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Preliminaries

There are a number of good textbooks on String Theory. The things that we have discussed
during the lectures are explained well in all of them, they mostly differ in their treatment
of less introductory topics.

• Superstring Theory, by Green, Schwarz and Witten. This dates back to 1987, so
it does not contain any of the modern developments, but what is there is superbly
explained. I am mostly following (parts of) this book.

• String Theory, by Polchinski. This is a somewhat more modern approach, and it has
become the standard reference in the field. This is a good place to take a look for
an alternative viewpoint on quantization, where the fact that we are dealing with a
CFT in two dimensions takes a much more prominent role.

• Basic Concepts of String Theory, by Blumenhagen, Lüst and Theisen is also quite
good. It is particularly noteworthy in that it is fairly thorough in its derivations: if
you find one of my arguments too quick, it might be helpful to look here to fill in the
details, with all signs and factors in place.

• D-Branes, by Johnson also has a good introduction to the quantization of the classical
string. I particularly like its section on more advanced material: if you are curious
about what string theorists have actually been up to during the last thirty years,
after what I explained during the lectures was understood, this might be a good and
fairly accessible starting point.

• A First Course in String Theory, by Zwiebach. This is a very clear and lucid text,
which includes a careful discussion of a lot of background material that the previous
references often take for granted.

You can also easily find excellent material on string theory online, a particularly good
account can be found in David Tong’s lecture notes:

• http://www.damtp.cam.ac.uk/user/tong/string.html.

If you have any questions, or you find any mistakes in these notes, please send me an
email to andreas.braun@durham.ac.uk.

http://www.damtp.cam.ac.uk/user/tong/string.html
mailto:andreas.braun@durham.ac.uk
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§1 The relativistic point particle

§1.1 The classical particle as a theory of gravity in one dimension

We will start by studying, from a perhaps somewhat unconventional viewpoint, the case
of a massive particle propagating in flat D-dimensional space. The relativistic action for a
particle of mass m, in units where c = 1, is given by

S = −m
∫
dt

√
1− ~̇x · ~̇x . (1.1)

where ~̇x · ~̇x :=
∑D−1

i=1 ẋ2
i .

. Exercise 1.1. Show that the canonical momenta and energy for this theory are:

pi =
m~̇x√

1− ~̇x · ~̇x
; E =

√
m2 + ~p · ~p . (1.2)

This expression looks fairly asymmetric between space and time, an equivalent form that
better shows the underlying Poincaré invariance of the theory is given by

S = −m
∫
ds = −m

∫
dτ

√
−ηµν

dxµ

dτ

dxν

dτ
(1.3)

where ηµν = diag(−1,+1, . . . ,+1) is the Minkowski metric in D-dimensions, and ds is
the length element along the string induced by the embedding. Here τ is an arbitrary
parameter along the worldline of the particle. This form of the action is clearly invariant
under Poincaré transformations xµ → Λµ

νx
ν + cµ, with Λµ

ρΛν
σηµν = ηρσ.

It is also easy to verify that the action does not depend on the choice of τ : if we
introduce a new parametrization τ̃(τ) along the worldline we have dτ̃ = dτ̃

dτ
dτ for the

measure and
dxµ

dτ
=
dxµ

dτ̃

dτ̃

dτ
(1.4)

for the velocities, so (1.3) is indeed invariant under reparametrizations. The fact that
the action is invariant under reparametrizations allows us to choose coordinates where
τ = x0 := t, and in this way we go back to (1.1).

So far we have talked about a particle moving in D-dimensions, but a different view-
point is useful when thinking about generalizing to string theory. The xµ(τ) are functions
parametrizing abstract embeddings of a 1-dimensional object into D-dimensions, but we
can equivalently think of them as fields in a one-dimensional theory. Then (1.3) gives us a
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rather complicated action for these fields in this one-dimensional field theory. In particular,
the action includes a square root term, which make quantization difficult.

Interestingly, we can write an action which is classically equivalent, but which includes
no square roots, by coupling to one-dimensional gravity. Here it is:

S =
1

2

∫
dτ

(
e−1ηµν

dxµ

dτ

dxν

dτ
− em2

)
= −1

2

∫
dτ
√
−gττ

(
gττηµν

dxµ

dτ

dxν

dτ
+m2

) (1.5)

Here e :=
√
−gττ is an “einbein”, and gττ is the metric along the worldline. In this formula-

tion we treat e (or equivalently, gττ ) as dynamical fields. Note that one interesting feature
of (1.5) is that, contrary to (1.3), taking the m→ 0 limit poses no particular problem.

The equation of motion for e is

ηµν
dxµ

dτ

dxν

dτ
+ e2m2 = 0 (1.6)

which can be used to solve for e in terms of the embedding:

e2 = − 1

m2
ηµν

dxµ

dτ

dxν

dτ
. (1.7)

If we plug this result into (1.5) we recover (1.3), showing that the two actions are classically
equivalent. Note that, using the identification e =

√
−gττ , (1.7) provides an on-shell rela-

tion between the one-dimensional metric that we have introduced and the metric induced
by the embedding of the worldline in spacetime.

The punchline of all this is rather interesting: we have just seen that one can reformulate
(classically at least) the theory of a relativistic particle moving in D dimensions as a
quantum field theory with gravity in one dimension, where the embedding coordinates are
one dimensional fields.

As is probably familiar from your studies of general relativity, the gravitational ac-
tion (1.5) is invariant under infinitesimal reparametrizations τ → τ + ξ(τ):

δxµ = ξ
∂xµ

∂τ
(1.8a)

δe =
∂

∂τ
(ξe) . (1.8b)

. Exercise 1.2. Show that the action (1.5) is invariant under this reparametrization,
up to boundary terms at τ = ±∞.

We can use this invariance under reparametrizations to fix a convenient form for e,
for instance by choosing e to be a convenient constant, for instance e = 1/m. But it
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is important to keep in mind that (1.7) still needs to be imposed, as otherwise we are
introducing new degrees of freedom not present in the original system. That is, instead of
considering (1.5) we could equivalently consider the action

S =
m

2

∫
dτ

(
ηµν

dxµ

dτ

dxν

dτ
− 1

)
(1.9)

with solutions subject to the additional constraint ηµν dx
µ

dτ
dxν

dτ
+ 1 = 0. Note that this form

of the action is much easier to treat: since ηµν is diagonal we simply have D decoupled
massive fields in one dimension, which we can now quantize rather straightforwardly.

§1.2 The interacting classical particle

Let me comment briefly on how particle interactions look from this point of view. A freely
propagating particle has a worldline which is topologically the real line R. Adding interac-
tions corresponds to defining the theory on more complicated (singular) one dimensional
manifolds, built out of interaction vertices, such as those in figure 1. Note that defin-
ing the one-dimensional theory on each interaction vertex requires the specification of an
additional piece of data, the coupling constant for the corresponding interaction.

Figure 1: Interaction diagrams for the one dimensional theory.

One can push this viewpoint slightly further, but it soon becomes rather clumsy to deal
with. Interestingly, in the case of string theory some of these difficulties are ameliorated,
and we can make a lot of progress staying within the perspective of a gravitational theory
on the worldsheet, the two-dimensional generalization of the worldline we have been con-
sidering here. In coming sections, when we discuss how to quantize the string, what we
will quantize is the two-dimensional gravity theory on the string worldsheet.

It is important to emphasize that in the case of interacting particles in D dimensions
this is certainly not what we usually do: instead of trying to quantize the 1d theory
defined above we rather study quantum field theory in D dimensions, a very different
problem. Much of the mystery and power of string theory lays on the tension between the
different formulations that we have: from the point of view of the worldsheet spacetime
is a secondary notion, but ultimately we will be describing particles propagating on D
dimensions, where the right description seems to be D dimensional QFT. While we do
not yet understand what is the right fundamental formulation that unifies the worldsheet
and spacetime viewpoints (or even if one exists at all!) in practice assuming that one can
combine both perspectives, using each whenever applicable, does get us very far.
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§2 The classical bosonic string

§2.1 The Nambu-Goto and Polyakov actions

I would now like to generalize the previous discussion to two dimensional objects (i.e.
“strings”) propagating in flat D-dimensional Minkowski spacetime. The natural two-
dimensional generalization of (1.3) is

SNG = −T
∫

Σ

d(area) = −T
∫

Σ

d2σ
√
− det(γ) (2.1)

where Σ is the two-dimensional worldsheet that we want to understand, T is its tension
(more on this below), σ := (σ0, σ1) is some parametrization of Σ, and finally

γab =
dXµ(σ)

dσa
dXν(σ)

dσb
ηµν (2.2)

is the metric induced on Σ by the embedding on spacetime (with the embedding parametrized
by the maps Xµ : Σ→ R1,D−1).

This form of the action is known as the Nambu-Goto action. We will be interested in
quantizing this theory, but the square root makes this rather awkward. Similarly to what
we did in the case of the point particle, we can switch to a classically equivalent description
that is easier to quantize by coupling to two-dimensional gravity. This description of the
dynamics of the classical string is known as the Polyakov action:

SP = −T
2

∫
Σ

d2σ
√
hhab(σ)∂aX

µ∂bX
νηµν (2.3)

Here hab(σ) is a metric on the worldsheet, and hab(σ) is its inverse. (I will be using
conventions where latin letters towards the beginning of the alphabet, such as a, b denote
worldsheet indices, and greek letters such as µ, ν denote spacetime indices). We also define√
h :=

√
| det(hab)| for convenience, and use the notation ∂aXµ := ∂Xµ

∂σa
.

We can show that SP and SNG are classically equivalent easily. The (inverse) worldsheet
metric hab appears without derivatives in the action, so its Euler-Lagrange equation of
motion is simply

δSP
δhab

= −T
2

√
hTab = 0 (2.4)

where we have introduced the energy-momentum tensor Tab

Tab := − 2

T

1√
h

δSP
δhab

. (2.5)
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. Exercise 2.1. Show that

Tab = ∂aX
µ∂bXµ −

1

2
habh

cd∂cX
µ∂dXµ . (2.6)

It is consistent to restrict to worldsheet metrics with
√
h 6= 0, so we can write the h

equation of motion as Tab = 0. Note that this equation can be written in terms of the
induced worldsheet metric (2.2) as

γab =
1

2

(
hcdγcd

)
hab . (2.7)

This implies, in particular, that on-shell (that is, classically) the worldsheet and in-
duced metrics are related. Taking the determinant of this equation we find det(γ) =
1
4

(
hcdγcd

)2
det(h), which immediately gives SP when subtituted into SNG.

While the two actions are classically equivalent, it will be much easier to quantize the
Polyakov action SP , so from now on we will choose the quantum theory to be the one with
action SP .

§2.2 Symmetries and gauge fixing

Let us now discuss more systematically the symmetries of the Polyakov action.

1. Reparametrization invariance. We have a theory of gravity in two dimensions,
so in particular the theory is invariant under reparametrizations σ → σ′(σ) of the
worldsheet. We have

X ′µ(σ′) = Xµ(σ) , (2.8a)
∂σ′c

∂σa
∂σ′d

∂σb
h′cd(σ

′) = hab(σ) , (2.8b)

or equivalently, in terms of the infinitesimal transformation σ′a = σa + ξa(σ)

δXµ = ξa∂aX
µ (2.9a)

δhab = ξc∂ch
ab − hcb∂cξa − hac∂cξb (2.9b)

δ(
√
h) = ∂a(ξ

a
√
h) . (2.9c)

2. Weyl scaling. The Polyakov action is also invariant under Weyl rescalings of the
metric:

X ′µ(σ) = Xµ(σ) (2.10a)

h′ab(σ) = eΘ(σ)hab(σ) (2.10b)
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where Θ(σ) is an arbitrary function on the worldsheet. The infinitesimal form of
these transformations is

δXµ = 0 , (2.11a)
δhab = Θhab . (2.11b)

. Exercise 2.2. Show that Weyl invariance of SP implies habT ab = 0, without
using the equations of motion.

3. Poincaré invariance. Finally, the theory is also invariant under Poincaré transfor-
mations

X ′µ = Λµ
νX

ν + bµ (2.12a)
h′ab = hab (2.12b)

with Λµ
ν generators of the Lorentz group, satisfying Λµ

νΛ
ρ
σηµρ = ηνσ. Both Λµ

ν and
bµ are independent of σ. Infinitesimally:

δXµ = aµνX
ν + bµ (2.13a)

δhab = 0 , (2.13b)

with aµν = ηµρa
ρ
ν antisymmetric.

Note that the last symmetry is of a somewhat different nature from the previous two:
from the point of view of the worldsheet it is a global symmetry, which will have associated
Noether currents. These conserved currents will play an important role later when we try
to interpret the oscillation modes of the string in terms of spacetime particles. On the
other hand, the first two symmetries are local (or gauge) symmetries, and they lead to
constraints.

