
Andreas Braun Geometry of Mathematical Physics III, problems week 6

1. Show that for every g ∈ GL(n, R) \ O(n), i.e. g ∈ GL(n, R) such that
gT g ̸= 1, there is an open set Ug containing g such that Ug is entirely
contained in GL(n, R) \ O(n).
hint: GL(n, R) inherits its topology from the vector space Vn×n of real n×n
matrices, which is isomorphic to Rn2 : the n2 entries of such a matrix are
just the components of a vector in Rn2 from this perspective. We can hence
describe the open ball of radius r around a matrix M with components Mij

as

Br(M) =

N ∈ Vn×n|
∑
ij

(Nij − Mij)2 < r

 . (0.1)

Solution:

Consider a g ∈ GL(n, R) \ O(n). As gT g ̸= 1 we can write

gT g = 1 + C (0.2)

for some matrix C. Furthermore, let det g = c ̸= 0.
Now consider an open ball of radius ϵ in Vn×n = Rn2 centered at g. We can
describe every gb in this ball as

gb = g + ϵ∆ (0.3)

for a number ϵ and a matrix ∆ with ∑ij ∆2
ij = 1. We have

gT
b gb = 1 + C + ϵ(∆T g + gT ∆) + ϵ2∆T ∆ . (0.4)

We want to show that we can choose ϵ such that there is no gb in Bϵ(g) with
gT

b gb = 1, i.e. there is no gb in Bϵ(g) with gb ∈ O(n). This can only happen
if we can find ∆ and ϵ such that

C + ϵ(∆T g + gT ∆) + ϵ2∆T ∆ = 0 (0.5)

We can assume that Cij ̸= 0 for some i, j (otherwise gT g = 1 and so g ∈
O(n)). Now in the above equation g is fixed, C is fixed (it depends on g)
and the components of ∆ are bounded. By choosing ϵ small enough, we can
hence make sure that

Cij > ϵ
(
∆T g + gT ∆

)
ij

+ ϵ2
(
∆T ∆

)
ij

= 0 (0.6)

for all ∆. But this means that none of the gb are in O(n) for such an ϵ, i.e.
they are all in Vn×n \ O(n) as this works for any g ∈ Vn×n \ O(n). We have
hence shown that Vn×n \ O(n) is open.
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What we were actually interested in is not showing that Vn×n \O(n) is open
but that GL(n, R) \ O(n) is open. We are in GL(n, R) if det g ̸= 0. We
can now repeat a similar argument as above to show that if det g = c, then
of course c is some finite number and for a small enough ϵ, all matrices in
Bϵ(g) also have det gb ̸= 0. Note that the determinant is just a polynomial
of the entries of gb. But this means that we can choose ϵ small enough such
that Bϵ(g) is entirely in GL(n, R). Hence such Bϵ(g) are open in GL(n, R).
In summary, if gb ∈ GL(n, R)\O(n) we can choose ϵ small enough such that
for all gb ∈ Bϵ(g) we have det gb ̸= 0 and gT

b gb ̸= 1. Hence there is an open
set Ug of GL(n, R) for any such g that is entirely in GL(n, R) \ O(n).

2. GL(n, C) is the group of invertible complex n × n matrices. Show that
GL(n, C) is a Lie group.
Solution:

Using Theorem 1.3. from the lectures, we can do this by showing that
GL(n, C) is a closed subgroup of GL(m, R) for some m.
Let us first rewrite complex multiplication as real matrix multiplication. For
z ∈ C write this as a vector zR := (ζ+, ζ−) ∈ R2 by setting z = ζ+ + iζ−. As

az = a+ζ+ − a−ζ− + i(a+ζ− + a−ζ+) (0.7)

we can write multiplication of z by a as multiplying a vector zR in R2 by a
2 × 2 matrix aR

aRzR =
(

a+ −a−
a− a+

)(
ζ+
ζ−

)
(0.8)

This implies that for a complex matrix A acting on a complex vector z with
n elements zi = ζi+ + iζi− we can write this as a real 2n × 2n matrix acting
on a real vector with 2n components:

Az ↔ ARzR (0.9)

where each entry aij = aij+ + iaij− in A is replaced by the matrix

aij =
(

aij+ −aij−
aij− aij+

)
(0.10)

and
zR = (ζ1+, ζ1−, ζ2+, ζ2−, · · · ζn+, ζn−) (0.11)

We can hence translate every element of GL(n, C) into a real 2n×2n matrix.
This matrix is in GL(n, R): as the kernel of A is trivial there is no z ̸= 0
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such that Az = 0. Writing this in purely real terms implies that there is
no zR ̸= 0 such that ARzR = 0. Clearly this also satisfies the conditions of
being a subgroup.
Finally, we want to see that it is a closed subgroup. Not all elements in
GL(2n, R) are of the form that AR takes. Restricting the entries of a gen-
eral matrix such that it has the form of AR amounts to choosing a closed
subspace: we set to zero all entries in a general GL(n, R) matrix that de-
part from the structure found above. A detailed argument for this would go
along the same lines as the solution to problem 17.
Alternatively, one can go through the same steps that we used in the lectures
to show that GL(n, R) is a Lie group and show that the group composition
and inverse are differentiable maps.

3. Find the dimension of the group SO(n) by finding the dimension of its Lie
algebra.
solution: As dicussed in the lecture, the dimension of the group is the same
as that of its Lie algebra. By repeating the same argument done for SO(3),
we find that writing an element of SO(n) as an exponential of a matrix γ, it
must be that γT = −γ. The exponential map is surjective, so we can in fact
write any group element like this. Hence the dimension of the group is equal
to the dimension of the vector space of real matrices that obey γT = −γ.
Notice that this implies that the diagonal elements of γ are zero and that γ
is uniquely specified by fixing its elements above the diagonal to be arbitrary
real numbers. There are

(n2 − n)/2 = n(n − 1)
2 (0.12)

such elements, which is hence the (vector space) dimension of the Lie algebra
so(n) of SO(n) and also the (manifold) dimension of SO(n)

Here are some things to ponder:

1. What are Lie groups?

2. What are Lie algebras?
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