
Andreas Braun Geometry of Mathematical Physics III, problems week 8

1. Let q ∈ Cn be acted on in the fundamental representation of SU(n) and γ
in the adjoint representation of SU(n) (this is often expressed as q ‘lives’ in
the fundamental and γ ‘lives’ in the adjoint of SU(n).)
By acting with SU(n) simultaneously on γ and q, describe the action of
SU(n) on

i) v = γq
ii) q̄
iii) A matrix Q with components Qij = qiqj

and decide in each case if this defines a representation.
solution:

i) SU(n) acts on both γ and q and sends

v = γq → gγg−1gq = gγq = gv . (0.1)

The set of all elements γq forms a vector space which is just Cn, so
that this is again the defining representation of SU(n).

ii) Here we have
q̄ → ḡq̄ (0.2)

and the set of all q̄ is again Cn. This defines a map from SU(n) to
GL(n, C) given by r(g) = ḡ. Let’s check this is a representation by
checking it is a homomorphism:

r(gh) = gh = ḡh̄ = r(g)r(h) . (0.3)

iii) In this case the action is (note use of summation convention)

Qij = qiqj → gikqkgjlql (0.4)

which in matrix language is

Q → gQgT . (0.5)

To see if this can give us a representation, let us first examine if matrices
of the form of Q form a vector space. For this to be the case, we need
that there is a q′′ such that for every q and q′ we can write for all i, j

q′′
i q

′′
j = qiqj + q′

iq
′
j (0.6)
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These are n(n + 1)/2 independent relations in n complex variables,
which have no solution for n > 1. (you can also note that setting i = j
already fixes all q′′

i and we cannot solve the remaining relations. ). So
matrices of the form Q do not form a vector space and we have nothing
to talk about in terms of representations. However, they naturally sit
inside the vector space V of all n × n matrices, or all symmetric n × n
matrices if we want to be more restrictive, which form vector spaces.
We can hence use this to define a representation by extending the scope
and acting on all matrices Q ∈ V as

Q → gQgT . (0.7)

Note that gh then acts as

Q → ghQ(gh)T = ghQhTgT (0.8)

which is just the composition of the maps r(h) and r(g) on Q, so
that we have a homomorphism from SU(n) to GL(V ) and hence a
representation.

2. Consider the map rκ : U(1) → GL(3, C) defined by

rκ(eiϕ) = eϕλκ

where κ ∈ C and

λ =

0 i 0
i 0 i
0 i 0


For which values of κ is rκ a representation of U(1)? [hint: think about what
happens to eigenvectors of λ and use the classification theorem for complex
representations of U(1).]
solution: First note that

r(eiϕ)r(eiψ) = eϕλκeψλκ = e(ϕ+ψ)λκ

so this looks like a homomorphism. Parametrizing U(1) as we did, we also
need to make sure that r(e2πi) = 1. This is not obvious immediately.
We know that if this is a representation, we can decompose it into irreducible
representations, which are one-dimensional. We are hence looking for three
invariant subspace of C3, which we can construct from eigenvectors of λ.
Whenever

λv = cv
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we find that for any vector av proportional to v:

eϕλκav = eϕcκav . (0.9)

The eigenvalues of λ are ±i
√

2 and 0, and the eigenvectors are (1, ±
√

2, 1)
and (−1, 0, 1). The subspace spanned by (−1, 0, 1) carries a trivial repre-
sentation, but the other two subspaces are acted on by

eϕi
√

2κ . (0.10)

We hence need
√

2κ = n with n ∈ Z for this to be a representation, which
implies

κ = n/
√

2 .

3. Let G be a Lie group and H be a subgroup of G that is also a Lie group.

a) Explain why any representation r(G) of G also gives us a representation
r(H) of H.

b) Let’s assume r(G) is irreducible. Can you think of an example where
the representation r(H) is reducible? Can you think of an example
where the representation r(H) is irreducible?

solution:

(a) As we have a representation of G, there is a group homomorphism

r : G → GL(V ) (0.11)

for some vector space V so that

r(gg′) = r(g)r(g′) . (0.12)

for all g, g′ ∈ G. As H is a subgroup, we can simply restrict ourselves
to consider only element h, h′ ∈ H. As H is a subgroup, hh′ ∈ H for
all h, h′ ∈ H. Hence

r(hh′) = r(h)r(h′) (0.13)
for all h, h′ ∈ H, so that we get a group homomorphism and hence a
representation.

(b) To find an example where this becomes reducible, consider the group
SU(3) and its subgroup SU(2) of matrices of the form a b 0

−b̄ ā 0
0 0 1

 (0.14)
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with |a|2 + |b|2 = 1. Taking the defining representation of SU(3), the
SU(2) subgroup acts on C3 as written above, which leaves the subspace
of vectors of the form (0, 0, z3) invariant, so that it is reducible.

To find an example where the representation stays irreducible, con-
sider the defining representation of O(3). This is clearly irreducible.
But O(3) has a subgroup SO(3), and restricting the defining repre-
sentation of O(3) to SO(3) gives the defining representation of SO(3)
which is also irreducible.
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