1. Let $\mathbf{q} \in \mathbb{C}^n$ be acted on in the fundamental representation of SU(n) and γ in the adjoint representation of SU(n) (this is often expressed as \mathbf{q} 'lives' in the fundamental and γ 'lives' in the adjoint of SU(n).)

By acting with SU(n) simultaneously on γ and \boldsymbol{q} , describe the action of SU(n) on

i) $\mathbf{v} = \gamma \mathbf{q}$

- ii) **q**
- iii) A matrix Q with components $Q_{ij} = q_i q_j$

and decide in each case if this defines a representation.

2. Consider the map $r_{\kappa}: U(1) \to GL(3, \mathbb{C})$ defined by

$$r_{\kappa}(e^{i\phi}) = e^{\phi\lambda\kappa}$$

where $\kappa \in \mathbb{C}$ and

$$\lambda = \begin{pmatrix} 0 & i & 0\\ i & 0 & i\\ 0 & i & 0 \end{pmatrix}$$

For which values of κ is r_{κ} a representation of U(1)? [hint: think about what happens to eigenvectors of λ and use the classification theorem for complex representations of U(1).]

- 3. Let G be a Lie group and H be a subgroup of G that is also a Lie group.
 - a) Explain why any representation r(G) of G also gives us a representation r(H) of H.
 - b) Let's assume r(G) is irreducible. Can you think of an example where the representation r(H) is reducible? Can you think of an example where the representation r(H) is irreducible?