It is useful to use the gauge symmetries to transform hab into a more convenient form.
In two dimensions the metric has three independent components. Reparametrizations are
generated by two independent functions, and Weyl rescalings by a third function, so we
expect to be able to locally set hab to any convenient form that we like by a suitable choice
of gauge. We will choose

hab = ηab =

(
−1 0
0 1

)
. (2.14)

With this choice, the Polyakov action (2.3) simplifies to

S = −T
2

∫
Σ

d2σ ηab∂aX
µ∂bXµ . (2.15)
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It is important to remember that in order to reproduce the dynamics before gauge fixing
we still need to impose the Tab = 0 equation of motion for h, we will come back to this
point in §2.6 below.

In this gauge the Xµ are free fields, obeying the one-dimensional wave equation(
∂2

0 − ∂2
1

)
Xµ(σ) = 0 . (2.16)

The general solution of this differential equation, due to D’Alembert, is well known. In-
troduce σ± := σ0 ± σ1. Then

Xµ(σ) = Xµ
R(σ−) +Xµ

L(σ+) . (2.17)

It will often prove very useful to work in the σ± coordinate system, so let us briefly
describe how things work in these coordinates. We have

η+− = η−+ = −1

2
; η++ = η−− = 0 (2.18)

and therefore
η+− = η−+ = −2 ; η++ = η−− = 0 . (2.19)

Raising and lowering indices is done by the metric, so U+ = −2U− and U− = −2U+ for
any vector U . Partial derivatives are given by ∂± = 1

2
(∂0 ± ∂1).

§2.3 Boundary conditions: open and closed strings

So far we have only discussed what happens locally in the two dimensional theory living
on the string. We now discuss how the global structure of the string affects the dynamics.
We will consider two spatial topologies for the string, either open or closed, as shown in
figure 2.

(a) An open string. (b) A closed string.

Figure 2: Constant τ slices of open and closed strings.

More precisely, we will take τ := σ0 to be the “time” coordinate in the string, and
σ := σ1 as the spatial coordinate, and introduce the notation

Ẋµ :=
∂Xµ

∂τ
and X ′µ :=

∂Xµ

∂σ
. (2.20)
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For both open and closed strings we take τ ∈ R. The freely propagating open string is
described by a worldsheet with the topology of a strip, with two boundaries, which we
choose to put at σ = 0 and σ = π. The freely propagating closed string is described by
a worldsheet with the topology of an infinite cylinder. We choose conventions so that the
periodicity is σ ∼ σ + π.

Closed strings

In the case of the closed string we take Xµ(σ) = Xµ(σ+π), consistent with the periodicity
σ ∼ σ+π. (This is not the only possibility, for instance if a spacetime direction is periodic
we can have winding modes, see below.) In this case the general solution (2.17) admits a
mode expansion of the form

Xµ
R(σ−) =

1

2
(xµ + cµ) +

1

2
`2pµσ− +

i

2
`
∑
n6=0

1

n
αµne

−2inσ− , (2.21a)

Xµ
L(σ+) =

1

2
(xµ − cµ) +

1

2
`2pµσ+ +

i

2
`
∑
n6=0

1

n
α̃µne

−2inσ+

. (2.21b)

We have introduced a number of constants to parametrize the solution. It is convenient,
and will not affect our ensuing discussion to set cµ = 0, so we will do so henceforth.
The constant xµ can be interpreted as the position of the centre of mass of the string
in spacetime. As we will see below, pµ can be given the interpretation of its spacetime
momentum. The αµn and α̃µn are the coefficients measuring the excitation of the n-th right
and left moving modes. We require that the Xµ are real, so this requires

(αµn)∗ = αµ−n ; (α̃µn) = α̃µ−n . (2.22)

Finally, ` is a dimensionful parameter. By convention we set

` :=
1√
πT

(2.23)

and often will also introduce another related dimensionful parameter

α′ :=
`2

2
=

1

2πT
. (2.24)

Open strings

Open strings admit a similar mode expansion. Consider the variation of the action (2.15).
The condition δS = 0 has a bulk contribution that vanishes due to the equations of motion,
and a remaining boundary contribution of the form

δS = −T
∫
dτ
[
X ′µδX

µ
∣∣∣
σ=π
−X ′µδXµ

∣∣∣
σ=0

]
= 0 . (2.25)
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. Exercise 2.3. Show that (2.25) is correct. You can assume that δXµ(±∞, σ) = 0.

There are essentially two ways that (2.25) can vanish at each boundary: either we impose
that δXµ = 0 at the boundary, or we impose that X ′µ = 0. The first condition is known as a
Dirichlet boundary condition. It leads to very interesting physics, but it breaks translations
in the Xµ directions, so for now we focus on the other boundary condition, X ′µ = 0. This
is known as a Neumann boundary condition.

In terms of the oscillator expansion, the Neumann boundary condition relates left and
right movers, and requires the general solution to be of the form

Xµ(τ, σ) = xµ + `2pµτ + i`
∑
n 6=0

1

n
αµne

−inτ cos(nσ) . (2.26)

§2.4 Noether charges for the Poincaré symmetry

Recall that the Poincaré symmetries (2.13) are global symmetries from the point of view of
the worldsheet, so they should have associated Noether charges, which will be conserved.
Recall that for a general symmetry acting on a field φ

φ(σ)→ φ(σ) + εδφ(σ) +O(ε2) (2.27)

the associated Noether current is given by

Ja = δφ
δS

δ(∂aφ)
. (2.28)

This current is conserved, ∂aJa = 0, and thus leads to a conserved charge

Q =

∫
dσJ0 (2.29)

satisfying ∂τQ = 0 (assuming suitable behaviour at the boundary).
Let us consider the case of translations in the target space: Xµ → Xµ + bµ with bµ

constant. We obtain in this way D conserved currents

(P µ)a = −T∂aXµ (2.30)

with associated conserved charges:

P µ =

∫ π

0

dσ(P µ)0 = −
∫ π

0

dσ T∂0Xµ =

∫ π

0

dσ T∂τX
µ = πT`2pµ = pµ (2.31)

justifying our claim above that pµ could be interpreted as the spacetime momentum for
the string.
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. Exercise 2.4. Show that the Neumann boundary conditions X ′µ = 0 ensure that no
momentum flows out of the end of the open string.

. Exercise 2.5. Show that the conserved charge for Lorentz rotations is

Jµν = lµν + Eµν (2.32)

with lµν = xµpν − xνpµ and

Eµν = −i
∞∑
n=1

1

n
(αµ−nα

ν
n − αν−nαµn) . (2.33)

§2.5 Poisson brackets

We will soon quantize the theory on the string worldsheet, and we will do so by canonical
quantization. In order to do this, we need to know the canonical structure of the classical
theory, or in other words the structure of Poisson brackets. Since we have D copies of a
free theory in two dimensions this is fairly straightforward: the canonical momenta for the
Xµ are given by

Πµ =
δS

δẊµ
= TẊµ (2.34)

and thus from the fundamental Poisson brackets {Xµ(σ),Πν(σ
′)}P.B. = δ(σ−σ′)δµν we learn

{Xµ(σ), Ẋν(σ′)}P.B. = T−1δ(σ − σ′)ηµν , (2.35a)

and
{Xµ(σ), Xν(σ′)}P.B. = {Ẋµ(σ), Ẋν(σ′)}P.B. = 0 . (2.35b)

We will also need the Poisson brackets between the oscillators in the oscillator expan-
sions (2.21) and (2.26). Let us do the case of the closed string, for concreteness (the open
string works very similarly). As you can easily verify,

α̃µm =
1

2π`

∫ π

0

dσe2imσ

[
Ẋµ(0, σ) +

2m

i
Xµ(0, σ)

]
(2.36)

and similarly

αµm =
1

2π`

∫ π

0

dσe−2imσ

[
Ẋµ(0, σ) +

2m

i
Xµ(0, σ)

]
. (2.37)
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Since the Poisson bracket is linear, the Poisson brackets (2.35) then lead to

{αµm, ανn}P.B. = {α̃µm, α̃νn}P.B. = −imδm+nη
µν (2.38a)

{xν , pµ}P.B. = ηµν (2.38b)

with all other Poisson brackets vanishing.

§2.6 Constraints

We still need to impose the h equation of motion, or equivalently Tab = 0, where

Tab = ∂aX
µ∂bXµ −

1

2
ηabη

cd∂cX
µ∂dXµ . (2.39)

It is convenient to introduce some notation in order to write the equations more concisely.
Define A ·B := AµBµ and A2 := A · A. We have

T00 = T11 =
1

2

(
Ẋ2 +X ′2

)
= 0 , (2.40a)

T01 = T10 = Ẋ ·X ′ = 0 . (2.40b)

Note that T00 = T11 follows from Weyl invariance since (as you were asked to show in
exercise 2.2) Weyl invariance implies ηabTab = −T00 + T11 = 0. These equations can be
alternatively written as (Ẋ ±X ′)2 = 0.

In terms of the +− coordinates we have that the fact that the energy-momentum tensor
is symmetric, T+− = T−+, together with the tracelessness condition −2(T−+ + T+−) = 0
implies T+− = T−+ = 0. The non-trivial equations are

T++ = ∂+X · ∂+X −
1

2
η++︸︷︷︸
= 0

(ηcd∂cX · ∂dX) = Ẋ2
L = 0 , (2.41a)

T−− = ∂−X · ∂−X −
1

2
η−−︸︷︷︸
= 0

(ηcd∂cX · ∂dX) = Ẋ2
R = 0 . (2.41b)

Oscillator constraints for the closed string

As we saw above, the general solution for the dynamics of the vibrating string can be
written in terms of oscillators, so it will be useful to express these constraints in terms of
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these oscillators. We introduce, for the closed string

Lm :=
T

2

∫ π

0

dσe−2imσT−−(0, σ) (2.42a)

=
T

2

∫ π

0

dσe−2imσẊ2
R (2.42b)

=
1

2

∞∑
n=−∞

αm−n · αn (2.42c)

where for convenience we have defined αµ0 := 1
2
`pµ and similarly

L̃m :=
1

2

∞∑
n=−∞

α̃m−n · α̃n , (2.43)

where we have again introduced α̃µ0 := αµ0 = 1
2
`pµ. The constraints on the mode expansions

are then
Lm = L̃m = 0 ∀m ∈ Z . (2.44)

These are known as the (classical) Virasoro constraints. The existence of these constraints
reflects the fact that our gauge fixing choice hab = ηab does not fully fix all the gauge
symmetries of the theory: any reparametrization that sends ηab(σ) → eΘ(σ)ηab(σ) can be
undone with a Weyl transformation, so some gauge invariance remains unfixed. The Lm
and L̃m are the generators of these transformations. In fact, a little bit of work shows that
the remaining unfixed reparametrizations are those generating the conformal group in two
dimensions. It is then not a surprise that if one asks what is the algebra generated by the
Poisson brackets of the Virasoro constraints we get precisely the Virasoro algebra:

. Exercise 2.6. Show that the Virasoro generators Lm, L̃n obey the algebra

{Lm, Ln}P.B. = −i(m− n)Lm+n , (2.45a)

{L̃m, L̃n}P.B. = −i(m− n)L̃m+n , (2.45b)

{Lm, L̃n}P.B. = 0 . (2.45c)

Level matching. The constraint L0 = L̃0 is particularly important, and receives the
name level matching. In terms of oscillators, we have

∞∑
n=1

α−n · αn =
∞∑
n=1

α̃−n · α̃n . (2.46)

Note that the spacetime momentum pµ does not appear here, since 1
2
`pµ = αµ0 = α̃µ0 . This

constraint links left and right movers, which are otherwise decoupled in the closed string.
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Mass shell condition (closed string). The constraint L0 = 0 implies

− α0 · α0 = 2
∞∑
n=1

α−n · αn . (2.47)

Note that due to the relativistic mass relation p · p + M2 = 0 and the definition of α0 we
can rewrite this as

M2 =
8

`2

∞∑
n=1

α−n · αn (2.48)

or more symmetrically, using the level matching condition

α′M2 = 2
∞∑
n=1

(α−n · αn + α̃−n · α̃n) (2.49)

where we have used the constant α′ introduced in (2.24). This relation is known as the
(closed string) mass shell condition. Introducing the mass contribution from left movers
and right movers in the obvious way

α′M2
R := 2

∞∑
n=1

α−n · αn (2.50a)

α′M2
L := 2

∞∑
n=1

α̃−n · α̃n (2.50b)

we can alternatively write M2 = M2
L +M2

R, and level matching becomes M2
L = M2

R.

