
Andreas Braun Geometry of Mathematical Physics III, problems week 9

1. a) Describe a U(1) subgroup of SU(2). Is U(1) × U(1) a subgroup of
SU(2) as well?

b) Let A be an element of the vector space that is acted on by the adjoint
representation of SU(2). For the U(1) subgroup of SU(2) you identified
above, find the action on A and use this to decompose the action of
U(1) into irreducible representations.

solution:

(a) We can simply take matrices of the form

g(ϕ) =
(

eiϕ 0
0 e−iϕ

)
. (0.1)

These are in SU(2) for any ϕ and are isomorphic to U(1). There is
no subgroup U(1) × U(1) in SU(2), and we argue as follows. For
U(1) × U(1) there are two generators, one for each U(1) factor, and
these generators commute with each other. Otherwise we would be
talking about a different group. We are hence looking for two U(1)
subgroups of SU(2) which commute. We can write these as

eiϕ1α and eiϕ2β (0.2)

for some real linear combinations of Pauli matrices α = ∑
i aiσi and

β = biσi. Now for these to commute we need[
eiϕ1α, eiϕ2β

]
= 0 (0.3)

for all values of ϕ1 and ϕ2. Taking derivatives with respect to ϕ1 and
ϕ2 this implies

[α, β] = 0 (0.4)
which is clearly also a sufficient condition. We work out

[α, β] = [aiσi, bjσj] = 2iϵijkaibjσk (0.5)

which only vanishes when ϵijkaibj = 0 for all k. The only solution
except α = 0 or β = 0 (which is inacceptable since then we don’t get
U(1) × U(1)) is ai = bi for all i. But then we generate the same U(1)
twice.

Here is another nice solution that some of you came up with: U(1) ×
U(1) has four elements that square to the identity:

(1, 1), (−1, 1), (1, −1), (−1, −1) .
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If U(1) × U(1) were a subgroup of SU(2), at least four such elements
must exist in SU(2) as well. By using the general form of SU(2) you
can see that g ∈ SU(2) squaring to the identity implies |a|2 = 1 and
b = 0, so these matrices must be diagonal, and there only two such
matrices which square to the identity.

(b) The vector space we act on in the adjoint is the vector space of matrices
A such that A† = −A and trA = 0. The action on this is

A → gAg† =
(

eiϕ 0
0 e−iϕ

)
A

(
e−iϕ 0

0 eiϕ

)
. (0.6)

for the choice of U(1) made above. We find

A11 →A11

A21 →e−2iϕA21

A12 →e2iϕA12

A22 →A22

(0.7)

Hence A11 = −A22 is an invariant subspace of charge 0. A12 = −Ā21
is another invariant subspace of charge 2.

2. Consider the Lie group G of upper triangular 2 × 2 matrices

G =
{(

a b
0 c

)
|a, b, c ∈ R, ac ̸= 0

}
(0.8)

a) Let v ∈ R3, v = (v1, v2, v3). Define an action of G on v by writing

vm :=
(

v1 v2
0 v3

)
(0.9)

and letting g ∈ G act as

r(g)vm := gvmg−1 . (0.10)

Convince yourself that this is a representation of G. Write the action
of r(g) on v defined above in terms of a 3 × 3 matrix acting on v:

r(g)v = M(g)v (0.11)

for a 3 × 3 matrix M(g) acting on the vector v ∈ R3 in the usual way.
b) Writing r(g) in terms of the matrices M(g), work out the associated

representation ρ of the Lie algebra g of G.
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c) Check that they give a Lie algebra representation of the Lie algebra g
of G, i.e. find a Lie algebra homomorphism between the Lie algebra g
of G and the Lie algebra representation ρ(g) associated with r(G).

solution:

(a) First of all, this is a map that maps a matrix of the form vm to another
one of this form as product of upper triangular 2×2 matrices are again
upper triangular as seen in problem 18. Furthermore it acts on the vi

linearly:
g(vm + v′

m)g−1 = g(vm)g−1 + g(v′
m)g−1 (0.12)

so r defines a map from G to GL(3, R). What is left to check is that r
is a group homomorphism. We work out

r(gh)vm = ghvm(gh)−1 = ghvmh−1g−1 = r(g)r(h)vm . (0.13)

which shows it is. Hence this is a real three-dimensional representation
of G. It is not injective as both g and −g are mapped to 1 ∈ GL(3, R).
Note that this is simply the adjoint representation.

