1. Writing a vector $(v_1, v_2, v_3) \in \mathbb{R}^3$ as

$$M_{v} = \begin{pmatrix} v_{3} & v_{1} - iv_{2} \\ v_{1} + iv_{2} & -v_{3} \end{pmatrix}.$$

consider the action of $g \in SU(2)$ on \mathbb{R}^3 defined by

$$F(g): M_{\boldsymbol{v}} \mapsto g M_{\boldsymbol{v}} g^{\dagger}$$
.

Show that this is a representation, and that this representation is the adjoint representation of SU(2).

solution:

Clearly, the set of matrices above forms a vector space which is isomorphic to \mathbb{R}^3 . Choosing the Pauli matrices as a basis, we can write

$$M_{\boldsymbol{v}} = \sum_{j} v_j \sigma_j \tag{0.1}$$

for $v_j \in \mathbb{R}$. Furthermore, we can describe this as the vector space of complex 2×2 matrices with $tr M_v = 0$ and $M_v^{\dagger} = M_v$. Both of these properties are preserved by $M_v \mapsto g M_v g^{\dagger}$:

$$trgM_{\boldsymbol{v}}g^{\dagger} = trg^{\dagger}gM_{\boldsymbol{v}} = trM_{\boldsymbol{v}} = 0$$

$$(gM_{\boldsymbol{v}}g^{\dagger})^{\dagger} = (g^{\dagger})^{\dagger}M_{\boldsymbol{v}}^{\dagger}g^{\dagger} = gM_{\boldsymbol{v}}g^{\dagger}$$
(0.2)

Finally, the map F(g) acts linearly on M_v , so that $F : SU(2) \to GL(3, \mathbb{R})$. The only thing left to show to have a representation is that F is a homomorphism. We have

$$F(gh): M_{\boldsymbol{v}} \mapsto ghM_{\boldsymbol{v}}(gh)^{\dagger} = ghM_{\boldsymbol{v}}h^{\dagger}g^{\dagger}$$
(0.3)

which is just the composition of the maps F(h) and F(g) acting on M_v , so that this is a group homomorphism. More explicitly, if we write the action of F(g) as a matrix acting v, the above must be matrix multiplication, i.e. we can then write F(gh) = F(g)F(h).

As defined in the lectures, the adjoint representation of G acts on \mathfrak{g} as

$$\gamma \to g\gamma g^{-1} \,. \tag{0.4}$$

For $\mathfrak{su}(2)$, $g^{-1} = g^{\dagger}$ and we can write

$$\gamma = i \sum_{j} v_j \sigma_j \,. \tag{0.5}$$

The action of F(g) on the v_j is hence the same as above (despite the extra factor of *i*) which means that F(g) and the adjoint representation take *g* to the same elements of $GL(3, \mathbb{R})$, so that we conclude that *F* is the same as the adjoint representation.

2. The adjoint action representation defines a linear map r(g) acting on \mathfrak{g} and as such can be written as a matrix M acting on a column vector after choosing a basis for \mathfrak{g} . Make this explicit for the action of

$$g = \begin{pmatrix} e^{i\phi} & 0\\ 0 & e^{-i\phi} \end{pmatrix} \in SU(2) \,. \tag{0.6}$$

in the adjoint representation. Is the adjoint representation faithful? solution: We have to work out the adjoint action on $\mathfrak{su}(2)$ in detail. We can write

$$\gamma = \sum_{j} i\alpha_{j}\sigma_{j} = i \begin{pmatrix} \alpha_{3} & \alpha_{1} - i\alpha_{2} \\ \alpha_{1} + i\alpha_{2} & \alpha_{3} \end{pmatrix}$$
(0.7)

for three real numbers α_j . Note that using $i\sigma_j$ as a basis of $\mathfrak{su}(2)$, we could also represent γ as a column vector $(\alpha_1, \alpha_2, \alpha_3)$.