Oscillator constraints for the open string

The situation is similar for the open string, with the difference that, as the boundary
conditions already link left and right movers, there is no level matching condition. We
have a single set of Virasoro generators

Lm :=
1

2

∞∑
n=−∞

αm−n · αn (2.51)

where we have defined αµ0 := `pµ (note the factor of 2). These generators satisfy the algebra
{Lm, Ln}P.B. = −i(m− n)Lm+n. The mass shell condition for the open string becomes

α′M2 =
∞∑
n=1

α−n · αn . (2.52)
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§3 Quantization of the Polyakov action

§3.1 Canonical quantization

I will now describe how to construct a quantum theory from the classical theory that
we have just described. One standard way of doing this is by “canonical quantization”.
Formally, this quantization procedure amounts to the construction of some linear map Φ
from functions in phase space to operators on Hilbert space, such that, ideally

[Φ(f),Φ(g)] = i~Φ({f, g}P.B.) (3.1)

for any two functions f, g in phase space. Interestingly, such a map does not exist in
general,1 so we will proceed by defining the action of the map on the elementary operators
in the theory, and then study what happens to the commutation relations for more complex
operators. We will find, in particular, that the quantized bosonic string can only preserve
the Lorentz algebra in D dimensions quantum mechanically if D = 26.

We start by introducing quantum operators x̂µ = Φ(xµ), p̂µ = Φ(pµ), α̂µm = Φ(αµm), ˆ̃αµm =
Φ(α̃µm) with commutation relations obtained by canonical quantization of those in (2.38)

[α̂µm, α̂
ν
n] = [ ˆ̃αµm, ˆ̃ανn] = mδm+nη

µν , (3.2a)
[x̂µ, p̂ν ] = iηµν (3.2b)

with all other commutators vanishing. Here and in what follows I will set ~ = 1.
In order to make X̂µ Hermitian we need to impose

(α̂µn)† = α̂µ−n ; ( ˆ̃αµn)† = ˆ̃αµ−n . (3.3)

This implies that we have an infinite set of raising/lowering operators

aµm :=
1√
m
α̂µm m > 0 (3.4a)

(aµm)† :=
1√
m
α̂µ−m m > 0 (3.4b)

satisfying the standard algebra

[aµm, (a
ν
n)†] = ηµνδm,n ; [aµm, a

ν
n] = [(aµm)†, (aνn)†] = 0 (3.5)

and similarly for the left movers.
1Under some additional reasonable conditions. This non-existence result is known as Groenewold’s

theorem.
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§3.2 Ghosts and light-cone gauge fixing

Given the existence of an oscillator algebra, we can construct the Hilbert space as usual,
starting with a vacuum annihilated by all the lowering operators:

aµm |0〉 = 0 (3.6)

and applying raising operators to it. In addition to the oscillators, we also have the
spacetime momentum. We denote the eigenstates of momentum with zero oscillator number
by |0; pµ〉.

This Hilbert space that we have just constructed contains ghosts : states (a0
m)† |0〉 with

negative norm:
|(a0

m)† |0〉 |2 = 〈0| a0
m(a0

m)† |0〉 = η00 = −1 . (3.7)

All is not lost, however. In fact, this situation is fairly familiar from quantization of gauge
theories, where ghosts are rendered harmless by the gauge invariance. This is also the
situation here: as I mentioned above, our gauge fixing hab = ηab is only a partial one,
since any reparametrization sending ηab(σ) → eΘ(σ)ηab(σ) can be composed with a Weyl
transformation in order to leave the metric ηab invariant. The infinitesimal form of these
transformations was given in (2.9b) and (2.11b). These infinitesimal transformations will
cancel (for hab = ηab) if

∂aξb + ∂bξa = Θηab . (3.8)

In the +− coordinate system these equations imply ∂+ξ
− = ∂−ξ

+ = 0 and Θ = ∂+ξ
+ +

∂−ξ
−, with general solution ξ± = ξ±(σ±).2 Since Xµ → Xµ+ξa∂aX

µ under reparametriza-
tions, we can use this remaining gauge symmetry to choose a convenient parametrization
that removes all classical oscillator modes in one of the spacetime directions. When we
canonically quantize the resulting theory we will find a Hilbert space without ghosts.

The most convenient choice is perhaps surprising. Let me go back to the classical theory
for a moment in order to do the gauge fixing, and introduce so-called light-cone coordinates
in the target spacetime:

X± =
1√
2

(X0 ±X1) . (3.9)

We leave the remaining D − 2 coordinates invariant, and will use “i” to index these last
D − 2 coordinates. In these coordinates indices are raised and lowered by

V + = −V− ; V − = −V+ ; V i = Vi . (3.10)

and the dot product is given by

U · V = U iVi − U+V − − U−V + . (3.11)
2Note that if you complexify the worldsheet coordinates, the statement is that the remaining symmetries

are z → z + f(z), which explains the appearance of the Virasoro generators of the conformal group as
constraints in our discussion of the classical theory.
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We will then use our remaining gauge invariance to set (for the closed string, the open
string case is entirely analogous so we will not treat it separately)

X+
R =

1

2
x+ +

1

2
`2p+σ− +

i

2
`
∑
n6=0

1

n
α+
n e
−2inσ− (3.12)

to
X+
R =

1

2
`2p+σ− (3.13)

and similarly for the left movers, so we end up with

X+ = `2p+τ . (3.14)

That is, we have set x+ = α+
m = 0 by a change of coordinates in the worldsheet. Note

that we do not set X+ = 0 fully: to eliminate the term proportional to τ in X+ we would
need to choose ξ±(σ±) = −σ±, which would give σ± → σ± − σ± = 0, so this is not
a reparametrization that we will want to consider. (Note also that the formulas below
become singular when p+ →∞.)

In the light cone gauge we have Ẋ+ = `2p+ and X ′+ = 0 so the (Ẋ±X ′)2 = 0 constraint
can be rewritten as ∑

i

(Ẋ i ±X ′i)2 = 2`2p+(Ẋ− ±X ′−) (3.15)

where here and in what follows the sum in i is over 2, . . . , D − 1. With the exception of
the constant term x−, these two equations allow us to completely solve for X− in terms of
the X i, so we no longer have independent oscillator modes in this direction either.

. Exercise 3.1. Show that for the open string

α−m =
1

2`p+

∞∑
n=−∞

∑
i

αim−nα
i
n . (3.16)

Similarly, if we express the Virasoro generators in the spacetime lightcone coordinates
we have

Lm =
1

2

∞∑
n=−∞

(∑
i

αim−nα
i
n − α+

m−nα
−
n − α−m−nα+

n

)
(3.17)

and similarly for the left-movers. The m = 0 case is particularly important, as it leads to
the level matching and mass shell conditions, which in light cone gauge read (for the closed
string) M2

L = M2
R and M2 = M2

L +M2
R, with

α′M2
R = 2

∞∑
n=1

∑
i

αi−nα
i
n (3.18a)

α′M2
L = 2

∞∑
n=1

∑
i

α̃i−nα̃
i
n . (3.18b)
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Note that for the sum is over transverse oscillators only. For the open string we have
similarly

α′M2 =
∞∑
n=1

∑
i

αi−nα
i
n . (3.19)

§3.3 Quantization in the light cone gauge and ordering ambiguities

We learn in this way that, effectively, in the light-cone gauge the independent oscillator
degrees of freedom in the classical solution are only the transverse ones, namely the αim. In
order to canonically quantize this theory we would need to compute the Poisson brackets
after having fixed the light cone gauge. I will leave this to the enterprising readers, and I
will just quote the unsurprising result for the non-vanishing commutators in the quantum
theory:

[α̂im, α̂
j
n] = [ ˆ̃αim, ˆ̃αjn] = mδm+nδ

i,j , (3.20a)
[x̂i, p̂j] = iδi,j , (3.20b)

[x̂−, p̂+] = −i . (3.20c)

with all other commutators vanishing. I have not included commutators for the α̂−m here,
since in the light cone gauge the α̂− are constructed in terms of transverse oscillators, with
the explicit expression given in exercise (3.1), so they are to be understood as composite
operators.

These commutators determine the commutator relations of any operator built out these
oscillators, but there is an important ambiguity that we need to deal with: in the classical
theory the mass shell and level matching conditions involve an ordering ambiguity, since
α̂i−nα̂

i
n 6= α̂inα̂

i
−n, so in principle the expression in the spacetime mass in the quantum

theory could include a c-number contribution

α′M̂2
R =

(
2
∞∑
n=1

∑
i

α̂i−nα̂
i
n

)
− 2aR (3.21a)

α′M̂2
L =

(
2
∞∑
n=1

∑
i

ˆ̃αi−n ˆ̃αin

)
− 2aL (3.21b)

for some unknown constants aR and aL. There is, unfortunately, no simple and rigorous
argument that fixes these constants, so I will start by giving a simple but heuristic ar-
gument, and then outline one rigorous, but technically more involved, computation that
leads to the same results.3

3Other approaches leading to the same results exist, the most satisfying probably being BRST quanti-
zation of the string worldsheet theory.
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A heuristic computation using that 1 + 2 + 3 + . . . = − 1
12

The basic indeterminacy comes from the fact that we need to determine the right action of
the quantization map Φ on the quadratic operators αi−nαin. Since [Φ(αi−n),Φ(αin)] 6= 0, it
is not obvious which is the right choice, with a reasonable definition of “right” being that Φ
should preserve as many symmetries of the classical theory as possible, or equivalently (3.1)
is satisfied for as many functions in phase space as possible. In the next section we will
determine aL,R by imposing that Lorentz invariance on the target spacetime is preserved
quantum mechanically, or in other words that the Poisson brackets between the conserved
charges under Lorentz transformations are preserved quantum mechanically. But before
going into that, let us try a simple guess motivated by the existence of a simple choice for
Φ that is known to preserve a large amount of the Poisson bracket structure, known as the
Weyl quantization rule.4

Say that you have a pair of canonically conjugate variables q, p, and a function in phase
space f(q, p). Then the Weyl quantization operator ΦW acts as

ΦW [f ] =
1

(2π)2

∫
f(q, p)ei(a(p−p̂)+b(q−q̂))dpdqdadb (3.22)

where q̂ and p̂ are the fundamental position and momentum operators acting on the Hilbert
space, with commutator [q̂, p̂] = i. The map ΦW has a number of remarkable properties,
but we will only need to use that it is linear, and that

ΦW [qn] = q̂n ; ΦW [pn] = p̂n , (3.23)

as it can be shown easily. We can construct such canonically conjugate variables out of
our oscillators αin via (we assume n > 0 here)

qin =
1√
2n

(αin + αi−n) (3.24a)

pin =
1

i
√

2n
(αin − αi−n) . (3.24b)

These variables have {qin, pjm}P.B. = δi,jδm,n. In terms of these canonical variables we have

αinα
i
−n =

n

2

(
(qin)2 + (pin)2

)
, (3.25)

so Weyl’s quantization map immediately implies

ΦW (αinα
i
−n) =

n

2

(
(q̂in)2 + (p̂in)2

)
=

1

2
(α̂inα̂

i
−n + α̂i−nα̂

i
n) . (3.26)

4In particular, the Weyl quantization rule is known to preserve the Poisson brackets of any quadratic
function f in phase space with any arbitrary order function g, so it is natural to expect that the quantum
constraint leading to the mass shell condition is ΦW (L0) = 0.
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For the mass itself we thus obtain

ΦW (α′M2
R) = ΦW

(
2
∑
i

∞∑
n=1

αi−nα
i
n

)
= 2

∑
i

1

2

∑
n6=0

α̂i−nα̂
i
n

= 2
∑
i

1

2

∞∑
n=1

(α̂inα̂
i
−n + α̂i−nα̂

i
n)

= 2

(
∞∑
n=1

∑
i

α̂i−nα̂
i
n +

D − 2

2

∞∑
n=1

n

)
(3.27)

where in the last line we have used the commutation relation [α̂in, α̂
i
−n] = n. Comparison

with (3.21), using a completely analogous argument for the left movers, shows that

aL = aR = −(D − 2)

2

∞∑
n=1

n (3.28)

The sum on the right hand side is ill-defined, so here comes the step that makes this
argument somewhat heuristic: let me define the right hand side in terms of the Riemann
ζ function

ζ(s) :=
∞∑
n=1

1

ns
(3.29)

where the right hand side is well defined for <(s) > 1, and has a unique analytic continua-
tion to the whole complex plane. This choice is very natural, and in fact one can motivate
it better physically by introducing a cutoff in the worldsheet theory, and adding suitable
counterterms. At any rate, once we accept this, we have

aL = aR = −(D − 2)

2
ζ(−1) =

D − 2

24
. (3.30)

If we introduce the number operators

N̂R :=
∞∑
n=1

∑
i

α̂i−nα̂
i
n ; N̂L :=

∞∑
n=1

∑
i

ˆ̃αi−n ˆ̃αin (3.31)

we have for the closed string

α′M̂2 = 2(N̂R + N̂L)− D − 2

6
(3.32)

subject to the level matching condition N̂L − N̂R = 0.
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An analogous argument, taking into account the factors of two, tells us that for the
open string we have

α′M̂2 = N̂ − a (3.33)
with

N̂ :=
∞∑
n=1

∑
i

α̂i−nα̂
i
n and a =

D − 2

24
. (3.34)

§3.4 The light spectrum of the bosonic string

We have now all the tools that we need to construct the spacetime spectrum of the bosonic
string. Let me start by studying the open string. We have a vacuum |0〉. We have

α′M̂2 |0〉 = (N̂ − D − 2

24
) |0〉 = −D − 2

24
|0〉 (3.35)

so this state is tachyonic for D > 2. We reach the same conclusion for the vacuum for the
closed string, with mass

α′M̂2 |0〉 = −D − 2

6
|0〉 . (3.36)

A tachyon in a field theory is not an inconsistency: it just means that we are doing
perturbation expansion around a maximum of the potential, instead of a minimum. The
Higgs field in the standard model is an example: we certainly do not want to discard the
standard model because it has a tachyon! Rather, what we need to do is to follow the
fate of the tachyon as it rolls down the potential until it settles in the minimum, if one
exists. While we understand the fate of tachyonic modes in string theory in some cases,5
the case of the tachyon in the closed string sector of the bosonic string is still open, and we
do not know what happens to it for large tachyonic vacuum expectation values. There are
various possibilities that we could imagine: the bosonic string might decay to one of the
supersymmetric strings, the string might confine so the theory becomes trivial, a theory
without a weakly coupled gravitational interpretation might arise on spacetime, or perhaps
the bosonic string simply does not make sense non-perturbatively for some reason that is
not apparent in the perturbative description. It is an important and interest question to
understand what happens to the bosonic string under tachyon condensation, but we do
not yet have the technology to understand what is going on. One of our motivations for
introducing the superstring will be in fact to get rid of this mysterious tachyon in the
spectrum.

