26) Show that

$$i[D_{\mu}, D_{\nu}] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i[A_{\mu}, A_{\nu}] \tag{1.1}$$

solution:

Restoring the identity matrix 1 for clarity (feel free to omit it if you are comfortable without it),

$$\begin{split} [D_{\mu}, D_{\nu}] &= [\mathbb{1}\partial_{\mu} - iA_{\mu}, \mathbb{1}\partial_{\nu} - iA_{\nu}] \\ &= [\mathbb{1}\partial_{\mu}, \mathbb{1}\partial_{\nu}] - i[\mathbb{1}\partial_{\mu}, A_{\nu}] - i[A_{\mu}, \mathbb{1}\partial_{\nu}] - [A_{\mu}, A_{\nu}] \\ &= 0 - i(\partial_{\mu}A_{\nu}) + i(\partial_{\nu}A_{\mu}) - [A_{\mu}, A_{\nu}] \\ &= -i(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]) \ . \end{split}$$

27) By considering infinitesimal gauge transformations ($|\alpha^a| \ll 1$)

$$g = e^{i\alpha^a t_a} \equiv e^{i\alpha} = 1 + i\alpha + O(\alpha^2) \tag{1.2}$$

and Taylor expanding finite gauge transformations to leading order in $\alpha \in \mathfrak{g} = \text{Lie}(G)$, show that the **infinitesimal gauge variations** of the fields are

$$\delta_{\alpha}\phi = i\alpha\phi$$

$$\delta_{\alpha}A_{\mu} = i[\alpha, A_{\mu}] + \partial_{\mu}\alpha$$

$$\delta_{\alpha}F_{\mu\nu} = i[\alpha, F_{\mu\nu}],$$
(1.3)

where $\phi \mapsto \phi + \delta_{\alpha} \phi$ and so on to leading order.

solution: By construction, these have to give us the associated Lie algebra representations (but now space-time dependent): Expanding to linear order

$$\delta \phi = e^{i\alpha} \phi - \phi \simeq (1 + i\alpha)\phi - \phi = i\alpha\phi$$
 (1.4)

$$\delta A_{\mu} = e^{i\alpha} (A_{\mu} + i\partial_{\mu}) e^{-i\alpha} - A_{\mu}$$

$$\simeq (1 + i\alpha) (A_{\mu} + i\partial_{\mu}) (1 - i\alpha) - A_{\mu}$$

$$\simeq i\alpha A_{\mu} - iA_{\mu}\alpha + \partial_{\mu}\alpha = i[\alpha, A_{\mu}] + \partial_{\mu}\alpha.$$
(1.5)

where we have used that $\alpha \partial_{\mu} \alpha \ll \partial_{\mu} \alpha$. Finally

$$\delta F_{\mu\nu} = e^{i\alpha} F_{\mu\nu} e^{-i\alpha} - F_{\mu\nu}$$

$$\simeq (1 + i\alpha) F_{\mu\nu} (1 - i\alpha) - F_{\mu\nu}$$

$$\simeq i\alpha F_{\mu\nu} - iF_{\mu\nu}\alpha = i[\alpha, F_{\mu\nu}].$$
(1.6)

29) Consider a gauge group G, with Lie algebra \mathfrak{g} .

(a) Show by explicit calculation that a non-abelian gauge field configuration of the form

$$A_{\mu} = ih(\partial_{\mu}h^{-1}) ,$$

where h(x) is a space-time dependent element of G, has field strength $F_{\mu\nu} = 0$.

solution:

We calculate

$$\partial_{\mu}A_{\nu} = i(\partial_{\mu}h)(\partial_{\nu}h^{-1}) + ih(\partial_{\mu}\partial_{\nu}h^{-1}) ,$$

therefore

$$\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = i(\partial_{\mu}h)(\partial_{\nu}h^{-1}) - i(\partial_{\nu}h)(\partial_{\mu}h^{-1}) + ih(\partial_{\mu}\partial_{\nu}h^{-1}) - ih(\partial_{\nu}\partial_{\mu}h^{-1})$$
$$= i(\partial_{\mu}h)(\partial_{\nu}h^{-1}) - i(\partial_{\nu}h)(\partial_{\mu}h^{-1}) ,$$

where the second derivative terms cancel (as usual, we assume that h^{-1} is sufficiently differentiable so that Schwarz's/Clairaut's theorem applies). The contribution of the commutator is

$$-i[A_{\mu}, A_{\nu}] = i[h\partial_{\mu}h^{-1}, h\partial_{\nu}h^{-1}]$$

= $ih(\partial_{\mu}h^{-1})h(\partial_{\nu}h^{-1}) - ih(\partial_{\nu}h^{-1})h(\partial_{\mu}h^{-1})$.

Now we use the identity

$$0 = (\partial_{\mu} \mathbf{1}) = \partial_{\mu} (hh^{-1}) = (\partial_{\mu} h)h^{-1} + h(\partial_{\mu} h^{-1})$$

to get

$$\begin{split} -i[A_{\mu},A_{\nu}] &= -i(\partial_{\mu}h)h^{-1}h(\partial_{\nu}h^{-1}) + i(\partial_{\nu}h)h^{-1}h(\partial_{\mu}h^{-1}) \\ &= -i(\partial_{\mu}h)(\partial_{\nu}h^{-1}) + i(\partial_{\nu}h)(\partial_{\mu}h^{-1}) \ . \end{split}$$

Hence

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}] = 0 .$$

(b) Can you think of a simpler argument to reach the same conclusion? solution:

Start from a configuration with vanishing gauge field $A_{\mu} = 0$. The field strength trivially vanishes: $F_{\mu\nu} = 0$. Now perform a gauge transformation with gauge parameter g = h. We find that the new (gauge transformed) gauge field A'_{μ} and field strength $F'_{\mu\nu}$ are

$$A'_{\mu} = hA_{\mu}h^{-1} + ih(\partial_{\mu}h^{-1}) = ih(\partial_{\mu}h^{-1})$$

$$F'_{\mu\nu} = hF_{\mu\nu}h^{-1} = 0.$$

Now, what is primed or unprimed is a matter of point of view: I could have called the primed variables unprimed and vice versa, had I used the inverse gauge transformation. The key point here is that this shows that the field strength of $A_{\mu} = ih(\partial_{\mu}h^{-1})$ is $F_{\mu\nu} = 0$. Configurations like $A_{\mu} = ih(\partial_{\mu}h^{-1})$, which are obtained by a gauge transformation of the trivial (i.e. zero) configuration, are called *pure gauge* configurations.

Here are some things to ponder:

- 1. How are convariant derivative and field strength defined for a non-abelian gauge theory?
- 2. What is the impact of charged matter in different representations?