This is mapped to

$$i \begin{pmatrix} \alpha_3 & \alpha_1 - i\alpha_2 \\ \alpha_1 + i\alpha_2 & \alpha_3 \end{pmatrix} \to i \begin{pmatrix} \alpha_3 & e^{2i\phi}(\alpha_1 - i\alpha_2) \\ e^{-2i\phi}(\alpha_1 + i\alpha_2) & \alpha_3 \end{pmatrix}. \quad (0.8)$$

The action on the α_j is hence

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \rightarrow \begin{pmatrix} \cos 2\phi & \sin 2\phi & 0 \\ -\sin 2\phi & \cos 2\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \equiv M \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$$
(0.9)

Note that we did exactly the same computation already in section 1.1.4 in the lectures! There we also realized that both g and -g are mapped to the same M, so the adjoint of SU(2) is not injective. Note that the same applies to the adjoint of any group (if $-g \in G$ for $g \in G$):

$$(-g)\gamma(-g)^{-1} = (-1)^2 g\gamma g^{-1} = g\gamma g^{-1}$$
(0.10)

3. Let P be a homogeneous polynomial in two complex variables z_1 and z_2 of degree d, i.e. we can write

$$P(\mathbf{z}) = \sum_{k=0}^{d} \alpha_k z_1^k z_2^{d-k}$$
(0.11)

for complex numbers α_k .

There is a natural action of SU(2) on $\boldsymbol{z} = (z_1, z_2)$, which is just

$$\boldsymbol{z} \mapsto g \boldsymbol{z}$$
. (0.12)

For a polynomial P(z), we can then define an action by SU(2) as

$$r_d(g): P(\boldsymbol{z}) \mapsto P(g^{-1}\boldsymbol{z}).$$
 (0.13)

Show that this defines a representation of SU(2).

[remark: in the above formula, g^{-1} does not act on the argument of P but on \boldsymbol{z} , i.e. the action on $P(A\boldsymbol{z})$ for a 2×2 matrix A would be $r_d(g): P(A\boldsymbol{z}) \mapsto P(Ag^{-1}\boldsymbol{z}).$]

solution:

We need to check four things: i) we are acting on a vector space Π_d ii) that this map indeed maps elements of Π_d to Π_d , iii) that it is linear, iv) that it is a group homomorphism from SU(2) to $GL(\Pi_d)$.

i) we can write

$$P(\boldsymbol{z}) = \sum_{k=0}^{d} a_k z_1^k z_2^{d-k}$$

for any such polynomial. Adding two of these or multiplying by a complex number just adds or rescales the a_k , so this defines a vector space which we can call Π_d . You can think of the a_k as the components of the vectors and the monomials as basis vectors. As there are d + 1 different monomials for a polynomial of degree d, this is a complex vector space of dimension d+1.

ii) Here, it is enough to observe that g^{-1} acts linearly on z. Hence it preserved the degree of P so that it indeed maps any element of Π_d to another element of Π_d .

iii) Note that

$$r_d(g)(P+Q) = (P+Q)(g^{-1}z) = P(g^{-1}z) + Q(g^{-1}z) = r_d(g)(P) + r_d(g)(Q)$$
(0.14)

Hence $r_{d+1}(g)$ acts linearly on Π_d .

iv) Consider the action of
$$r_d(g)r_d(h)$$
 on P :
 $r_d(g)r_d(h)P(z) = r_d(g)P(h^{-1}z) = P(h^{-1}g^{-1}z) = P((gh)^{-1}z) = r_d(gh)P.$
(0.15)

We hence have a group homomorphism¹. To see that it is in $GL(\Pi_d)$ you might be concerned about $r_d(g)P = 0$ for some g. That this does not happen follows from the fact that we are talking about a group homomorphism: if $r_d(g)P = 0$ then also $r_d(g^{-1})r_d(g)P = 0$. But $r_d(g^{-1})r_d(g)P = r_d(g^{-1}g)P = P$, which is a contradiction.

As a final comment, note the peculiar $g^{-1}\boldsymbol{z}$ instead of $g\boldsymbol{z}$. The deeper reason for this is that we are acting on the basis vectors (monomials) instead of components as usual.

Here are some things to ponder:

- 1. What are representations?
- 2. How can you define a representation?

¹Note that it is for this reason we needed the $g^{-1}z$.