Let us move to the first excited states. In the case of the open string these are the
states α̂i−1 |0〉, for i ∈ {2, . . . , D − 1}, with mass

α′M̂2α̂i−1 |0〉 =

(
1− D − 2

24

)
α̂i−1 |0〉 . (3.37)

5In particular, we have a reasonably good handle on the problem in the case of open strings, see Sen’s
review arXiv:hep-th/0410103 for a good overview.

https://arxiv.org/abs/hep-th/0410103
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These D − 2 states transform as vectors of the SO(D − 2) group rotating the transverse
directions. We would like the full theory to be invariant not only under this group, but
under the full SO(D−1, 1) Lorentz group of the target spacetime. A massive vector parti-
cle in a Lorentz-invariant theory in D dimensions has D− 1 physical polarizations, while a
massless particle has D−2 physical polarizations. More generally, massive particles trans-
form in representations of the little group SO(D−1), while massless particles transform in
representation of SO(D− 2).6 It must therefore be the case, if we want Lorentz invariance
in the target space to hold, that the set of states that we have just found are massless,
which is only the case if D = 26. This is known as the critical dimension for the bosonic
string.

So we have found that the mass formula for open string states in the critical dimension
D = 26 is

α′M̂2 = N̂ − 1 (3.38)

while for the closed string states we have

α′M̂2 = 2(N̂R + N̂L)− 4 (3.39)

The first excited states in the closed string sector can be analysed similarly. Recalling
that we need to impose the level matching condition N̂L = N̂R, the massless states are
of the form |ij〉 := αi−1α̃

j
−1 |0〉. These states transform in the 24 ⊗ 24 representation of

SO(24), which decomposes as a symmetric traceless tensor (the 299 irrep of SO(24)) Gij,
an antisymmetric two-form Bij (in the 276 of SO(24)) and a singlet Φ. An alternative
way of describing the Gij representation is as a spin-two excitation, which is the same
representation as the graviton in a theory in gravity. And indeed, this field couples to the
other fields in the spectrum as a metric (more on this below). So we identify this excitation
with the graviton in the target spacetime.

This is something very profound: the bosonic string requires gravity in the target
spacetime to exist! Finding a consistent quantum theory of gravity is a notoriously difficult
problem, and it was a very fortunate discovery that string theory, a theory originally
developed for the purpose of understanding nuclear interactions, turned out to be one such
theory.7

The other two fields at the massless level are also interesting. Bij the theory of a
massless 2-form field, sometimes known as the “Kalb-Ramond” field, or often simply the
“B” field. A Lorentz invariant description of such fields requires the introduction of a gauge
equivalence B → B + dλ, where λ is a 1-form. Finally, Φ is known as the “dilaton”.

6Section 2.5 in Weinberg’s book has a systematic discussion of this point, if you have not seen it before
in your studies.

7The connection between string theory and nuclear interactions was revived with the discovery of the
AdS/CFT correspondence, which connects strongly coupled field theory phenomena with gravitational
ones.



3.5 A SKETCH OF A MORE RIGOROUS DERIVATION OF THE CRITICAL DIMENSION 24

. Exercise 3.2. Construct the states at the next mass level in the open and closed
string sectors. As these are massive, they should assemble into representations of the
massive little group SO(25). Show that this is indeed the case.

§3.5 A sketch of a more rigorous derivation of the critical dimension

There is a different way of reaching the same conclusion which avoids the need of worrying
about the infinite summation step, at the expense of involving a rather more significant
amount of algebra. I will only provide the outline of the argument, but those of you who
are curious about the details are encouraged to try filling them in. You can find a more
detailed description of the computation in the book by Green, Schwarz and Witten, and a
fully worked out derivation in the lecture notes on string theory by Gleb Arutyunov.

We have seen above that in the light cone gauge there is an issue with preserving
Lorentz invariance in the spectrum unless D = 26 and aL = aR = 1. It is reasonable to
expect that the same issue will manifest itself already at the level of the algebra of Lorentz
generators in spacetime. Recall that the classical Lorentz algebra has commutators

[Jµν , Jσρ] = i(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµρJνσ) . (3.40)

These commutation relations should be reproduced by the Poisson brackets of the classical
conserved charges constructed in exercise 2.5, and a relatively short computation shows
that this is indeed the case.

As pointed out in footnote 4, Weyl quantization preserves the bracket structure for any
two phase space functions which are quadratic on the phase space variables, so naively it
seems like the quantum theory should preserve the Lorentz algebra too, since the expres-
sions in exercise 2.5 are indeed quadratic. But this is a bit too quick: while the Jµν found
in that exercise are indeed quadratic on the αµ oscillators, in the light cone gauge

α−m =
1

2`2p+

∞∑
n=−∞

∑
i

αim−nα
i
n (3.41)

as you derived in exercise (3.1). So the J i− conserved charges are cubic on the physical
light cone oscillators.

This implies in particular that the classical commutation relations involving Jµ− are
not necessarily preserved by the Weyl quantization map. And indeed, classically we have
[J i−, J j−] = 0, as you can check easily from the expression above, but a (long) computation
shows that quantum mechanically

[Ĵ i−, Ĵ j−] = − 1

(`2p+)2

∞∑
m=1

∆m(α̂i−mα̂
j
m − α̂

j
−mα̂

i
m) (3.42)
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with
∆m = m

(
26−D

12

)
+

1

m

(
D − 26

12
+ 2(1− a)

)
(3.43)

where a is the same ordering constant that appeared in (3.33). We have that ∆m = 0 only
for D = 26 and a = 1, in agreement with the results from the ζ function argument above.

§3.6 Interactions in string theory

Before we move on to the superstring, I would like to discuss a little bit more in detail how
the massless closed string fields couple to the worldsheet. As I mentioned above, the field
Gµν can be interpreted as the dynamical excitations of the flat background metric, which
so far we have chosen to be ηµν . (In this section we will momentarily undo all of the gauge
fixings that we have done above to bring the Polyakov action to a more manageable form.)
This interpretation allows us to make a natural guess for how to describe the propagation
of strings on curved manifolds, with background metric Gµν(X). It is simply

SP = −T
2

∫
Σ

d2σ
√
hhab∂aX

µ∂bX
νGµν(X) . (3.44)

It is easy to see that this action is again equivalent on shell to the induced area of Σ. But
note that from the point of view of the worldsheet this is a rather drastic modification:
since Gµν(X) is now a non-trivial function of the embedding coordinates the theory on
the worldsheet is no longer a free theory, since the coefficient of the kinetic term for the
fields is a non-linear function of the fields, and this introduces interactions. Whenever the
curvature is small we can try do perturbation theory to deal with the leading modifications
induced by these interactions, but for arbitrary curved metrics we typically we cannot solve
the theory on the string anymore. I am definitely not saying that we cannot say anything
about string theory on curved manifolds! But the worldsheet perspective is typically less
useful here.

The coupling to the two-form Bµν is of the form

SB = −T
2

∫
Σ

d2σεab∂aX
µ∂bX

νBµν(X) (3.45)

where ε is the antisymmetric symbol in two indices, with ε01 = −ε10 = 1 and ε00 = ε11 = 0.
In terms of the embedding into spacetime, this term is just the integral of B over the
worlsheet Σ

SB = −T
2

∫
Σ

B (3.46)

where now Σ should be understood as a submanifold in spacetime, and Bµν is a form on
spacetime. This kind of term is the two-dimensional generalization of the coupling to a
background field for a charged particle, which is of the form

Se = q

∫
γ

A (3.47)
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where q is the charge of the particle, γ its worldline, and A the background 1-form U(1)
connection for the electromagnetic field. Because of this, we generally say that the funda-
mental string is electrically charged under B.

The final massless field of the bosonic string, the dilaton Φ, is initially more perplexing.
It couples to the worldsheet in a conformally invariant way by

SΦ =
1

4π

∫
Σ

d2σ
√
hΦ(X)Rh . (3.48)

Here Rh is the two dimensional Ricci scalar. The existence of this coupling has rather
important consequences. First, note that by the Gauss-Bonnet theorem, if Σ is a closed
surface,

1

4π

∫
Σ

d2σ
√
hRh = 2− 2g(Σ) (3.49)

where g(Σ) is the genus of Σ, a topological invariant. This implies that for constant Φ we
have

SΦ = Φ(2− 2g(Σ)) (3.50)

assuming that Σ is a closed surface.
In order to understand the implications of this, let us consider the loop expansion of

the interaction of three particles in the target spacetime, as in figure 3.

Figure 3: Some of the leading diagrams in a loop expansion of a cubic interaction in
spacetime.

We do not need to be very precise about the nature of the interactions or particle
content here to see the main point, so let us just assume that all particles in the theory
are of the same type, and there is a single cubic interaction to worry about, with coupling
constant λ3. We have seen during the lectures that in string theory spacetime particles can
be understood as particular excitations of a single string, so in string theory the spacetime
diagrams in figure 3 should be rather understood as particular worldsheet topologies (where
each propagating particle is “thickened” into a string with worldsheet locally a cylinder).
The resulting string diagram representing the spacetime interaction will look something
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like the following picture:

(3.51)

There are various things that are noteworthy about this diagram. First, note that there
is no point in the string worldsheet that is not smooth. In other words: there is no local
notion of interaction in string theory, it is only the global topology of the worldsheet that
tells us something about interactions in the field theory limit. A local observer in the
string worldsheet just sees free propagation locally. This is a very important distinction
with respect to the case of the propagating particle: while in the case of the propagating
particle any possible interaction vertex required us to provide one extra independent piece
of data (the coupling constant, as in figure 1), in the case of the string all the spacetime
interactions are in principle fixed from the behaviour of the freely propagating string. Or
in other words, there are no adjustable coupling constants in string theory.

Note also that adding loops in the spacetime diagram corresponds to increasing the
genus of the surface on which the string is propagating: tree level interactions correspond
to strings on Riemann surfaces of genus 0, one loop interactions correspond to strings with
worldsheets of genus one, and in general l-loop processes in the particle picture correspond
to string diagrams of genus g = l.

Here is where the dilaton Φ enters the story: note that the particle interaction is
weighted by λ1+2l

3 , with l the number of loops in the diagram, while (for constant back-
ground dilaton) the (euclidean) string action is weighted by e−Φ(2−2g). And we have just
argued that g = l. This implies that by changing the vacuum expectation value of Φ we
can change the effective spacetime coupling λ3. More precisely, 〈Φ〉 → 〈Φ〉 + c will act in
the field theory limit as λ3 → ecλ3. So there are no adjustable couplings in string theory,
but this does not mean that all the couplings in the effective theory are determined at the
outset. Rather, in string theory every coupling “constant” of the effective field theory is
secretly the vacuum expectation value of some dynamical background field.
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§4 D-branes

So far we have imposed Neumann boundary conditions on both ends of the open string in
order to preserve Poincaré invariance in the target spacetime. While this might have been a
natural assumption in the early days of string theory, the perspective has changed during
the last couple of decades, and D-branes (the result of considering Dirichlet boundary
conditions instead) have becomes more and more important in our understanding of string
theory.

Definition 4.1. We say that we have a Dp-brane in a D-dimensional theory if we are
imposing Dirichlet boundary conditions δX = 0 on D− p− 1 directions of spacetime, and
Neumann boundary conditions X ′ = 0 on the remaining p+ 1 directions.

