1. Writing a vector $(v_1, v_2, v_3) \in \mathbb{R}^3$ as

$$M_{v} = \begin{pmatrix} v_{3} & v_{1} - iv_{2} \\ v_{1} + iv_{2} & -v_{3} \end{pmatrix}.$$

consider the action of $g \in SU(2)$ on \mathbb{R}^3 defined by

$$F(g): M_{\boldsymbol{v}} \mapsto g M_{\boldsymbol{v}} g^{\dagger}$$
.

Show that this is a representation, and that this representation is the adjoint representation of SU(2).

2. The adjoint action representation defines a linear map r(g) acting on \mathfrak{g} and as such can be written as a matrix M acting on a column vector after choosing a basis for \mathfrak{g} . Make this explicit for the action of

$$g = \begin{pmatrix} e^{i\phi} & 0\\ 0 & e^{-i\phi} \end{pmatrix} \in SU(2) .$$
 (0.1)

in the adjoint representation. Is the adjoint representation faithful?

3. Let P be a homogeneous polynomial in two complex variables z_1 and z_2 of degree d, i.e. we can write

$$P(\boldsymbol{z}) = \sum_{k=0}^{d} \alpha_k z_1^k z_2^{d-k}$$
(0.2)

for complex numbers α_k .

There is a natural action of SU(2) on $\boldsymbol{z} = (z_1, z_2)$, which is just

$$\boldsymbol{z} \mapsto g \boldsymbol{z}$$
. (0.3)

For a polynomial $P(\mathbf{z})$, we can then define an action by SU(2) as

$$r_d(g): P(\boldsymbol{z}) \mapsto P(g^{-1}\boldsymbol{z}).$$
 (0.4)

Show that this defines a representation of SU(2).

[remark: in the above formula, g^{-1} does not act on the argument of P but on \boldsymbol{z} , i.e. the action on $P(A\boldsymbol{z})$ for a 2×2 matrix A would be $r_d(g): P(A\boldsymbol{z}) \mapsto P(Ag^{-1}\boldsymbol{z})$.]

Here are some things to ponder:

- 1. What are representations?
- 2. How can you define a representation?