
Andreas Braun Geometry of Mathematical Physics III, problems week 7

1. Writing a vector (v1, v2, v3) ∈ R3 as

Mv =
(

v3 v1 − iv2
v1 + iv2 −v3

)
.

consider the action of g ∈ SU(2) on R3 defined by

F (g) : Mv 7→ gMvg† .

Show that this is a representation, and that this representation is the adjoint
representation of SU(2).
solution:

Clearly, the set of matrices above forms a vector space which is isomorphic
to R3. Choosing the Pauli matrices as a basis, we can write

Mv =
∑

j

vjσj (0.1)

for vj ∈ R. Furthermore, we can describe this as the vector space of complex
2 × 2 matrices with tr Mv = 0 and M †

v = Mv. Both of these properties are
preserved by Mv 7→ gMvg†:

trgMvg† = trg†gMv = trMv = 0
(gMvg†)† = (g†)†M †

vg† = gMvg† . (0.2)

Finally, the map F (g) acts linearly on Mv, so that F : SU(2) → GL(3, R).
The only thing left to show to have a representation is that F is a homo-
morphism. We have

F (gh) : Mv 7→ ghMv(gh)† = ghMvh†g† (0.3)

which is just the composition of the maps F (h) and F (g) acting on Mv, so
that this is a group homomorphism. More explicitely, if we write the action
of F (g) as a matrix acting v, the above must be matrix multiplication, i.e.
we can then write F (gh) = F (g)F (h).
As defined in the lectures, the adjoint representation of G acts on g as

γ → gγg−1 . (0.4)

For su(2), g−1 = g† and we can write

γ = i
∑

j

vjσj . (0.5)
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The action of F (g) on the vj is hence the same as above (despite the extra
factor of i) which means that F (g) and the adjoint represention take g to
the same elements of GL(3, R), so that we conclude that F is the same as
the adjoint representation.

2. The adjoint action representation defines a linear map r(g) acting on g and
as such can be written as a matrix M acting on a column vector after
choosing a basis for g. Make this explicit for the action of

g =
(

eiϕ 0
0 e−iϕ

)
∈ SU(2) . (0.6)

in the adjoint representation. Is the adjoint representation faithful?
solution: We have to work out the adjoint action on su(2) in detail. We
can write

γ =
∑

j

iαjσj = i

(
α3 α1 − iα2

α1 + iα2 α3

)
(0.7)

for three real numbers αj. Note that using iσj as a basis of su(2), we could
also represent γ as a column vector (α1, α2, α3).
This is mapped to

i

(
α3 α1 − iα2

α1 + iα2 α3

)
→ i

(
α3 e2iϕ(α1 − iα2)

e−2iϕ(α1 + iα2) α3

)
. (0.8)

The action on the αj is henceα1
α2
α3

 →

 cos 2ϕ sin 2ϕ 0
− sin 2ϕ cos 2ϕ 0

0 0 1


α1

α2
α3

 ≡ M

α1
α2
α3

 (0.9)

Note that we did exactly the same computation already in section 1.1.4 in
the lectures! There we also realized that both g and −g are mapped to the
same M , so the adjoint of SU(2) is not injective. Note that the same applies
to the adjoint of any group (if −g ∈ G for g ∈ G):

(−g)γ(−g)−1 = (−1)2gγg−1 = gγg−1 (0.10)

3. Let P be a homogeneous polynomial in two complex variables z1 and z2 of
degree d, i.e. we can write

P (z) =
d∑

k=0
αkzk

1 zd−k
2 (0.11)
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for complex numbers αk.
There is a natural action of SU(2) on z = (z1, z2), which is just

z 7→ gz . (0.12)

For a polynomial P (z), we can then define an action by SU(2) as

rd(g) : P (z) 7→ P (g−1z) . (0.13)

Show that this defines a representation of SU(2).
[remark: in the above formula, g−1 does not act on the argument of P but
on z, i.e. the action on P (Az) for a 2 × 2 matrix A would be
rd(g) : P (Az) 7→ P (Ag−1z). ]
solution:
We need to check four things: i) we are acting on a vector space Πd ii) that
this map indeed maps elements of Πd to Πd, iii) that it is linear, iv) that it
is a group homomorphism from SU(2) to GL(Πd).

i) we can write

P (z) =
d∑

k=0
akzk

1 zd−k
2 .

for any such polynomial. Adding two of these or multiplying by a complex
number just adds or rescales the ak, so this defines a vector space which
we can call Πd. You can think of the ak as the components of the vectors
and the monomials as basis vectors. As there are d + 1 different monomials
for a polynomial of degree d, this is a complex vector space of dimension d+1.

ii) Here, it is enough to observe that g−1 acts linearly on z. Hence it pre-
served the degree of P so that it indeed maps any element of Πd to another
element of Πd.

iii) Note that

rd(g)(P + Q) = (P + Q)(g−1z) = P (g−1z) + Q(g−1z) = rd(g)(P ) + rd(g)(Q)
(0.14)

Hence rd+1(g) acts linearly on Πd.

iv) Consider the action of rd(g)rd(h) on P :

rd(g)rd(h)P (z) = rd(g)P (h−1z) = P (h−1g−1z) = P ((gh)−1z) = rd(gh)P .
(0.15)
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We hence have a group homomorphism1. To see that it is in GL(Πd) you
might be concerned about rd(g)P = 0 for some g. That this does not happen
follows from the fact that we are talking about a group homomorphism: if
rd(g)P = 0 then also rd(g−1)rd(g)P = 0. But rd(g−1)rd(g)P = rd(g−1g)P =
P , which is a contradiction.
As a final comment, note the peculiar g−1z instead of gz. The deeper reason
for this is that we are acting on the basis vectors (monomials) instead of
components as usual.

Here are some things to ponder:

1. What are representations?

2. How can you define a representation?

1Note that it is for this reason we needed the g−1z.
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