1) Consider a Lorentz vector with components x^{μ} , which transforms under Lorentz transformations as

$$x^{\mu} \to x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$$

Note that throughout this problem we are using summation convention.

- a) Let $f^{\mu\nu} \equiv x^{\mu}x^{\nu}$. Find the transformation behavior of $f^{\mu\nu}$, $f^{\mu}{}_{\nu} = x^{\mu}x_{\nu}$ and $f_{\mu\nu} = x_{\mu}x_{\nu}$ under Lorentz transformations.
- b) For another Lorentz vector y^{μ} , find the transformation behavior of $f^{\mu\nu}y_{\mu}$ under Lorentz transformations.
- c) Compute

$$\sum_{\mu} \frac{\partial}{\partial x^{\mu}} x^{\mu} \, .$$

d) Work out the transformation behavior of

$$\frac{\partial}{\partial x^{\mu}}$$

under Lorentz transformations. Use c) to argue for the same result.

solution:

(a) We can infer the transformation of $f^{\mu\nu}$, f^{μ}_{ν} , $f_{\mu\nu}$ from that of x^{μ} and x_{μ}

$$\begin{aligned} f^{\mu\nu} &\to \Lambda^{\mu}_{\ \mu'} \Lambda^{\nu}_{\ \nu'} f^{\mu'\nu'} \\ f^{\mu}_{\ \nu} &\to \Lambda^{\mu}_{\ \mu'} f^{\mu'}_{\ \nu'} (\Lambda^{-1})^{\nu'}_{\ \nu} \\ f_{\mu\nu} &\to f_{\mu'\nu'} (\Lambda^{-1})^{\mu'}_{\ \mu} (\Lambda^{-1})^{\nu'}_{\ \nu} \end{aligned} (0.1)$$

Here the ordering of things I used on the rhs is not really important, I have written things in such a way that serves the slogan **upper indices** transform with Λ and lower indices transform with Λ^{-1} from the right.

(b) Using the result of a) and the fact that y_{μ} transforms with a Λ^{-1} we immediately see that

$$f^{\mu\nu}y_{\mu} \to \Lambda^{\nu}{}_{\nu'}f^{\mu\nu'}y_{\mu} \tag{0.2}$$

I.e. μ is a contracted dummy index and the only non-trivial transformation is coming from ν .

(c) This is simply

$$\sum_{\mu} \frac{\partial}{\partial x^{\mu}} x^{\mu} = \frac{\partial x^{0}}{\partial x^{0}} + \frac{\partial x^{1}}{\partial x^{1}} + \frac{\partial x^{2}}{\partial x^{2}} + \frac{\partial x^{3}}{\partial x^{3}} = 4$$
(0.3)

(d) Writing

$$x^{\prime\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \tag{0.4}$$

implies that

$$\frac{\partial}{\partial x'^{\mu}} = \frac{\partial}{\partial x^{\nu}} \frac{\partial x^{\nu}}{\partial x'^{\mu}} = \frac{\partial}{\partial x^{\nu}} (\Lambda^{-1})^{\nu}{}_{\mu} \tag{0.5}$$

The derivative with respect to a Lorentz vector hence transforms like a Lorentz covector. For this reason people usually write $\frac{\partial}{\partial x^{\mu}} \equiv \partial_{\mu}$. This result can also be seen from part c): The number 4 is a Lorentz scalar and as x^{μ} is a Lorentz vector $\frac{\partial}{\partial x^{\mu}}$ must be a covector to get something invariant.

2) Write a 4-vector (x^0, x^1, x^2, x^3) as a matrix M_x with $M_x^{\dagger} = M_x$:

$$M_x := \begin{pmatrix} x^0 + x^3 & x^1 - ix^2 \\ x^1 + ix^2 & x^0 - x^3 \end{pmatrix}.$$
 (0.6)

For $g \in SL(2, \mathbb{C})$ define an action F(g) on \mathbb{R}^4 by

$$g \to F(g)$$
 $F(g)M_x := gM_x g^{\dagger}$. (0.7)

- a) Show that F is a homomorphism from $SL(2, \mathbb{C})$ to L.
- b) For a rotation in the x^1, x^2 -plane, find the element $g \in SL(2, \mathbb{C})$ that is mapped to it by F. Repeat the same for a boost along the x^1 direction.

solution:

a) First note that M_x is the most general 2×2 matrix with the property $M_x = M_x^{\dagger}$. This property is preserved by F(g) as

$$(gM_xg^{\dagger})^{\dagger} = g^{\dagger\dagger}M_x^{\dagger}g^{\dagger} = gM_xg^{\dagger}.$$
 (0.8)

Furthermore F(g) acts as a linear map on $\mathbb{R}^{1,3}$ which preserves det M_x :

$$\det M_x \to \det(gM_xg^{\dagger}) = \det g \det M_x \det g^{\dagger} = \det M_x \,. \tag{0.9}$$

As $x_{\mu}x^{\mu} = -(x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 = -\det M_x$, the linear map F(g) preserves the length of vectors in $\mathbb{R}^{1,3}$ and is hence in L.

