
Andreas Braun Geometry of Mathematical Physics III EP, problems week 4

10) Consider the following action

S =
∫

dt Tr
(
q̇2 − ωq2

)
(0.1)

for q ∈ su(2) and ω ∈ R, i.e. we can write q(t) = ∑
a qa(t)σa with σa the

Pauli matrices and qa(t) real.

(a) Find the equations of motion by writing down the Euler-Lagrange equa-
tions which follow from S.

(b) Show that this action is invariant under SU(n) acting as

q → UqU † q̇ → Uq̇U † (0.2)

for U ∈ SU(n).
(c) Find the conserved quantities under the SU(n) action.

solution:

(a) First notice that Tr σaσb = 2δab. We can hence write (using summation
convention)

S = 2
∫

dt q̇aq̇a − ωqaqa (0.3)

and the equations of motion for each of the qa are

q̈a − ωqa = 0 (0.4)

i.e. we can equivalently write

q̈ − ωq = 0 . (0.5)

(b) We have
Trq2 → TrUqU †UqU † = TrUq2U † = Trq2 (0.6)

using the cyclical property of the trace. Similarly

Trq̇2 → TrUq̇U †Uq̇U † = TrUq̇2U † = Trq̇2 (0.7)

so L and hence S are invariant.
(c) We need to work out the formula for the Noether charge:

Q(γ) = ∂L

∂q̇i

(ρ(γ)q)i − F (q, q̇, γ) (0.8)

1



Andreas Braun Geometry of Mathematical Physics III EP, problems week 4

note that part (b) shows that F = 0. Let us try to find the associated
Lie algebra representation of the adjoint action. We have that a path
in SU(2) acts as

q → eiσbαbtqe−iσbαbt (0.9)

the associated Lie algebra action of which (= infinitesimal transforma-
tion) is

q → ∂

∂t
eiσbαbtqe−iσbαbt

∣∣∣∣∣
t=0

(0.10)

i.e.

qaσa → qa + i[σb, σa]αbqa = −2ϵabcαbqaσc = (ρ(iσbαb)q)c σc . (0.11)

As
∂

∂q̇c

L = 2q̇c (0.12)

we find the Noether charge

Q = −4ϵabcαbqaq̇c (0.13)

Note that letting α = αaσa we can rewrite this more elegantly as
follows:

Q = Tr ([g, α]q̇) = −2qaαbq̇dϵabcTr(σcσd) = −4αaqbq̇cϵabc (0.14)

Note that we find a conserved charge for any Lie algebra element, i.e.
for any α. I total there are hence 3 independent conserved quanti-
ties. Note further that writing things in terms of the qa things look
like we just talking about SO(3) again, so we get the same conserved
things: collecting the qa in a column vector q we can write the con-
served charges as a linear combination of q × q̇, so this is like angular
momentum in disguise :)

11) Consider the following action of a real scalar field ϕ(xµ)

S =
∫

d4x ∂µϕ∂µϕ + m2ϕ2 .

Show that the equations of motion are

(−∂µ∂µ + m2)ϕ = 0 .

solution:
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We have
∂L/∂ϕ = 2m2ϕ (0.15)

and
∂

∂(∂µϕ)L = ∂

∂(∂µϕ) ∂ρϕ∂ρϕ = ηρσ ∂

∂(∂µϕ)∂ρϕ∂σϕ

= ηρσ∂σϕ
∂

∂(∂µϕ) ∂ρϕ + ηρσ∂ρϕ
∂

∂(∂µϕ) ∂σϕ

= ηρσδµ
ρ∂σϕ + ηρσδµ

σ∂ρϕ = 2∂µϕ

(0.16)

The equation of motion for ϕ is hence

(−∂µ∂µ + m2)ϕ = 0 (0.17)

Note that we can write the Lagrangian density as

L = −( ∂

∂t
ϕ)2 + (∇ϕ)2 + m2ϕ2 (0.18)

so this is really the same as example 4.2. You can check that the equations
of motion are also the same in both cases.

12) Consider the action

S =
∫

d4xΨ̄ (γµ∂µ + m) Ψ .

for a Dirac spinor field Ψ(xµ).

(a) Find the equations of motion. [ hint: Ψ(xµ) has four complex
components ΨI. Treat the ΨI and Ψ̄J as eight independent
fields.]

(b) The equations of motions have the form D(m)Ψ = 0. Show that
D(m)D(−m) = 14×4 ∆ for a ∆ that you should find.

solution:

(a) To find the field equation for Ψ̄, let us write out the Lagrangian in
terms of the components ΨI of the spinors:

L = Ψ∗
Iγ0

IJ (γµ
JK∂µ + δJKm) ΨK (0.19)

where γ0
IJ and γµ

JK are the components of these matrices. The Euler-
Lagrange equation for Ψ∗ is simply

∂L

∂Ψ∗
I

= 0 (0.20)
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as there are no derivatives w.r.t Ψ∗ in L. We hence find

γ0
IJ (γµ

JK∂µ + δJKm) ΨK = 0 . (0.21)

Multiplying by (γ0)−1 gives

(γµ∂µ + m) Ψ = 0 . (0.22)

This is the famous Dirac equation.
(b) We work out

(γµ∂µ − m) (γν∂ν + m) =
(
∂µ∂νγµγν − m2

)
=

(
1
2∂µ∂νγµγν + 1

2∂µ∂νγµγν − m2
)

=
(

1
2∂µ∂νγµγν + 1

2∂ν∂µγµγν − m2
)

=
(

1
2∂µ∂νγµγν + 1

2∂µ∂νγνγµ − m2
)

=
(

1
2∂µ∂ν{γµ, γν} − m2

)
=

(
∂µ∂νηµν − m2

)
=

(
∂µ∂µ − m2

)
(0.23)

Note that we have simply relabelled µ and ν for the second term in
the 4th line. The same result can be found by writing out the sums
γµ∂µ and γν∂ν and collecting all the terms. It is in the sense of the
above equation that the Dirac equation is the square root of the Klein-
Gordon equation. The above computation is what prompted Dirac to
invent the Dirac matrices.

Here are some things to ponder:

1. What is an action?

2. What is a symmetry of an action?
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