior of

$$\frac{\partial}{\partial x^{\mu}}$$

under Lorentz transformations. Use c) to argue for the same result.

2) Write a 4-vector (x^0, x^1, x^2, x^3) as a matrix M_x with $M_x^{\dagger} = M_x$:

$$M_x := \begin{pmatrix} x^0 + x^3 & x^1 - ix^2 \\ x^1 + ix^2 & x^0 - x^3 \end{pmatrix}.$$
 (0.1)

For $g \in SL(2, \mathbb{C})$ define an action F(g) on \mathbb{R}^4 by

$$g \to F(g)$$
 $F(g)M_x := gM_x g^{\dagger}$. (0.2)

- a) Show that F is a homomorphism from $SL(2, \mathbb{C})$ to L.
- b) For a rotation in the x^1, x^2 -plane, find the element $g \in SL(2, \mathbb{C})$ that is mapped to it by F. Repeat the same for a boost along the x^1 direction.

Here are some things to ponder:

- 1. How is the Lorent group defined? Why is it defined that way?
- 2. What's the point about upper/lower indices?