
Andreas Braun Geometry of Mathematical Physics III EP, problems week 5

13) Assume that under

ϕI → ϕI + δγϕI = [(I + ρ(γ)) ϕ]I
∂µϕI → ∂µϕI + δγ∂µϕI = [(I + ρ(γ)) ∂µϕ]I

(0.1)

L is not invariant but to linear order in δϕI and δ∂µϕI we have

L → L + ∂µF µ(ϕI , ∂νϕI) (0.2)

for some functions F µ(ϕI , ∂νϕI).
By following the same steps as done in the proof of theorem 4.4., show that
this also leads to a conserved current which you should find.
solution:

We have that

∂µF µ(ϕI , ∂νϕI) = δL = ∂L

∂ϕI

δγϕI + ∂L

∂∂µϕI

∂µδγϕI

= ∂µ

(
∂L

∂∂µϕI

)
δγϕI + ∂L

∂∂µϕI

∂µδγϕI

= ∂µ

(
∂L

∂∂µϕI

δγϕI

) (0.3)

Hence
∂µ

(
∂L

∂∂µϕI

δγϕI − F µ

)
= 0 (0.4)

which says using δγϕI = [ρ(γ)ϕ]I that the current

jµ = ∂L

∂∂µϕI

[ρ(γ)ϕ]I − F µ (0.5)

is conserved.

14) Consider the action

S =
∫

d4xΨ̄ (γµ∂µ + m) Ψ .

for a Dirac spinor Ψ.

a) Show that S is Lorentz invariant.
b) Find the conserved charge associated to the U(1) symmetry Ψ → eiθΨ.
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solution:

a) We have already seen the transformation behavior of all of the terms
in this action when we replace ∂µ by a constant Lorentz covector aµ

in the third problem class, where we found that they are all invariant.
Transforming the argument of the spinor field Ψ effectively makes ∂µ

transform as a Lorentz covector as well, so that the above action is
Lorentz invariant.
Let’s translate the above into equations. We let xµ → Λµ

νxν and
y = Λ−1x, so that a Lorentz transformation maps

Ψ(x) → Λ1/2Ψ(y) . (0.6)

Note that Λ1/2 is the ‘spinor representation’ matrix associated to Λ,
i.e. if Λ = elρσθρσ then Λ1/2 = eSρσθρσ .
Using the transformation of Ψ̄ studied before, Ψ̄ → Ψ̄Λ−1

1/2 we find

S → S ′ =
∫

d4xΨ̄(y)Λ−1
1/2

(
γµ ∂

∂xµ
+ m

)
Λ1/2Ψ(y)

=
∫

d4yΨ̄(y)Λ−1
1/2

(
γµ
(
Λ−1

)ρ

µ
∂

∂yρ
+ m

)
Λ1/2Ψ(y)

where we have used the fact that the dervative behaves like a covector
(via the product rule) and that d4x = d4y for proper Lorentz transfor-
mations. Now we use the magical formula Λ−1

1/2γ
µΛ1/2 = Λµ

νγν . We
then have

S ′ =
∫

d4yΨ̄(y)
(

γν
(
Λ−1

)ρ

µΛµ
ν

∂

∂yρ
+ Λ−1

1/2Λ1/2m

)
Ψ(y) (0.7)

I have rearranged some factors (which are just numbers as we are using
indices) and you can see that (Λ−1)ρ

µΛµ
ν = δρ

ν . As also Λ−1
1/2Λ1/2 = 1

we end up with

S ′ =
∫

d4yΨ̄(y)
(

γν ∂

∂yν
+ m

)
Ψ(y) = S . (0.8)

as it is now evident that all that has happened is that x has been
relabelled as y everywhere.

b) Under the U(1) symmetry acting on Ψ as Ψ → eiθΨ, or in components
ΨI → eiθΨI . Ψ has 4 components ΨI , each of which is complex, so
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we need to treat ΨI and Ψ̄I as 8 independent fields. The infinitesimal
transformation are found by expanding to linear order in θ:

δΨI = iθΨI δΨI = −iθΨI (0.9)

and the conserved current is (note we are using summation convention
below, i.e. summing over I)

jµ = δΨI
∂L

∂(∂µΨI) + δΨ̄I
∂L

∂(∂µΨ̄I)

= iθΨI
∂L

∂(∂µΨI) − iθΨ̄I
∂L

∂(∂µΨ̄I)
= iθΨIΨ∗

Kγ0
KJγµ

JI = iθΨ̄γµΨ .

(0.10)

Again this is conserved for any θ, and we don’t loose anything rescaling
the current to get rid of the iθ in the factor.
Rescaling this we get the conserved charge density j0 = −Ψ̄γ0γ0Ψ =
Ψ∗Ψ, i.e. the conserved charge is

QV =
∫

V
d3x |Ψ|2 (0.11)

which is positive definite. Hence one can use Ψ as a wave-function just
as one does for the Schroedinger equation.

15) Consider a field Φ transforming in the adjoint representation of the Lie group
SU(n). Show that

S =
∫

d4x tr (∂µΦ∂µΦ)

is invariant under the action of SU(n) and find the associated conserved
current.
solution:

We first need to think about what it means to transform in the adjoint
representation. The adjoint representation acts on the vector space that is
equal to the Lie algebra of SU(n). We should hence think of Φ as a (space-
time dependent) element of the Lie algebra of SU(n). In particular, this
means Φ is a traceless anti-hermitian n × n matrix that transforms as

Φ → gΦg−1 (0.12)

for g ∈ SU(n) and also
∂µΦ → g(∂µΦ)g−1 (0.13)
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Under this map

tr (∂µΦ∂µΦ) → tr
(
g∂µΦg−1g∂µΦg−1

)
= tr

(
g∂µΦ∂µΦg−1

)
= tr

(
g−1g∂µΦ∂µΦ

)
= tr (∂µΦ∂µΦ)

(0.14)

using the properties of the trace. The associated infinitesimal transformation
(Lie algebra representation) is

δγΦ = [γ, Φ] (0.15)

for γ ∈ su(n). For a basis γi of the Lie algebra we can write

Φ = Φiγi (0.16)

so that
L = ∂µΦi∂

µΦjtr (γiγj) (0.17)

and
γiδγΦi = Φj[γ, γj] (0.18)

We can now work out

jµ = ∂L

∂(∂µΦi)
δγϕi = 2(∂µΦj)tr(γiγj)δγΦi = 2tr (δγΦ∂µΦ)

= 2tr ([γ, Φ]∂µΦ)
(0.19)

Another way to treat this is to uses the fact that we can think of (α, β) :=
−trαβ as an inner form (scalar product) on the vector space that is the Lie
algebra. This implies we can choose an orthonormal basis γi which satisfies

trγiγj = −δij . (0.20)

A third way to approach this is to redo the derivation of the equations of
motion and Noethers theorem for fields which are matrices Φ starting from
S.
All of these give the same answer of course.

Here are some things to ponder:

1. What does Noether’s theorem tell you for a field theory?

2. When do we consider a physical system to be Lorentz invariant?
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