That is, the endpoints of the open string are restricted to live on a p + 1 submanifold
of spacetime, and we say that we have a Dp-brane wrapping the p+ 1 submanifold where
open strings can end. (Whenever we do not want to emphasize the number of directions
where we impose Dirichlet boundary conditions we speak of “D-branes” instead, without
specifying the precise value of p.)

In general, to specify the position of a Dp-brane inside some ambient space we need
to give D − (p+ 1) equations. We will consider the simplest case in which the D-brane is
wrapping a R1,p submanifold of flat spacetime R1,D−1 (this is certainly not the most general
case, and deep insights into geometry and quantum field theory follow from considering
branes wrapping more involved subspaces). So we split the spacetime coordinates into
directions along the brane, and directions orthogonal to it, as follows:

X+, X−, X i=2, . . . , X i=p︸ ︷︷ ︸
p+ 1 directions along the brane

, Xa=p+1, . . . , Xa=D−1︸ ︷︷ ︸
D − (p+ 1) transverse directions

(4.1)

where we have introduced an index “a” running over the Dirichlet directions and an index
“i” running over the Neumann directions transverse to the lightcone coordinates. The
equations defining the geometric subspace where the Dp-brane lives are therefore:

Xa = xa1 (4.2)
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with xa1 ∈ R some constants encoding the position of the D-brane. We will also assume
p ≥ 1, so we can keep using lightcone methods. One can also study the p = 0 and p = −1
cases using more sophisticated methods.

In summary, for the case of a single Dp-brane (we will study the generalisation to
multiple Dp-branes below) we have

(X ′)±(τ, 0) = (X ′)±(τ, π) = 0

(X ′)i(τ, 0) = (X ′)i(τ, π) = 0 for i ∈ {2, . . . , p}
(4.3)

for the Neumann-Neumann (henceforth “NN” for brevity) directions,8 and

Xa(τ, 0) = Xa(τ, π) = xa1 for a ∈ {p+ 1, . . . , D − 1} (4.4)

for the Dirichlet-Dirichlet (DD) directions. We will focus on the description of D-branes
in the bosonic string, the discussion generalises fairly straightforwardly to the superstring.

§4.1 Classical aspects

The mode expansion in the NN directions works just as before, so let us concentrate on
the DD mode expansion. Away from the boundaries we still have the free wave equation,
with standard D’Alembert solution

Xa(τ, σ) = Xa
R(σ−) +Xa

L(σ+) . (4.5)

At σ = 0 the boundary condition Xa(τ, 0) = xa1 implies

Xa
R(τ) +Xa

L(τ) = xa1 (4.6)

so we can solve Xa
L(τ) = xa1 − Xa

R(τ). Similarly at σ = π we have Xa(τ, π) = xa1, which
implies

Xa
R(τ − π) +Xa

L(τ + π) = Xa
R(τ − π) + (xa1 −Xa

R(τ + π)) = xa1 , (4.7)

so we learn that Xa
R(τ − π) = Xa

R(τ + π), so Xa
R is a periodic function with period 2π, and

thus admits an expansion in terms of sines and cosines:

Xa
R(σ−) = xaR +

∞∑
i=1

(san sin(nσ−) + can cos(nσ−)) (4.8)

which implies, due to (4.6)

Xa
L(σ+) = xaL −

∞∑
i=1

(san sin(nσ+) + can cos(nσ+)) (4.9)

8We repeat “Neumann” here to indicate that the boundary conditions are Neumann on both ends of
the string. It is possible to consider configurations in which one end of the string has Neumann boundary
conditions and the other has Dirichlet boundary conditions, we refer to these as “Dirichlet-Neumann” or
“Neumann-Dirichlet” boundary conditions, or often simply “DN” and “ND”.
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with xaL and xaR constants satisfying xaL + xaR = xa1. From these solutions for the left and
right movers, and some easy redefinitions, we find

Xa(τ, σ) = xa1 + `
∑
n 6=0

1

n
αan sin(nσ)e−inτ . (4.10)

We see that there are some noteworthy differences with respect to the NN result (2.26).
First, and most obviously, the choice of boundary conditions turns the cosine into a sine.
More interestingly, the center of mass momentum pa is absent. This is reasonable, since we
are restricting the endpoints of the string to Xa = xa0, so there is no zero mode of constant
momentum along that direction. Finally, there is an overall factor of i missing from the
sum: this is a choice of convention so that the reality condition is (αan)∗ = αa−n as usual.

. Exercise 4.1. Show that the Poisson brackets in the DD sector are

{αam, αbn} = −imδm+nδ
a,b . (4.11)

Note that there is no Poisson bracket involving xa1: this is a constant and not a phase
space variable, which is compatible with the fact that the corresponding momentum pa

is absent.

. Exercise 4.2. Write down the mode expansion for the DN sector. You should obtain

Xa(τ, σ) = xa1 + `
∑
r∈Z+ 1

2

1

r
αar sin(rσ)e−irτ (4.12)

with xa1 ∈ R a constant. What is the reality condition on the αr? Show that the Poisson
brackets are

{αas , αbr} = −isδr+sδa,b . (4.13)

§4.2 The quantum theory

Quantization of the DD sector is straightforward, and it works very similarly to the NN
sector. The main difference is that there is no pa momentum, so while the mass formula is
still

α′M̂2 = N̂ − 1 (4.14)

with

N̂ :=
∞∑
n=1

((
p∑
i=2

α̂i−nα̂
i
n

)
+

(
D−1∑
a=p+1

α̂a−nα̂
a
n

))
(4.15)
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the mass M̂ should be interpreted as the mass of a particle moving in p + 1 dimensions
only:

M2 +

(
p+1∑
i=2

pipi

)
− 2p+p− = 0 . (4.16)

Let us compute the spectrum. In the ground state we find a tachyon with α′M̂2 = −1.
This tachyon is removed in the superstring, so let us not discuss it further.9 The first
excited states α̂i−1 |0〉 are massless, and transform as vectors of the SO(p − 1) massless
little group on the brane, so we identify them as gauge bosons of a U(1) gauge symmetry.

We also findD−(p+1) massless scalars φa coming from α̂a−1 |0〉. These do not transform
under the little group on the brane, but they transform as a vector of SO(D − (p + 1)),
which from the point of view of the (p + 1)-dimensional theory living on the brane is
a global symmetry. In fact, these φa modes have a very important interpretation: they
encode deformations of the brane in the transverse dimensions. In fact, the effect of giving
a vacuum expectation value 〈φa〉 = va 6= 0 in the (p + 1)-dimensional theory of the brane
is to move the brane from xa1 to xa1 + va.

So, once again we find (recall our discussion in §3.6) that xa1, which initially seemed like
an external parameter to the theory, turns out to be the expectation value of a dynamical
field.

9Although the proofs are fairly technical, the fate of this open string tachyon in the bosonic string is
much better understood: the brane dissolves into closed string radiation. See for instance hep-th/0410103
and arXiv:1912.00521 for reviews.

http://arxiv.org/abs/hep-th/0410103
https://arxiv.org/abs/1912.00521
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§4.3 Multiple parallel D-branes

We can extend the previous discussion to the case of multiple D-branes. What this means
is that we will consider open strings whose two endpoints are not necessarily at the same
position. We rather have a set of N positions xai with i = 1, . . . , N such that each of the
two endpoints of the open string can be on any of these positions. (This set of choices of
endpoint is sometimes known as the “Chan-Paton factors” for the open string.) We speak
of the ij sector to indicate the choice of boundary condition Xa(τ, 0) = xai , Xa(τ, π) = xaj ,
and we say that we have N D-branes at the positions xai .

We will assume for simplicity that the multiple branes have the same dimension, and
that they are parallel. There is no logical requirement for this to be so, and dropping
these requirements leads to very interesting physics. I encourage the enterprising student
to try to work out what happens in these cases. We will also assume for the moment that
xam 6= xan for m 6= n, although we will see later that something rather interesting happens
if we drop the assumption.

Let us start with the case of 2 Dp-branes, separated in the Xa directions. The NN
sectors work as before, but in the DD sectors we have four possibilities, depending on
which position we choose for the open string endpoints:

11. In the “11 sector” for the open string we take Xa(τ, 0) = Xa(τ, π) = xa1. The
discussion proceeds exactly as in the previous section, so we end up with a U(1)
gauge boson, and D − (p+ 1) scalars.

22. In the “22 sector” we take Xa(τ, 0) = Xa(τ, π) = xa2, so we obtain another (indepen-
dent) U(1) gauge boson and D − (p+ 1) scalars.

The 12 and 21 sectors are new. They are interpreted as strings stretched between branes
at xa1 and xa2. Because the open string carries an orientation, these are two independent
(but closely related) sectors. The analysis is familiar by now, so I will leave it as an
exercise:
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. Exercise 4.3. Show that the mode expansion in the ij sector is

Xa(τ, σ) = xai +
σ

π
(xaj − xai ) + `

∑
n6=0

1

n
αan sin(nσ)e−inτ , (4.17)

with reality condition (αan)∗ = αa−n and Poisson brackets

{αam, αbn} = −imδn+mδ
a,b . (4.18)

. Exercise 4.4. Derive the mass formula in the ij sector

α′M̂2 =

(
x2
i − x2

j

2πα′

)2

+
1

α′
(N̂ − 1) (4.19)

with

N̂ :=
∞∑
n=1

((
p∑
i=2

α̂i−nα̂
i
n

)
+

(
D−1∑
a=p+1

α̂a−nα̂
a
n

))
. (4.20)

Note that as in the case of one D-brane, the mass formula in exercise 4.4 should be
understood as the mass seen by a (p+1)-dimensional observer, since there is no momentum
in the directions orthogonal to the D-brane. Note also that whenever (xai − xaj )2 > 4π2α′

the mass of the ground state is positive, while for (xai −xaj )2 < 4π2α′ it is tachyonic. A way
of understanding this is that the string stretched between the two branes has a minimal
tension, given by the stretching itself.

Going to the first excited states, they are of the form α̂i−1 |0〉 and α̂a−1 |0〉, with mass

α′M2 =
(xa1 − xa2)2

4π2α′
. (4.21)

There is a small puzzle here: we have p−1 states of the form α̂i−1 |0〉, which are massive
for xa1 6= xa2. These are not enough to furnish a representation of the little group of massive
particles in p + 1 dimensions (that is, on the directions along the brane), which is SO(p).
What is happening here is that one of the massive scalars in α̂a−1 |0〉 is “eaten” (by the
Higgs mechanism) to make a full massive vector of the (p + 1)-dimensional theory. So in
this case we interpret the spectrum as a massive vector and D − (p+ 2) massive scalars.

We have been discussing the 12 sector, but clearly the analysis in the 21 sector is totally
identical, simply by exchanging 1↔ 2. So we obtain another massive vector and D−(p+2)
scalars.
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§4.3.1 Non-abelian enhancement

There is a natural question at this point: what happens if we now bring the two branes
together? That is, what happens if we set xa1 = xa2? The massive bosons that we found
above become massless, so we have some additional gauge symmetry in the system. Which
is the resulting gauge algebra?

The basic observation is that the 12 and 21 strings are not neutral under the U(1)
symmetries in the 11 and 22 sectors: we have that the 12 strings have charge (+1,−1)
under U(1)11×U(1)22,10 while the 21 strings have charge (−1,+1). A somewhat heuristic
argument, which can be made more precise, is that this charge arises because the endpoint
of the 12 string can recombine with a suitable 11 string, to give a 12 string.

So a 12 string can “absorb” the U(1)11 gauge bosons, and therefore carries a charge
under U(1)11. On the other hand a 12 and 21 string can recombine and make a closed
string that leaves the brane system. This closed string is neutral under the gauge groups
on the brane, so the 21 string must therefore have opposite charges to the 12 string.

This situation might be familiar from your studies of group theory, as it is the standard
construction of the U(2) in terms of a Cartan subalgebra (given by U(1)11 and U(1)22 in
our case), and a set of roots. In this case the answer is that the resulting non-abelian
group on the branes is U(2). More generally, if we have N Dp-branes we have a U(N)
Yang-Mills theory in p+ 1 dimensions. As they arise in the same way as the gauge bosons,
the scalars φa transform in the adjoint representation of this Yang-Mills theory. For a
constant background 〈φa〉 we can associate the eigenvalues of 〈φa〉 with a displacement of
the D-branes in the a-th trnasverse direction.

The case of the superstring is particularly interesting. In this case we have that N
Dp-branes on top of each other give rise to maximally supersymmetric U(N) Yang-Mills
theory on p + 1 dimensions. For instance, if p = 3 we have in this way four dimensional
N = 4 U(N) SYM living on the branes.

