
Andreas Braun Geometry of Mathematical Physics III, problems week 5

1. Consider the sets of points in R2 with coordinates (x, y) defined implicitely
by the following relations

a) y = x3

b) xy = c

c) x2 + y4 = 1
d) x > y

e) y2 + x3 − 3x − c = 0

Using the induced topology from R2, decide in each case if this is a differ-
entiable manifold.
[hint: plot them! Note that the word ‘differentiable’ here refers to the man-
ifold and not the functions I used to define a manifold. The two notions are
not unrelated however, details are explained in the non-examinable example
1.10. but this is not needed to answer this question.] solution:

a) This can be mapped to R using simply x as the coordinate, so this is
in fact homeomorphic to R and it a manifold.

b) For c = 0, this is the union of two lines x = 0 and y = 0 meeting at the
origin and is not a manifold as discussed in the lectures. For all other
values of c it is a manifold.

c) This just looks like a dented circle and is a manifold.
d) This has dimension two, but is a manifold; we can just use the coordi-

nates of R2 used in its description.
e) Let me call this set E. Plotting E for c = 2 reveals it looks like this

E is an example of what is commonly called an ‘elliptic curve’. As can
be seen from the plot, two branches cross in the point (y, x) = (0, −1).
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This can be seen from the structure of the equation as well. For every
x there are two values of y, except when

y2 = −(x3 − 3x − 2) = (2 − x)(1 + x)2 = 0 . (0.1)

Note that double root at x + 1 = 0. We can write the above as

y = ±(1 + x)
√

2 − x . (0.2)

so that there are two branches which meet at x = −1. Zooming in on
this point, it looks the same as the example of xy = 0 considered above,
so that this cannot be a manifold for the same reasons. Something
similar happens for c = −2. For all other c, the curve does not have
this behavior and we in fact find a manifold.

2. Describe the tangent space of SO(3) at the identity.
solution:

We can approach this in two ways. First, let me construct some paths in
SO(3) and then use these to find an expression for tangent vectors. Here is
an element of SO(3):  cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

 (0.3)

As this is in SO(3) for any ϕ, we can make this into a path which I will call
Γ3 (as this is a rotation around the x3 axis) by simply relabelling ϕ into t
which is in some interval t ∈ (−1, 1):

Γ3 : t 7→

 cos t sin t 0
− sin t cos t 0

0 0 1

 (0.4)

It is important that this contains t = 0, as this is where we reach the identity,
Γ3(0) = 1. We can now work out the associated tangent vector as

T1(Γ3) = ∂

∂t

 cos t sin t 0
− sin t cos t 0

0 0 1


∣∣∣∣∣∣∣
t=0

=

 0 1 0
−1 0 0
0 0 0

 (0.5)

Note that we could have also used the description of a patch of SO(3) using
coordinates to describe the tangent vector, but I chose here to use the form
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above instead. In the end, tangent vectors are geometrical objects, and we
are free to explicitely describe them in different ways.
We can now repeat the same for rotations around the x1 or x2 axis. Denoting
the associated paths by Γ1 and Γ2 we find

T1(Γ1) =

0 0 0
0 0 1
0 −1 0

 T1(Γ2) =

 0 0 1
0 0 0

−1 0 0

 (0.6)

Now these are supposed to form a vector space of dimension 3, which is the
dimension of SO(3) which equals the dimension of its tangent spaces. Indeed
the three tangent vectors we have found span a vector space of dimension
3 using addition of matrices (the vector space of antisymmetric real 3 × 3
matrices), so that we can conclude that

T1SO(3) =
{
γ|γT = −γ

}
(0.7)

We can recover the same result as follows: we have already seen that writing

g = eγ (0.8)

for g ∈ SO(3) implies that γT = −γ, and any such anti-symmetric γ gives
us something in SO(3) upon exponentiating. Hence we can write a path

Γγ : t 7→ etγ , t ∈ (−1, 1) . (0.9)

for any such γ. Note that multiplying an anti-symmetric matrix by a real
number gives another anti-symmetric matrix, so etγ ∈ SO(3) for all real t.
Each such path passes through the identity for t = 0, so we find

T1(Γγ) = ∂

∂t
etγ
∣∣∣
t=0

= γ . (0.10)

Hence the set of all tangent vectors is found again to be

T1SO(3) =
{
γ|γT = −γ

}
. (0.11)

