- 1. Consider the sets of points in \mathbb{R}^2 with coordinates (x, y) defined implicitely by the following relations
 - a) $y = x^3$
 - b) xy = c
 - c) $x^2 + y^4 = 1$
 - d) x > y
 - e) $y^2 + x^3 3x c = 0$

Using the induced topology from \mathbb{R}^2 , decide in each case if this is a differentiable manifold.

[hint: plot them! Note that the word 'differentiable' here refers to the manifold and not the functions I used to define a manifold. The two notions are not unrelated however, details are explained in the non-examinable example 1.10. but this is not needed to answer this question.]

- 2. Describe the tangent space of SO(3) at the identity.
- 3. O(1,1) are the real 2×2 matrices O which leave the bilinear form $x_1^2 x_2^2$ invariant when acting on $\boldsymbol{x} = (x_1, x_2)$ as

$$oldsymbol{x} o Ooldsymbol{x}$$
 .

- a) Show that O(1,1) is a group using matrix multiplication.
- b) Find the general form of elements of O(1, 1).
- c) Explain why O(1,1) is a differentiable manifold and write down coordinate charts.
- d) Find the tangent space of O(1, 1) at the identity element.

Here are some things to ponder:

- 1. Why are homeomorphisms and manifolds defined the way they are?
- 2. Tangent spaces are linear approximations.