10The fact that the two endpoints of the 12 string have opposite charges is purely conventional, be-
cause we can always redefine the signs of all U(1)22 charges simultaneously as we wish, but it is a useful
convention.
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Let me close this discussion of D-branes with a couple of remarks. First, in order to fully
specify a maximally supersymmetric Yang-Mills theory we need to give not only the gauge
group, but also the gauge coupling gYM of the field theory. As you might expect by now,
this is not an extra parameter in the theory, but is rather determined by an expectation
value of a dynamical field. In fact, this is an old friend: we have that (omitting some
uninteresting normalisation factors) g2

YM ∝ eΦ, with Φ the closed string dilaton.
Recall from §3.6 that Φ also controlled the closed string perturbation theory. This

brings me to my second remark: as I alluded to above, it is sometimes possible for open
strings on the brane to recombine and emit a closed string. This implies that D-branes
also couple to closed strings, and therefore to the (super)gravity background on which
the closed strings move. In fact, D-branes were for many years understood only as rather
mysterious objects in supergravity, quite analogous to black holes. It was only in 1995 that
Polchinski realised (in hep-th/9510017) that these mysterious higher dimensional analogues
of black holes could also be understood from the point of view of the string worldsheet
as places where open strings could end. So D-branes admit a dual interpretation, both as
open string endpoints, giving rise to Yang-Mills theories, and as highly curved backgrounds
for the background supergravity. This dual nature of D-branes can be used to motivate
Maldacena’s AdS/CFT correspondence, see hep-th/9711200v3 for the original proposal.

https://arxiv.org/abs/hep-th/9510017
http://arXiv.org/abs/hep-th/9711200v3
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§5 The superstring

§5.1 A supersymmetric Polyakov action

I will now introduce a variant of the construction above that avoids the problem of having
a tachyon in the spacetime spectrum, known as the superstring (short for “supersymmetric
string”, or more precisely “string with supersymmetry on the worldsheet”). There are
various interesting worldsheet theories that we can construct having supersymmetry in the
worldsheet and supersymmetry in spacetime:

• Type IIA.

• Type IIB.

• Type I.

• Heterotic SO(32).

• Heterotic E8 × E8.

Here I will focus on the first two, known as the type II theories, as they are somewhat
simpler to analyze with the tools that we have at hand. A natural question at this point
is whether this list is complete, and even if it is, why should I impose supersymmetry.
The answer to the first question is that this list is not complete: there are many more
two dimensional theories that one can construct that have a graviton in their spectrum.
But these are the only ones that we know with the Lorentz group SO(1, 9) as a global
symmetry. All the other consistent constructions that we know have a Lorentz symmetry
group SO(1, d) with d < 9, and often can be understood as the result of placing one of the
theories above on some 9− d dimensional manifold.

This leaves the other question: why should we impose supersymmetry on the world-
sheet or target spacetime? The answer is simple but somewhat disappointing: theories
without supersymmetry in either the worldsheet or the target exist, but without the aid of
supersymmetry the analysis becomes too complicated and we typically can say very little
about the resulting theory. For instance, it was realized early on that the IIA and IIB
theories have some closely related partners known as the 0A and 0B theories, which have
a very similar worldsheet structure (they are in particular supersymmetric), but do not
preserve supersymmetry in the target. Much as in the case of the closed bosonic string,
these theories have a tachyon in the closed string spectrum, and it is not easy to tell what
happens upon tachyon condensation.11

Let me focus on the type II theories then. A systematic way of constructing and
analyzing this theory would proceed along the same track that we followed for the classical

11Although in this case some rather sensible proposals exist, see for instance arXiv:hep-th/0012072, by
Costa and Gutperle.

https://arxiv.org/abs/hep-th/0012072
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bosonic string in §2: start by defining a supersymmetric version of the Polyakov action, or
in other words a two dimensional supergravity theory on the worldsheet, understand its
symmetries, and then use these to choose a convenient gauge that simplifies the form of
the action, making sure to remember to keep the equations of motion for the gauge fixed
fields as constraints. This analysis is fairly straightforward, but also rather lengthy, so I
will just outline it, only emphasizing those aspects that differ from the bosonic case. (You
can find the details in a number of places, for example in the book by Blumenhagen, Lüst
and Theisen.) The gauge fixed Polyakov action for the superstring is

SP = −T
2

∫
Σ

d2σ ηab
(
∂aX

µ∂bX
ν − iψ̄µρa∂bψν

)
ηµν . (5.1)

In addition to the embedding fields Xµ(σ), we now have a set of D worldsheet fermions
ψµ(σ). We denote the two-dimensional Γ matrices by ρa, satisfying the Clifford algebra

{ρa, ρb} = −2ηab . (5.2)

(Note that {a, b} = ab + ba denotes the anticommutator, not to be confused with the
Poisson bracket {f, g}P.B. we have used above.) We will use the representation

ρ0 =

(
0 −i
i 0

)
; ρ1 =

(
0 i
i 0

)
. (5.3)

These matrices are purely imaginary, and thus the Lorentz group generators and iρa∂a
purely real, so it makes sense to impose the Majorana reality condition

ψ :=

(
ψ−
ψ+

)
(5.4)

with ψ∗± = ψ±. This condition implies that ψ† = ψt, and thus ψ̄ = ψtρ0.

. Exercise 5.1. Show that for Majorana spinors ψ, χ we have

ψ̄χ = χ̄ψ and ψ̄ρaχ = −χ̄ρaψ . (5.5)

Note that the two-dimensional chirality Γ-matrix ρ̄ = ρ0ρ1 has ρ̄ψ± = ∓ψ±, so we can
view ψ+ and ψ− as two independent Weyl fermions in the worldsheet. We see that in two
dimensions having a defined chirality is compatible with the Majorana condition, so these
are Majorana-Weyl fermions. (Such fermions exist in Lorentzian signature (d− 1, 1) only
when d ≡ 2 mod 8.)

Note that the worldsheet spinors ψµ(σ) transform as vectors in spacetime. This is
necessary in order for Lorentz invariance in the target space, which is a global symmetry
from the point of view of the worldsheet, to commute with the supersymmetry generators
in the worldsheet, which in this gauge act as

δXµ = ε̄ψµ (5.6a)
δψµ = −iερa∂aXµ (5.6b)
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where ε̄ is a constant spinor parameter in the worldsheet. This constant supersymmetry
transformation is a remnant of the supergravity symmetries that we have gauged away.

. Exercise 5.2. Show that the transformations (5.6) are symmetries of (5.1) for ε(σ)
satisfying ρbρa∂bε = 0.

As in the analysis of the bosonic string, we still need to ensure that the equations
of motion for the supergravity fields that we have gauged away. The first constraint is
that the energy momentum tensor vanishes, coming from the equation of motion for the
zweibein that we have gauged away:12

Tab = ∂aX
µ∂bXµ +

i

4
ψ̄µρa∂bψµ +

i

4
ψ̄µρb∂aψµ − (trace) = 0 (5.7a)

where the trace term is a term proportional to ηab that imposes, as in the case of the bosonic
string, that ηabTab = 0, which should still be satisfied identically due to Weyl invariance of
the action.

We have a supersymmetric theory, so we should expect that there is a femionic analogue
of the constraint Tab = 0, and indeed there is. It reads

Ja =
1

2
ρbρaψ

µ∂bXµ = 0 . (5.7b)

This fermionic current can be derived as the Noether current associated to the supersym-
metry transformations (5.6), or in terms of the original supergravity theory (that we have
not described) as the equation of motion for the gravitino field that we have gauge fixed
away to obtain the simpler form (5.1).

. Exercise 5.3. Show, by direct computation, that, similarly to ηabTab = 0, we have
ρaJa = 0 without having to use the equations of motion.

12It is somewhat subtle to generalize our definition (2.5) of the energy-momentum tensor to a theory
with fermions. The right way to do so is to write the metric in terms of zweibein fields, and then define
Tab to be proportional to the variation of the metric with respect to the zwebein, see for instance §8.3 in
the book “Supergravity” by Freedman and van Proeyen. A simpler method to obtain (5.7a) is to recall
that Tab is also the Noether current associated to constant translations on the worldsheet.
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§5.2 Left and right movers

The equation of motion for ψ is the Dirac equation

ρa∂aψ
µ = 0 (5.8)

which in components reads(
0 i(−∂0 + ∂1)

i(∂0 + ∂1) 0

)(
ψµ−
ψµ+

)
= 0 . (5.9)

We can equivalently write this as

∂−ψ
µ
+ = 0 , (5.10a)

∂+ψ
µ
− = 0 . (5.10b)

The general solution of this equations is then that ψµ+ = ψµ+(σ+) is purely left moving, and
that ψµ− = ψµ−(σ−) is right moving. This is also clear if we write the fermionic part of the
action in terms of the +− coordinates:

SF = iT

∫
Σ

d2σ(ψ− · ∂+ψ− + ψ+ · ∂−ψ+) . (5.11)

This implies, in particular, that it is consistent at this level to keep only one of the
Majorana-Weyl fermions, either ψ+ or ψ−. This is the crucial observation that leads to the
heterotic strings, but in here we will proceed along the somewhat simpler path of keeping
both right movers and left movers.

It is useful, as always, to express the constraints in terms of +− coordinates. Note first
that for ρ± = ρ0 ± ρ1 we have (ρ±)2 = 0. Using this fact, a short calculation shows that
the conditions J± = 0 are equivalent to the two conditions

ψµ+∂+Xµ = 0 , (5.12a)
ψµ−∂−Xµ = 0 . (5.12b)

Similarly, the Tab = 0 constraints can be written in this basis as

T++ = ∂+X
µ∂+X

νηµν −
i

2
ψµ+∂+ψ

ν
+ηµν (5.13a)

T−− = ∂−X
µ∂−X

νηµν −
i

2
ψµ−∂−ψ

ν
−ηµν (5.13b)

with T+− = T−+ = 0 due to the tracelessness condition.
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§5.3 Boundary conditions and mode expansions

The bosonic degrees of freedom Xµ in the superstring behave exactly as in the bosonic
string, since they completely decouple from the ψµ in (5.1). We now construct the mode
expansion of the fermionic modes.

Open string

We start by considering the open string. The variation of (5.11) picks up a boundary term

δSF =
iT

2

∫
dτ(ψ− · δψ− − ψ+ · δψ+)

∣∣∣σ=π

σ=0
. (5.14)

In order for this term to vanish for all τ we impose that ψ+ = ±ψ− at each end of the
open string.13 It is always possible, by redefining the sign of ψµ− if necessary, to choose
ψ+(τ, 0) = ψ−(τ, 0), but once we do this the choice of sign at σ = π is physical. Let me
treat the two options separately.

Ramond (R) boundary conditions (open string). Assume first that we choose
ψ+(τ, π) = +ψ−(τ, π). This choice of boundary conditions is known as Ramond (or “R”)
boundary conditions. (Note that we use a different typography for this in order to distin-
guish from the “R” label we use for right movers.) We have the mode expansion

ψµ−(σ−) =
1√
2

∑
n∈Z

dµne
−inσ− (5.15a)

ψµ+(σ+) =
1√
2

∑
n∈Z

dµne
−inσ+

. (5.15b)

The Majorana condition (ψµ±)∗ = ψµ± then requires (dµn)∗ = dµ−n for the (Grassmann)
coefficients in the expansion.

Neveu-Schwarz (NS) boundary conditions (open string). The other possible choice
is ψ+(τ, π) = −ψ−(τ, π), known as the Neveu-Schwarz (or “NS”) boundary condition. The
mode expansion in this case is

ψµ−(σ−) =
1√
2

∑
r∈Z+ 1

2

bµr e
−irσ− (5.16a)

ψµ+(σ+) =
1√
2

∑
r∈Z+ 1

2

bµr e
−irσ+

(5.16b)

13What would happen if we impose δψ± = 0 or ψ± = 0 instead? Because ψ± depends on τ via σ±, this
would freeze the value of ψ± everywhere, so this amounts to not introducing ψ± in the first place.
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where now the sum is over half-integers (. . . ,−1
2
, 1

2
, 3

2
, . . .). The Majorana condition on ψ

again requires (bµr )∗ = bµ−r.

Closed string

In the case of the closed string we need to impose that the fermions are compatible with
the periodicity σ ∼ σ + π of the worldsheet. There are two choices for the left movers: it
could be that ψµ+(σ+) = ψµ+(σ+ + π), or that ψµ+(σ+) = −ψµ+(σ+ + π). That is, we allow
the fermions to be either periodic (“Ramond”, or “R”) or antiperiodic (“Neveu-Schwarz”, or
“NS”) as we go around the spatial direction.14 Similarly, there are two independent choices
for the right movers, for a total of four independent choices. We denote these choices R-R,
NS-R, R-NS and NS-NS. For instance, R-NS means that left movers are periodic and right
movers antiperiodic.

Ramond boundary conditions (closed string). In analogy with the case of the open
string, we call the periodic boundary conditions “Ramond”, or simply “R”. The mode
expansion for right movers of Ramond type is given by

ψµ−(σ−) =
1√
2

∑
n∈Z

dµne
−2inσ− (5.17)

and the mode expansion for Ramond left movers is similarly

ψµ+(σ+) =
1√
2

∑
n∈Z

d̃µne
−2inσ+

. (5.18)

I emphasize that in this case dµn and d̃µn are independent sets of oscillators. The Majorana
condition is (dµn)∗ = dµ−n and (d̃µn)∗ = d̃µ−n.