Let us work out explicitely how r(g) acts on vm:

vm =
(

v1 v2
0 v3

)
→ v′

m = gvmg−1 = 1
ac

(
a b
0 c

)(
v1 v2
0 v3

)(
c −b
0 a

)

= 1
ac

(
acv1 −v1ab + a2v2 + abv3

0 acv3

)
(0.14)

Hence
v1 → v1

v2 → −b/cv1 + a/cv2 + b/cv3

v3 → v3

(0.15)

We can write this as the action of a 3 × 3 matric on a column vector as

v → v′ = M(g)v =

 1 0 0
−b/c a/c b/c

0 0 1


v1

v2
v3

 (0.16)

(b) Using the family of paths a = ext, b = ty, c = ezt, x, y, z ∈ R, we get

M (g(t)) =

 1 0 0
−tye−zt et(x−z) tye−tz

0 0 1

 (0.17)
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and
∂

∂t
M (g(t))

∣∣∣∣∣
t=0

=

 0 0 0
−y x − z y
0 0 0

 (0.18)

This defines the associated Lie algebra representation ρ. Hence for
every γ in g we can write

ρ(γ) = xρ(ℓx) + yρ(ℓy) + zρ(ℓz) (0.19)

where

ρ(ℓx) =

0 0 0
0 1 0
0 0 0

 ρ(ℓy) =

 0 0 0
−1 0 1
0 0 0

 ρ(ℓz) = −ρ(ℓx) (0.20)

Note that the vector space they span is just two-dimensional and that
using different paths here might give you a different basis of the Lie
algebra.
The matrices above satisfy

[ρ(ℓx), ρ(ℓy)] = ρ(ℓy) (0.21)

(c) Using the paths above in problem 18 you find that a general element
of the Lie algebra of G can be written as

x

(
1 0
0 0

)
+ y

(
0 0
0 1

)
+ z

(
0 1
0 0

)
≡ xℓx + yℓy + zℓz (0.22)

for x, y, z ∈ R. The algebra of the ℓ is

[ℓx, ℓy] = ℓy [ℓx, ℓz] = 0 [ℓz, ℓy] = −ℓy . (0.23)

The same relations are obeyed by ρ(ℓx), ρ(ℓy) and ρ(ℓz). It is totally
fine that ℓx and ℓz are mapped to the same generator up to a sign, a
homomorphism does not need to be an isomorphism and can have a
non-trivial kernel.

3. Show that any irreducible complex representation of SO(3) also defines an
irreducible complex representation of SU(2).
solution:
Let us assume that we are given an irredicible representation rSO(3) of SO(3),
i.e.

rSO(3) : SO(3) → GL(n, C) (0.24)
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is a homomorphism and there is no complex sub-vectorspace W of Cn (except
Cn and {0}) s.t.

rSO(3)(g)w ∈ W ∀w ∈ W, ∀g ∈ SO(3) . (0.25)

As shown in the lectures there is a close relationship between SO(3) and
SU(2), i.e. there is a homomorphism π : SU(2) → SO(3). We can hence
define the following composition

rSU(2) := rSO(3) ◦ π (0.26)

which takes any h ∈ SU(2) to an element of SO(3) and then to an element
of GL(n, C), so in effect we are taking any h ∈ SU(2) to an element of
GL(n, C). As compositions of homomorphisms are again homomorphisms,
this is a homomorphism as well and hence defines a representation of SU(2).
Now let’s investigate irredicibility. As we have seen π is surjective, i.e. we
can write any g ∈ SO(3) as π(h) for some h ∈ SU(2). As there is no
complex sub-vectorspace W of Cn (except Cn and {0}) s.t.

rSO(3)(g)w ∈ W ∀w ∈ W, ∀g ∈ SO(3) . (0.27)

and we can write any such g as g = π(h), it follows that there is no complex
sub-vectorspace W of Cn (except Cn and {0}) s.t.

rSU(2)(h)w ∈ W ∀w ∈ W, ∀h ∈ SU(2) . (0.28)

So rSU(2) is irredicible as well.

Here are some things to ponder:

1. What is the relationship between representations of Lie groups and Lie al-
gebras?

2. What are all the complex irreducible representations of SU(2)? How might
one proceed to construct complex irreducible representations of SU(3) or
other Lie groups?
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