
Andreas Braun Geometry of Mathematical Physics III EP, problems week 1

1) Consider a Lorentz vector with components xµ, which transforms under
Lorentz transformations as

xµ → x′µ = Λµ
νxν .

Note that throughout this problem we are using summation convention.

a) Let fµν ≡ xµxν . Find the transformation behavior of fµν , fµ
ν = xµxν

and fµν = xµxν under Lorentz transformations.
b) For another Lorentz vector yµ, find the transformation behavior of

fµνyµ under Lorentz transformations.
c) Compute ∑

µ

∂

∂xµ
xµ .

d) Work out the transformation behavior of

∂

∂xµ

under Lorentz transformations. Use c) to argue for the same result.

solution:

(a) We can infer the transformation of fµν , fµ
ν , fµν from that of xµ and xµ

fµν → Λµ
µ′Λν

ν′fµ′ν′

fµ
ν → Λµ

µ′f
µ′

ν′(Λ−1)ν′

ν

fµν → fµ′ν′(Λ−1)µ′

µ(Λ−1)ν′

ν

(0.1)

Here the ordering of things I used on the rhs is not really important, I
have written things in such a way that serves the slogan upper indices
transform with Λ and lower indices transform with Λ−1 from
the right.

(b) Using the result of a) and the fact that yµ transforms with a Λ−1 we
immediately see that

fµνyµ → Λν
ν′fµν′

yµ (0.2)

I.e. µ is a contracted dummy index and the only non-trivial transfor-
mation is coming from ν.
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(c) This is simply

∑
µ

∂

∂xµ
xµ = ∂x0

∂x0 + ∂x1

∂x1 + ∂x2

∂x2 + ∂x3

∂x3 = 4 (0.3)

(d) Writing
x′µ = Λµ

νxν (0.4)
implies that

∂

∂x′µ = ∂

∂xν

∂xν

∂x′µ = ∂

∂xν
(Λ−1)ν

µ (0.5)

The derivative witht respect to a Lorentz vector hence transforms like
a Lorentz covector. For this reason people usually write ∂

∂xµ ≡ ∂µ. This
result can also be seen from part c): The number 4 is a Lorentz scalar
and as xµ is a Lorentz vector ∂

∂xµ must be a covector to get something
invariant.

2) Write a 4-vector (x0, x1, x2, x3) as a matrix Mx with M †
x = Mx:

Mx :=
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (0.6)

For g ∈ SL(2, C) define an action F (g) on R4 by

g → F (g) F (g)Mx := gMxg† . (0.7)

a) Show that F is a homomorphism from SL(2, C) to L.

b) For a rotation in the x1, x2-plane, find the element g ∈ SL(2, C) that is
mapped to it by F . Repeat the same for a boost along the x1 direction.

solution:

a) First note that Mx is the most general 2 × 2 matrix with the property
Mx = M †

x. This property is preserved by F (g) as

(gMxg†)† = g††M †
xg† = gMxg† . (0.8)

Furthermore F (g) acts as a linear map on R1,3 which preserves det Mx:

det Mx → det(gMxg†) = det g det Mx det g† = det Mx . (0.9)

As xµxµ = −(x0)2 + (x1)2 + (x2)2 + (x3)2 = − det Mx, the linear map
F (g) preserves the length of vectors in R1,3 and is hence in L.
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In fact, we can argue that F (g) is contained in L↑
+ (you weren’t asked

this for the assignment, but it is good to know). The group SL(2, C) is
connected as the following argument shows: by a standard result from
linear algebra, we can write any matrix in SL(2, C) as

g = B

(
a b
0 a−1

)
B−1 (0.10)

We can now simply let b go to zero and a go to 1 continuously to connect
any element in SL(2, C) continuously to the identity. As SL(2, C) is
connected and L has four connected components, F can only map to
one of them (it is a continuous map). Using g = 1 we see that F
maps to L↑

