10) Consider the following action

$$S = \int dt \operatorname{Tr} \left(\dot{q}^2 - \omega q^2 \right)$$

for $q \in \mathfrak{su}(2)$ and $\omega \in \mathbb{R}$, i.e. we can write $q(t) = \sum_a q_a(t)\sigma_a$ with σ_a the Pauli matrices and $q_a(t)$ real.

- (a) Find the equations of motion by writing down the Euler-Lagrange equations which follow from S.
- (b) Show that this action is invariant under SU(n) acting as

$$q \to U q U^{\dagger} \qquad \dot{q} \to U \dot{q} U^{\dagger}$$

for $U \in SU(n)$.

- (c) Find the conserved quantities under the SU(n) action.
- 11) Consider the following action of a real scalar field $\phi(x^{\mu})$

$$S = \int d^4x \,\partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 \,.$$

Show that the equations of motion are

$$(-\partial_{\mu}\partial^{\mu} + m^2)\phi = 0.$$

12) Consider the action

$$S = \int d^4 x \bar{\Psi} \left(\gamma^{\mu} \partial_{\mu} + m \right) \Psi \,.$$

for a Dirac spinor field $\Psi(x^{\mu})$.

- (a) Find the equations of motion. [hint: $\Psi(x^{\mu})$ has four complex components Ψ_I . Treat the Ψ_I and $\overline{\Psi}_J$ as eight independent fields.]
- (b) The equations of motions have the form $D(m)\Psi = 0$. Show that $D(m)D(-m) = \mathbb{1}_{4\times 4}\Delta$ for a Δ that you should find.

Here are some things to ponder:

- 1. What is an action?
- 2. What is a symmetry of an action?