Neveu-Schwarz boundary conditions (closed string). We call the antiperiodic
boundary conditions “Neveu-Schwarz”, or simply “NS”. The mode expansions are

ψµ−(σ−) =
1√
2

∑
r∈Z+ 1

2

bµr e
−2irσ− (5.19)

for the right movers and

ψµ+(σ+) =
1√
2

∑
r∈Z+ 1

2

b̃µr e
−2irσ+

(5.20)

for the left movers, with (bµr )∗ = bµ−r and (b̃µr )∗ = b̃µ−r as usual.
14An obvious question at this point is why didn’t we allow ourselves the same freedom for the bosonic

coordinatesXµ. The answer is that we may, as long as we gauge the symmetryXµ ∼ −Xµ. (In introducing
the NS sector we are implicitly saying that we are gauging (−1)F , see the discussion in §5.5.) This is known
as orbifolding, and it is a very interesting operation to consider. But it breaks Poincaré invariance in the
target spacetime, which is why we have implicitly discarded this possibility in our analysis so far.
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§5.4 Quantization and the spacetime spectrum

Other than the fact that we are dealing with perhaps slightly unfamiliar anticommuting
fields, it is fairly straightforward to perform canonical quantization of the classical theory
that we have just described. The result is that the oscillator modes are promoted to
quantum operators with commutation relations reproducing the Poisson brackets.

The closed string

The commutation relations for the closed string in the bosonic sector are just as in (3.2),
which I reproduce here for convenience:

[α̂µm, α̂
ν
n] = [ ˆ̃αµm, ˆ̃ανn] = mδm+nη

µν , (5.21a)
[x̂µ, p̂ν ] = iηµν . (5.21b)

We also have fermionic operators, which commute with all bosonic commutators, and have
(anti)commutators

{b̂µr , b̂νs} = δr+sη
µν (NS) (5.22a)

{d̂µm, d̂νn} = δm+nη
µν (R) (5.22b)

in the right moving sector of the closed string and similarly, with tildes, in the left moving
sector of the closed strings.

The reality conditions on Xµ and ψµ imply that

(αµm)† = αµ−m (bµr )† = bµ−r (dµm)† = dµ−m (5.23)

and similarly for the left-moving oscillators.
Clearly, the same issue with ghosts (negative norm states) that we had in the closed

string appears here, but it can be dealt with similarly by going to lightcone variables. We
still have the unfixed bosonic transformations (3.8) that allow us to set

X+ = p+τ (5.24)

but additionally we have the unfixed local supersymmetry transformations in exercise (5.2),
which allow us to set15

ψ+
± = 0 (5.25)

or equivalently b+
r = 0, d+

m = 0, b̃+
r = 0 and d̃+

m = 0 depending on which sector we are
in. As in the bosonic case, we can now use the constraint equations (5.12) and (5.13) to

15This is in fact only possible in the NS sector. In the R sector we need to keep the zero modes d̂+0 and
ˆ̃
d+0 . These modes will not play an important role in what follows, so we will ignore this subtlety.
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solve for the oscillators in the X− direction in terms of the oscillators in the transverse
directions, with the result

ψ−± =
1

p+
ψi±∂±Xi , (5.26a)

∂±X
− =

1

p+

(
∂±X

i∂±X
i +

i

2
ψi±∂±ψ

i
±

)
. (5.26b)

These equations determine X− and ψ− completely, up to a constant term x− in X−.

. Exercise 5.4. Work out the form of (5.26) in terms of the oscillator modes.

The remaining oscillators in the transverse directions are physical, and satisfy the al-
gebra

{b̂ir, b̂js} = {ˆ̃bir,
ˆ̃bjs} = δr+sδ

i,j (5.27a)

{d̂im, d̂jn} = { ˆ̃dim,
ˆ̃djn} = δm+nδ

i,j (5.27b)

[α̂im, α̂
j
n] = [ ˆ̃αim, ˆ̃αjn] = mδm+nδ

i,j , (5.27c)
[x̂i, p̂j] = iδi,j , (5.27d)

[x̂−, p̂+] = −i . (5.27e)

Any commutators between transverse modes not appearing here vanishes.
In order to write the mass formula conveniently, we introduce the bosonic number

operators

N̂R,B :=
∞∑
n=1

D−1∑
i=2

α̂i−nα̂
i
n (5.28a)

N̂L,B :=
∞∑
n=1

D−1∑
i=2

ˆ̃αi−n ˆ̃αin . (5.28b)

The Neveu-Schwarz sector (closed string). We define a right moving NS number
operator

N̂R,NS :=
D−1∑
i=2

∞∑
r= 1

2

rb̂i−rb̂
i
r (5.29a)

and similarly for the left movers

N̂L,NS :=
D−1∑
i=2

∞∑
r= 1

2

rˆ̃bi−r
ˆ̃bir (5.29b)
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where the sum runs over r = 1
2
, 3

2
, . . . in both cases.

Recall from §3.3 that the right moving bosonic oscillators contribute to the mass an
amount

α′M̂2
R,B = 2

(
D−1∑
i=2

1

2

∑
n6=0

α̂i−nα̂
i
n

)

= 2

(
D−1∑
i=2

1

2

∞∑
n=1

(α̂inα̂
i
−n + α̂i−nα̂

i
n)

)

= 2

(
N̂R,B +

D − 2

2
ζ(−1)

)
= 2

(
N̂R,B −

D − 2

24

)
.

(5.30)

It is possible to adapt the heuristic argument we gave in §3.3 so that it applies to the
fermions in the NS sector. We postulate that the right mass operator in the right moving
NS fermionic sector is of the form

α′M̂2
R,NS,F = 2

D−1∑
i=2

1

2

∑
r∈Z+ 1

2

rb̂i−rb̂
i
r


= 2

D−1∑
i=2

1

2

∞∑
r= 1

2

r(b̂i−rb̂
i
r − b̂irb̂i−r)


= 2

(
N̂R,NS −

D − 2

2

(
1

2
+

3

2
+

5

2
+ . . .

))
(5.31)

We can define the sum as follows:

1

2
+

3

2
+

5

2
+ . . . =

1

2
(1 + 3 + 5 + . . .)

=
1

2
((1 + 2 + 3 + 4 + 5 + . . .)− (2 + 4 + 6 + 8 + . . .))

=
1

2
(ζ(−1)− 2ζ(−1))

= −ζ(−1)

2
.

(5.32)

(This is probably a good time to remind the reader that the same constants can be
obtained more rigorously by repeating our argument in §3.4 for the generators of the
Lorentz group (taking into account the fermionic contributions). As before, [J i−, J j−] = 0
only vanishes for some specific choices of the critical dimension and relation between the
classical and quantum constraints, which reproduce the values obtained from the heuristic
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manipulations above. Details of the derivation are given in §4.3 of the book by Green,
Schwarz and Witten, for instance.)

Putting the fermionic and bosonic contributions together, we find out that the mass of
right moving states in the NS sector is then given by

α′M̂2
R,NS = α′(M̂2

R,B + M̂2
R,NS,F )

= 2

(
N̂R,B + N̂R,NS +

3(D − 2)

4
ζ(−1)

)
= 2

(
N̂R,B + N̂R,NS −

D − 2

16

)
.

(5.33)

We will see below that the spectrum in the NS-NS sector includes the degrees of freedom
of a massless graviton (among other fields), so Lorentz invariance (in the sense that states
assemble in representations of the little group, as we imposed for the bosonic string) will
require a critical dimension

D = 10 (5.34)

for the superstring. This implies that the mass contribution from the right movers, if they
are in the NS sector, becomes

α′M̂2
R,NS = 2

(
N̂R,B + N̂R,NS −

1

2

)
. (5.35)

We define the right moving NS vacuum as the state with lowest contribution to the
spacetime mass, namely the one satisfying

α̂in |0〉NS = b̂ir |0〉NS = 0 (5.36)

for all i ∈ {2, . . . , 9}, n > 0 and r > 0, and similarly in the left moving sector.

The Ramond sector (closed string). The quantization of the R sector is more in-
volved. The periodic boundary condition is compatible with supersymmetry, and this
leads to a cancellation between the contribution of bosons and fermions to the formula for
the spacetime mass:

α′M̂2
R,R = 2

(
N̂R,B + N̂R,R

)
(5.37)

with

N̂R,R =
9∑
i=2

∞∑
n=1

nd̂i−nd̂
i
n (5.38)
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and similarly for the left movers:

N̂L,R =
9∑
i=2

∞∑
n=1

n ˆ̃di−n
ˆ̃din (5.39)

Note that [d̂i0, N̂R,R] = 0, so acting with the d̂i0 operators does not increase the spacetime
mass of states. This means that the vacuum, defined as the set of lowest mass states, is
degenerate in the R sector: there are multiple states with lowest mass. These states
transform in a linear representation of the operators d̂i0, which obey the algebra

{d̂i0, d̂
j
0} = δi,j . (5.40)

This implies that we cannot simply impose d̂i0 |0〉R = 0. In fact, if we define γi :=
√

2d̂i0,
the algebra satisfied by the γi is precisely the Clifford algebra in 8 Euclidean dimensions:

{γi, γj} = 2δi,j . (5.41)

It is a well known fact that every representation of the Clifford algebra decomposes into
copies of a single (up to isomorphism) representation (sometimes known as the Dirac
representation), which can be built as follows. Introduce the eight matrices (a ∈ {1, . . . , 4})

Aa± :=
1

2
(γ2a ± iγ2a+1) . (5.42)

These matrices satisfy

{Aa−, Ab+} = δa,b ; {Aa+, Ab+} = {Aa−, Ab−} = 0 , (5.43)

so we can meaningfully define a state |0〉R by imposing Aa− |0〉R = 0 for all a. The rest of
states at zero mass can then be constructed explicitly as follows

|0〉R Aa1+ |0〉R
Aa1+ A

a2
+ |0〉R Aa1+ A

a2
+ A

a3
+ |0〉R

A1
+A

2
+A

3
+A

4
+ |0〉R

These states provide an irreducible representation of the Clifford algebra in eight dimen-
sions, so it is natural to expect that they transform as a spinor under the spacetime
Lorentz group for the eight transverse directions. This is indeed true: one way to see
this is to notice that the spacetime Lorentz generators J ij contain a term proportional
to 1

2
[d̂i0, d̂

j
0] = [γi, γj], which is the standard way in which one constructs the spinorial

representation of the Lorentz generators out of a representation of the Clifford algebra.

. Exercise 5.5. Construct the mode expansion for the Lorentz generators Jµν in the
superstring.
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So we have found that the vacuum in the R sector transforms as a 16 component Dirac
spinor of Spin(8). As a representation of the Spin group, this representation is reducible into
two eight component Weyl representations of definite chirality under the chirality matrix
Γ = γ2 · · · γ9. Since {Γ, Ai+} = 0, the Ramond vacuum splits into the two irreducible
representations

|8s〉 = {|0〉R , A
a1
+ A

a2
+ |0〉R , A

1
+A

2
+A

3
+A

4
+ |0〉R} , (5.44a)

|8c〉 = {Aa1+ |0〉R , A
a1
+ A

a2
+ A

a3
+ |0〉R} . (5.44b)

Level matching. Finally, we need to impose the constraints L̂0 = ˆ̃L0, or in other words
the level matching conditions. An argument entirely analogous to the one we used in the
context of the bosonic string then shows that this constraint becomes

M̂2
R,φ = M̂2

L,φ′ , (5.45)

where M̂R,φ stands for either M̂R,R or M̂R,NS, depending on which periodicity we have
chosen for the right moving fermions, and similarly for the left moving sector. That is, the
left and right movers must contribute equally to the mass of any physical state, regardless
of whether they are in the Ramond or Neveu-Schwarz sectors.

A tachyon. We have now all of the tools that we need to construct the spacetime spec-
trum of the superstring. The lowest mass state is in the NS-NS sector; it is simply the NS
vacuum for the left movers times the NS vacuum for the right movers. Its mass is

α′M̂2 = α′M̂2
R,NS + α′M̂2

L,NS = 2

(
−1

2
− 1

2

)
= −2 . (5.46)

So the vacuum in the NS-NS sector is again a tachyon! Nevertheless, the situation is
better than in the bosonic string, because as we have defined it the superstring is actually
inconsistent, and in fixing the inconsistency via the GSO projection described below, we
will also be able to remove the tachyon in the spectrum.