3. O(1, 1) are the real 2 × 2 matrices O which leave the bilinear form x2
1 − x2

2
invariant when acting on x = (x1, x2) as

x → Ox .
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a) Show that O(1, 1) is a group using matrix multiplication.
b) Find the general form of elements of O(1, 1).
c) Explain why O(1, 1) is a differentiable manifold and write down coor-

dinate charts.
d) Find the tangent space of O(1, 1) at the identity element.

solution:
Acting with O ∈ O(1, 1) on R2 is supposed to leave the bilinear form x2

1 −x2
2

invariant. Imagine you have found two matrics O, O′ with this property. We
can act first with O

x → Ox (0.12)
which leaves x2

1 − x2
2 invariant, after which we can then act with O′ which

again leaves x2
1 − x2

2 invariant. In summary, we have then acted with O′O,
which makes using matrix multiplication as the group composition a good
idea.

(a) Let us first find a condition that must be satisfied by matrices in O(1, 1).
We need

x2
1 − x2

2 = xT

(
1 0
0 −1

)
x (0.13)

to stay invariant. This is mapped to

xT OT

(
1 0
0 −1

)
Ox

!= xT

(
1 0
0 −1

)
x (0.14)

so we find the condition
OT LO = L (0.15)

with L =
(

1 0
0 −1

)
Let us now check the group property using matrix multipliction as ◦.
The condition above is solved by O the identity matrix, so we have
the identity element. This equation also implies that det O ̸= 0, so
an inverse exists. We can even write it down: O−1 = LOT L because
LOT LO = L2 = 1. Now multiplying OT LO = L by O−1 from the right
and (OT )−1 from the left shows

L = (OT )−1LO−1 = (O−1)T LO−1 . (0.16)

so the inverse satisfies the same equation. We have used that (OT )−1 =
(O−1)T which can be seen by

(OT )−1OT = 1 = (OO−1)T = (O−1)T OT . (0.17)
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Finally we can observe that for O′′ = OO′ with O, O′ ∈ O(1, 1) we have

(O′′)T LO′′ = (O′)T OT LOO′ = (O′)T LO′ = L . (0.18)

so O′′ ∈ O(1, 1) as well.
(b) Note that det O = ±1 by taking the determinant of OT LO = L on

both sides. Let us denote det O = δ which can take the 2 values ±1.
We can parametrize O as

O =
(

a b
c d

)
O−1 = ±

(
d −b

−c a

)
(0.19)

and plug this into OT L = LO−1 to find

a = δd , b = δc . (0.20)

The determinant of O changes continuously along any path in O, which
implies that there are hence (at least) two components, one for δ = 1
and one for δ = −1.

det O = 1 This implies that

O =
(

a b
b a

)
(0.21)

with a2 − b2 = 1. We can parametrize solutions of this as

a = ± cosh ϕ b = sinh ϕ . (0.22)

There are two inequivalent solutions as cosh(ϕ) > 0, as − sinh(ϕ) =
sinh(−ϕ) the choice of sign of b does not make a difference. Note that
the two types of solution we have found here are disjoint, a is always
positive for one and always negative for the other. Hence we have
found two disconnected components O↑

+ (det O > 0, a > 0) and O↓
+

(det O > 0, a < 0).

det O = −1 This implies that

O =
(

a b
−b −a

)
(0.23)

with −a2 + b2 = −1.
Repeating the same steps as above we find a = ± cosh(ϕ) and b =
sinh(ϕ) for this case. Hence we get two more components O↑

− (det O <
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0, a > 0) and O↓
− (det O < 0, a < 0).

In summary we have hence found 4 disjoint components. Only O↑
+

is a subgroup as it is the only component that contains the identity
element.

(c) Note that we can map any component of O(1, 1) to a copy of R by
the parametrization by ϕ in a one-to-one fashion. Let us call these
maps Φ↑↓

± . These give us good coordinate charts as these are clearly
one-to-one continuous maps. Note that the a subset is open if the
corresponding subset is open in R.

(d) The component connected to 1 is O↑
+ and we can describe a path

through 1 by

O(t) =
(

cosh(t) sinh(t)
sinh(t) cosh(t)

)
(0.24)

for t = −e..e with some e > 0. We work out

∂

∂t
O(t)|t=0 =

(
0 1
1 0

)
(0.25)

so that the tangent space at 1 is the vector space of matrices

T1 =
{(

0 v
v 0

)
|v ∈ R

}
. (0.26)

Note that
exp

[(
0 v
v 0

)]
=
(

cosh(v) sinh(v)
sinh(v) cosh(v)

)
(0.27)

Here are some things to ponder:

1. Why are homeomorphisms and manifolds defined the way they are?

2. Tangent spaces are linear approximations.

6