+, the component containing the identity. This map is not
injective, as g and −g are mapped to the same F (g).

b) Now let us consider how different matrices in SL(2, C) act on Mx. First
we investigate elements of SL(2, C) that are in SU(2). For θ ∈ R set

g3(θ) := eiθσ3 =
(

eiθ 0
0 e−iθ

)

g2(θ) := eiθσ2 =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

g1(θ) := eiθσ1 =
(

cos(θ) i sin(θ)
i sin(θ) cos(θ)

) (0.11)

Their action on Mx is

g3Mxg†
3 =

(
x0 + x3 e2iθ(x1 − ix2)

e−2iθ(x1 + ix2) x0 − x3

)

g2Mxg†
2 =

(
x0 + x1 sin(2θ) + x3 cos(2θ) x1 cos(2θ) − ix2 − x3 sin(2θ)
x1 cos(2θ) + ix2 − x3 sin(2θ) x0 − x1 sin(2θ) − x3 cos(2θ)

)

g1Mxg†
1 =

(
x0 − x2 sin(2θ) + x3 cos(2θ) x1 − ix2 cos(2θ) − ix3 sin(2θ)

x1 + ix2 cos(2θ) + ix3 sin(2θ) x0 + x2 sin(2θ) − x3 cos(2θ)

)
(0.12)

This is the same we observed when we studied the same action of SU(2)
on R3: gi defines a rotation by angle of magnitude 2θ around the xi

axis is R3 with coordinates x1, x2, x3. Similarly, one can parametrize
rotations around arbitrary axis. As we can write any matrix in SO(3)
as product of such elementary rotations (see again problem class 1),
the map from SU(2) ⊂ SL(2, C) is surjective onto SO(3) ⊂ L↑

+.
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We can realize three other independent elements of SL(2, C) as

h3(θ) := eθσ3 =
(

eθ 0
0 e−θ

)

h2(θ) := eθσ2 =
(

cosh(θ) −i sinh(θ)
i sinh(θ) cosh(θ)

)

h1(θ) := eθσ1 =
(

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

) (0.13)

where again θ ∈ R. Note that now h†
j ̸= h−1

j but still det hj = 1. We
now have

h3Mxh†
3 =

(
e2θ(x0 + x3) x1 − ix2

x1 + ix2 e−2θ(x0 − x3)

)
(0.14)

As eθ = cosh θ + sinh θ for real θ we can summarize this as
x0

x1

x2

x3

 →


cosh 2θ 0 0 sinh 2θ

0 1 0 0
0 0 1 0

sinh 2θ 0 0 cosh 2θ




x0

x1

x2

x3

 (0.15)

i.e. this exactly a boost in (minus) the x3 direction. Boosts along the
x2 and x1 axis are likewise realized by h2 and h1 and we can again find
a boost along an arbitrary direction by exponentiating appropriate real
linear combinations of the σj. In particular taking

h1 =
(

cosh θ sinh θ
sinh θ cosh θ

)
(0.16)

gives

h1Mh†
1 =

(
x3 + x0 cosh 2θ + x1 sinh 2θ −ix2 + x1 cosh 2θ + x2 sinh 2θ
ix2 + x1 cosh 2θ + x2 sinh 2θ −x3 + x0 cosh 2θ + x1 sinh 2θ

)
(0.17)

which is a boost in the x1 direction.
You weren’t asked to do this for the assignment, but we can now com-
ment on how we should show that F (g) is a surjective homomorphism.
Given the above, it should be clear that we can write any rotation and
any boost in L↑

+ as the image of an element of SL(2, C) under F (g).
In the lectures we have stated a thoerem that every element of L↑

+ can
be written as the product of an element of SO(3) and a boost, hence
every element in L↑

+ is in the image of F .
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Here are some things to ponder:

1. How is the Lorent group defined? Why is it defined that way?

2. What’s the point about upper/lower indices?
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