In fact, we can argue that F(g) is contained in L^{\uparrow}_{+} (you weren't asked this for the assignment, but it is good to know). The group $SL(2, \mathbb{C})$ is connected as the following argument shows: by a standard result from linear algebra, we can write any matrix in $SL(2, \mathbb{C})$ as

$$g = B \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} B^{-1} \tag{0.10}$$

We can now simply let b go to zero and a go to 1 continuously to connect any element in $SL(2, \mathbb{C})$ continuously to the identity. As $SL(2, \mathbb{C})$ is connected and L has four connected components, F can only map to one of them (it is a continuous map). Using g = 1 we see that Fmaps to L_{+}^{\uparrow} , the component containing the identity. This map is not injective, as g and -g are mapped to the same F(g).

b) Now let us consider how different matrices in $SL(2, \mathbb{C})$ act on M_x . First we investigate elements of $SL(2, \mathbb{C})$ that are in SU(2). For $\theta \in \mathbb{R}$ set

$$g_{3}(\theta) := e^{i\theta\sigma_{3}} = \begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix}$$

$$g_{2}(\theta) := e^{i\theta\sigma_{2}} = \begin{pmatrix} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$g_{1}(\theta) := e^{i\theta\sigma_{1}} = \begin{pmatrix} \cos(\theta) & i\sin(\theta)\\ i\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$(0.11)$$

Their action on M_x is

$$g_{3}M_{x}g_{3}^{\dagger} = \begin{pmatrix} x^{0} + x^{3} & e^{2i\theta}(x^{1} - ix^{2}) \\ e^{-2i\theta}(x^{1} + ix^{2}) & x^{0} - x^{3} \end{pmatrix}$$

$$g_{2}M_{x}g_{2}^{\dagger} = \begin{pmatrix} x^{0} + x^{1}\sin(2\theta) + x^{3}\cos(2\theta) & x^{1}\cos(2\theta) - ix^{2} - x^{3}\sin(2\theta) \\ x^{1}\cos(2\theta) + ix^{2} - x^{3}\sin(2\theta) & x^{0} - x^{1}\sin(2\theta) - x^{3}\cos(2\theta) \end{pmatrix}$$

$$g_{1}M_{x}g_{1}^{\dagger} = \begin{pmatrix} x^{0} - x^{2}\sin(2\theta) + x^{3}\cos(2\theta) & x^{1} - ix^{2}\cos(2\theta) - ix^{3}\sin(2\theta) \\ x^{1} + ix^{2}\cos(2\theta) + ix^{3}\sin(2\theta) & x^{0} + x^{2}\sin(2\theta) - x^{3}\cos(2\theta) \end{pmatrix}$$

$$(0.12)$$

This is the same we observed when we studied the same action of SU(2)on \mathbb{R}^3 : g_i defines a rotation by angle of magnitude 2θ around the x_i axis is \mathbb{R}^3 with coordinates x^1, x^2, x^3 . Similarly, one can parametrize rotations around arbitrary axis. As we can write any matrix in SO(3)as product of such elementary rotations (see again problem class 1), the map from $SU(2) \subset SL(2, \mathbb{C})$ is surjective onto $SO(3) \subset L_+^{\uparrow}$. We can realize three other independent elements of $SL(2, \mathbb{C})$ as

$$h_{3}(\theta) := e^{\theta \sigma_{3}} = \begin{pmatrix} e^{\theta} & 0\\ 0 & e^{-\theta} \end{pmatrix}$$

$$h_{2}(\theta) := e^{\theta \sigma_{2}} = \begin{pmatrix} \cosh(\theta) & -i\sinh(\theta)\\ i\sinh(\theta) & \cosh(\theta) \end{pmatrix}$$

$$h_{1}(\theta) := e^{\theta \sigma_{1}} = \begin{pmatrix} \cosh(\theta) & \sinh(\theta)\\ \sinh(\theta) & \cosh(\theta) \end{pmatrix}$$
(0.13)

where again $\theta \in \mathbb{R}$. Note that now $h_j^{\dagger} \neq h_j^{-1}$ but still det $h_j = 1$. We now have

$$h_3 M_x h_3^{\dagger} = \begin{pmatrix} e^{2\theta} (x^0 + x^3) & x^1 - ix^2 \\ x^1 + ix^2 & e^{-2\theta} (x^0 - x^3) \end{pmatrix}$$
(0.14)

As $e^{\theta} = \cosh \theta + \sinh \theta$ for real θ we can summarize this as

$$\begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} \to \begin{pmatrix} \cosh 2\theta & 0 & 0 & \sinh 2\theta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sinh 2\theta & 0 & 0 & \cosh 2\theta \end{pmatrix} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$$
(0.15)

i.e. this exactly a boost in (minus) the x^3 direction. Boosts along the x^2 and x^1 axis are likewise realized by h_2 and h_1 and we can again find a boost along an arbitrary direction by exponentiating appropriate real linear combinations of the σ_j . In particular taking

$$h_1 = \begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix} \tag{0.16}$$

gives

$$h_1 M h_1^{\dagger} = \begin{pmatrix} x_3 + x_0 \cosh 2\theta + x_1 \sinh 2\theta & -ix_2 + x_1 \cosh 2\theta + x_2 \sinh 2\theta \\ ix_2 + x_1 \cosh 2\theta + x_2 \sinh 2\theta & -x_3 + x_0 \cosh 2\theta + x_1 \sinh 2\theta \end{pmatrix}$$
(0.17)

which is a boost in the x_1 direction.

You weren't asked to do this for the assignment, but we can now comment on how we should show that F(g) is a surjective homomorphism. Given the above, it should be clear that we can write any rotation and any boost in L_+^{\uparrow} as the image of an element of $SL(2, \mathbb{C})$ under F(g). In the lectures we have stated a thoerem that every element of L_+^{\uparrow} can be written as the product of an element of SO(3) and a boost, hence every element in L_+^{\uparrow} is in the image of F. Here are some things to ponder:

- 1. How is the Lorent group defined? Why is it defined that way?
- 2. What's the point about upper/lower indices?