Andreas Braun Geometry of Mathematical Physics 111, problems week 7

1. Writing a vector (v, vs,v3) € R? as

Vs V] — V9
M, = ) .
U1 + U9 —U3

consider the action of g € SU(2) on R? defined by
F(g): My = gM,g".

Show that this is a representation, and that this representation is the adjoint
representation of SU(2).

solution:

Clearly, the set of matrices above forms a vector space which is isomorphic
to R3. Choosing the Pauli matrices as a basis, we can write

Mv = ZUJ‘O']‘ (01)
J

for v; € R. Furthermore, we can describe this as the vector space of complex
2 x 2 matrices with tr M, = 0 and M] = M,. Both of these properties are
preserved by M, +— gM,g':

trgMyg' = trgtgM, = trM, =0

(0.2)
(9Mog"T = (¢") Ml g" = gM,g'

Finally, the map F(g) acts linearly on M,, so that F': SU(2) — GL(3,R).
The only thing left to show to have a representation is that F'is a homo-
morphism. We have

F(gh) : M, — ghM,(gh)" = ghM,h'g! (0.3)

which is just the composition of the maps F'(h) and F'(g) acting on M, so
that this is a group homomorphism. More explicitely, if we write the action
of F(g) as a matrix acting v, the above must be matrix multiplication, i.e.
we can then write F'(gh) = F(g)F(h).

As defined in the lectures, the adjoint representation of G acts on g as

v —=gv9 " (0.4)

For su(2), g~ = ¢' and we can write

’Y:iZUjUj. (05)
J
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The action of F'(g) on the v; is hence the same as above (despite the extra
factor of ¢) which means that F(g) and the adjoint represention take g to
the same elements of GL(3,R), so that we conclude that F' is the same as
the adjoint representation.

2. The adjoint action representation defines a linear map r(g) acting on g and
as such can be written as a matrix M acting on a column vector after
choosing a basis for g. Make this explicit for the action of

g= (‘f e%) € SU@). (0.6)

in the adjoint representation. Is the adjoint representation faithful?
solution: We have to work out the adjoint action on su(2) in detail. We

can write .
. o Q3 a1 — 109
v = Ej iojo; =1 (Oél i o > (0.7)

for three real numbers «;. Note that using io; as a basis of su(2), we could
also represent v as a column vector (aq, ag, a).

This is mapped to

_ . 21¢ _ .
Z( o o za2> _”(6—2@(% e (o za2)>‘ (0.8)

oy + iag Q3 oy + iOéQ) (0%

The action on the «; is hence

oy cos2¢ sin2¢ 0 o oy
as | = | —sin2¢ cos2¢ 0| |ax| =M | (0.9)
as 0 0 1) \as Qs

Note that we did exactly the same computation already in section 1.1.4 in
the lectures! There we also realized that both g and —g are mapped to the
same M, so the adjoint of SU(2) is not injective. Note that the same applies
to the adjoint of any group (if —g € G for g € G):

(—9)v(—=9)" = (=1)’g79™" = g7g™" (0.10)

3. Let P be a homogeneous polynomial in two complex variables z; and z, of
degree d, i.e. we can write

d
P(z) = ayzyzy* (0.11)
k=0
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for complex numbers ay,.

There is a natural action of SU(2) on z = (z1, 22), which is just

zZgz. (0.12)

For a polynomial P(z), we can then define an action by SU(2) as
ra(g) : P(z) — P(g'2). (0.13)

Show that this defines a representation of SU(2).

[remark: in the above formula, g~! does not act on the argument of P but
on z, i.e. the action on P(Az) for a 2 x 2 matrix A would be

ra(g) : P(Az) — P(Ag'2). ]

solution:

We need to check four things: i) we are acting on a vector space I, ii) that
this map indeed maps elements of I1, to Ily, iii) that it is linear, iv) that it
is a group homomorphism from SU(2) to GL(Il,).

i) we can write
d
P(z) = ap2iz5".
k=0

for any such polynomial. Adding two of these or multiplying by a complex
number just adds or rescales the a;, so this defines a vector space which
we can call II;. You can think of the a; as the components of the vectors
and the monomials as basis vectors. As there are d + 1 different monomials
for a polynomial of degree d, this is a complex vector space of dimension d+1.
ii) Here, it is enough to observe that ¢! acts linearly on z. Hence it pre-
served the degree of P so that it indeed maps any element of II; to another
element of II,.

iii) Note that

ra(9)(P+Q) = (P+Q)(g7'2) = P(g™'2) + Qg 2) = ral9)(P) + m((go) (1%
Hence r441(g) acts linearly on I1,. |

iv) Consider the action of r4(g)rq(h) on P:

ra(9)ra(h)P(z) = ra(9)P(h™'2) = P(h" g™ 2) = P((gh)"'z) = ra(gh)P.
(0.15)
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We hence have a group homomorphismﬂ. To see that it is in GL(II;) you
might be concerned about r4(g) P = 0 for some g. That this does not happen
follows from the fact that we are talking about a group homomorphism: if
ra(g)P = 0 then also ry4(g~)ra(g)P = 0. But rq(g " )ra(g)P =ra(g ') P =
P, which is a contradiction.

As a final comment, note the peculiar g~'z instead of gz. The deeper reason
for this is that we are acting on the basis vectors (monomials) instead of
components as usual.

Here are some things to ponder:
1. What are representations?

2. How can you define a representation?

INote that it is for this reason we needed the g~ 'z.
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