The open string

Before going into that, let me quickly write the mass formulas for the open string sector
from completeness. In the Ramond sector we have

α′M̂2
R = N̂B + N̂R (5.47)

and in the Neveu-Schwarz sector

α′M̂2
NS = N̂B + N̂NS −

1

2
. (5.48)
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§5.5 The GSO projection and the spectrum of the type II theories

In fact, in introducing the NS sector we introduced a potential source of inconsistency in
the theory.16 The reason that we have to be careful in introducing antiperiodic boundary
conditions in the theory is that we are really in a theory of gravity in two dimensions, and
there exist large diffeomorphisms of Σ that relate different choices of boundary conditions
for the fermions. One way of phrase this in modern language is that the 2d theory on Σ is
only consistent in the presence of NS sectors if we gauge (−1)F , where F measures fermion
number on the worldsheet.

In general, gauging a symmetry involves summing over all possible backgrounds for
the symmetry when doing the integral. Since the symmetry that we are considering is
(−1)F , this sum over backgrounds is a sum over spin structures on Σ.17 There are various
consistent ways of taking this sum over backgrounds, but it would sadly take us too far
afield to classify them.18. When all is said and done, the result of the analysis is that all
these ways of taking the sum lead to projecting onto a subset of the states that we found
above. The operators that implement these projections are known as “GSO projections”.
There are various consistent choices for the projections that one takes in the spectrum, but
here I will describe the two that lead to spacetime supersymmetry and no tachyon in the
spectrum.

Let me introduce some definitions. I define the right moving worldsheet fermion number
(−1)FR operator on the NS sector to satisfy

(−1)FR b̂ir = −b̂ir(−1)FR (5.49a)
(−1)FRα̂in = α̂in(−1)FR (5.49b)

and declare that (−1)FR |0〉NS = − |0〉NS. Equivalently, we can define (−1)FR = −(−1)N̂R,NS .
So the NS vacuum is “fermionic”, and (−1)FR measures how many fermionic operators have
acted on the vacuum to construct the state of interest. We can define an operator (−1)FL

on a NS left moving sector analogously by (−1)FL = −(−1)N̂L,NS .
For the right moving R sector, we define

(−1)FR = Γ(−1)N̂R,R (5.50)

with Γ = 16d2
0 · · · d9

0 as above. For the vacua in the R sector we then have

(−1)FR |8s〉 = + |8s〉 (5.51a)
(−1)FR |8c〉 = − |8c〉 (5.51b)

16As we will see, the graviton lives in the NS-NS sector, so we need to introduce this sector if we want
to obtain gravitons in the spacetime spectrum of the string.

17The original paper that discussed this viewpoint for the GSO projection is the paper by Seiberg and
Witten called Spin Structures in String Theory. See arXiv:1911.11780 for a more modern take on the same
perspective.

18It is nevertheless a rather beautiful story, with connections to algebraic topology and condensed matter
physics. See the last reference in footnote 17 if you are interested in the details.

https://doi.org/10.1016/0550-3213(86)90297-X
http://arxiv.org/abs/arXiv:1911.11780
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and each operator din introduces an additional minus sign. The operator (−1)FL can be
defined entirely analogously in the left moving sector.

We are now in the position to introduce the GSO projections that lead to the IIA and
IIB theories.

The IIA theory

For the IIA theory we only keep states with (−1)FR = (−1)FL = +1 in the NS sector,
and (−1)FR = −(−1)FL = 1 on the R sector (note the sign). For instance, this implies
that the NS-NS vacuum, which recall was tachyonic, is projected out, since it is odd under
(−1)FR and (−1)FL . The states at the massless sector that survive the projection are easy
to compute, and they correspond to the spectrum of the non-chiral N = (1, 1) supergravity
in ten dimensions. In detail, the spectrum is as follows:

NS-NS sector. States of the form

|ij〉 =
(

ˆ̃bi− 1
2
|0〉NS

)
⊗
(
b̂j− 1

2

|0〉NS
)

(5.52)

are massless and satisfy level matching. These states have (−1)FR = (−1)FL = +1, so they
survive the GSO projection. Under the little group SO(8) they transform in the 8 ⊗ 8
representation, which, exactly as in the case of the bosonic string, includes a graviton Gµν ,
an antisymmetric two-form Bµν , and the dilaton Φ.

R-R sector. The massless states that survive the IIA GSO projection in the R-R sector
are of the form

|8c〉 ⊗ |8s〉 . (5.53)

In terms of the little group SO(8), the product of two spinors of opposite chiralities de-
composes into 8v and 56v. This is a massless vector, associated to a U(1) gauge boson in
spacetime, known as C1, and a massless three-form, which we generally call C3.

R-NS sector. The massless states in this sector arise from

|8c〉 ⊗
(
b̂i− 1

2
|0〉NS

)
(5.54)

In terms of the little group these transform as a gravitino and a spinor (known as the
dilatino) of the same chirality, 8s and 56s.

NS-R sector. In this case the massless states arise from(
ˆ̃bi− 1

2
|0〉NS

)
⊗ |8s〉 . (5.55)

We again get a spinor and a gravitino, but this time they are of opposite chirality to the
ones in the R-NS sector, being in the 8c and 56c representations.
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The IIB theory

The GSO projection in the IIB theory is that (−1)FR = (−1)FL = 1 in both NS and R
sectors. This again projects out the tachyon. At the massless level we find the spectrum
of the chiral N = (0, 2) supergravity in ten dimensions, as follows:

NS-NS sector. This is identical to the IIA case, with the states

|ij〉 =
(
b̂i− 1

2
|0〉NS

)
⊗
(

ˆ̃bj− 1
2

|0〉NS
)

(5.56)

giving rise to a graviton, a 2-form and a dilaton.

R-R sector. The invariant states now come from

|8s〉 ⊗ |8s〉 (5.57)

which decomposes into representations of the massless little group SO(8) as a four form C4

subject to the self-duality condition dC4 = ?dC4, a two-form Cµν and a scalar C0 known
as the “axion”.19

R-NS sector. The massless spectrum are now

|8s〉 ⊗
(
b̂i− 1

2
|0〉NS

)
. (5.58)

These states are a dilatino and gravitino in the 8c and 56c representations.

NS-R sector. This case works as in IIA. The massless states are(
ˆ̃bi− 1

2
|0〉NS

)
⊗ |8s〉 (5.59)

and transform as a gravitino and dilatino of the same chirality as those in the R-NS sector,
namely 8c and 56c.

19Although we do not need it in analysing the IIA or IIB theories, let me list for completeness the
decomposition of |8c〉 ⊗ |8c〉. This gives a four form C̃4 obeying dC̃4 = − ? dC̃4, a two-form C̃µν and a
scalar C̃0.
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§6 T-duality

§6.1 Compactification and T-duality

So far we have considered the case of strings propagating on R1,D−1. We now see what
happens in the case of strings propagating on R1,D−2 × S1, with X25 ∼ X25 + 2πR. Since
one of the coordinates is periodic, closed strings can “wind” around the periodic direction
a number of times, as in the following figure:

That is, we have different possible winding sectors. In terms of the wordsheet fields, the
four winding sectors shown in the picture obey:

X25
a (τ, σ + π) = X25

a (τ, σ) , (6.1a)
X25
b (τ, σ + π) = X25

b (τ, σ) + 2πR , (6.1b)
X25
c (τ, σ + π) = X25

c (τ, σ)− 2πR , (6.1c)
X25
d (τ, σ + π) = X25

d (τ, σ) + 4πR . (6.1d)

Clearly we have infinite possibilities, which motivates the following definition.

Definition 6.1. A closed string with winding number m ∈ Z along a compact direction
with radius R, say X25 ∼ X25 + 2πR, satisfies

X25(τ, σ) = X25(τ, σ) + (2πR)m. (6.2)

More abstractly, winding numbers are classified by the homotopy class of maps from the
periodic space direction in the string worldsheet, with topology S1

σ, to the target spacetime,
which in the current case is R1,D−2 × S1. These are classified by

π1(R1,D−2 × S1) = π1(S1) = Z . (6.3)

As usual, let us consider the mode expansion of the string in this background. The
mode expansion for the X i coordinates with i < 25 is unchanged, so we focus on the mode
expansion for X25. We still have a solution in terms of left and right movers:

X25(τ, σ) = X25
L (σ+) +X25

R (σ−) (6.4)
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obeying the boundary condition (6.2), which in terms of left and right movers becomes:

X25
L (σ+ + π)−X25

L (σ+) = −XR(σ− − π) +XR(σ−) + 2πRm . (6.5)

Note that the left hand side of this equality is a function depending on σ+, while the right
hand side is a function depending on σ−. These are independent variables, so the only
way that these two functions can be equal is if they are equal to some constant. If we take
derivatives the constant disappears, and we obtain

(X25
L )′(σ+ + π) = (X25

L )′(σ+) , (6.6a)
(X25

R )′(σ+ − π) = (X25
R )′(σ+) . (6.6b)

Therefore (X25
L,R)′ are periodic with period π, so they admit Fourier expansions of the form

(X25
L )′(σ+) = `

∑
n∈Z

α̃25
n e
−2inσ+

, (6.7a)

(X25
R )′(σ−) = `

∑
n∈Z

α25
n e
−2inσ− . (6.7b)

Integrating, this gives:

X25
L (σ+) = x25

L +
1

2
`2p25

L σ
+ +

i`

2

∑
n 6=0

1

n
α̃25
n e
−2inσ+

, (6.8a)

X25
R (σ−) = x25

R +
1

2
`2p25

R σ
− +

i`

2

∑
n 6=0

1

n
α25
n e
−2inσ− , (6.8b)

with p25
L := 2α̃25

0 /` and p25
R := 2α25

0 /`. So far the analysis is identical to the one for the
ordinary string (compare with (2.21)), but we now encounter some differences. Note that
we have

X25
L (σ+ + π)−X25

L (σ+) = `α̃25
0 π (6.9a)

−X25
R (σ− − π) +X25

R (σ+) = `α25
0 π (6.9b)

so the boundary condition (6.5) becomes

`α̃25
0 π = `α25

0 π + (2πR)m (6.10)

or equivalently

α̃25
0 − α25

0 =
2R

`
m . (6.11)

There is a subtler phenomenon that occurs whenever we have a compact dimension.
Recall that the operator generating X25 → X25 + a translations in quantum mechanics
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is T̂ (a) := eip̂
25a. In our case, because the X25 coordinate is periodic with period 2πR, it

must be the case that T̂ (2πR) is a trivial operator. That is:

T̂ (2πR) = ei2πRp̂
25

= 1 . (6.12)

So the eigenvalues of p̂25 should all be of the form k/R, with k ∈ Z. Repeating the analysis
in §2.4 we find:

p25 = p25
L + p25

R , (6.13)

so we have that
α25

0 + α̃25
0 =

`

R
k . (6.14)

We can therefore write:

p25
L =

k

R
+
Rm

α′
, (6.15a)

p25
R =

k

R
− Rm

α′
, (6.15b)

so the contribution from the left and right movers to the momentum is no longer equal
whenever we are in a sector with non-trivial winding number m.

Mass shell and level matching conditions

The classical expression for the right moving Virasoro generators is

Lm =
1

2

∞∑
n=−∞

(
−α+

m−nα
−
n − α−m−nα+

n + α25
m−nα

25
n +

24∑
i=2

αim−nα
i
n

)
(6.16)

so in particular

L0 =
1

2

∞∑
n=−∞

(
−α+
−nα

−
n − α−−nα+

n + α25
−nα

25
n +

24∑
i=2

αi−nα
i
n

)
=

1

8
r2
p +Ni +N25 (6.17)

where we have defined

rp := (p+, p−, p2, . . . , p24, pR) (6.18a)

Ni :=
24∑
i=2

∞∑
n=1

αi−nα
i
n (6.18b)

N25 :=
∞∑
n=1

α25
−nα

25
n . (6.18c)

Where r2
p denotes rµp rνpηµν , as usual.
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Now, because the momentum in the X25 direction is quantized, exciting any non-
constant modes in this direction takes a finite amount of energy. So an observer without
access to sufficient energy will see a theory that is effectively 25-dimensional, with an
infinite tower of massive modes labelled by integers k. This is the idea of Kaluza-Klein
compactification: a higher dimensional theory placed on a compact space appears, at low
energies, to have fewer dimensions.20

So let us consider the situation as seen by a 25-dimensional observer. In order to do
this, we write r2

p = p2
25 + p2

R, where p25 := (p+, p−, p2, . . . , p24) is the momentum in the
non-compact directions. The mass formula in 25 dimensions then follows from L0 = 0

M2 = −p2
25 =

8

`2
[Ni +N25] + p2

R . (6.19)

We can also obtain the mass by looking to the left movers (that is, we impose L̃0 = 0), we
have

M2 = −p2
25 =

8

`2
[Ñi + Ñ25] + p2

L (6.20)

with

Ñi :=
24∑
i=2

∞∑
n=1

α̃i−nα̃
i
n (6.21a)

Ñ25 :=
∞∑
n=1

α̃25
−nα̃

25
n . (6.21b)

Imposing that both expressions for the mass agree gives the level matching condition

(Ni +N25)− (Ñi + Ñ25) =
`2

8

(
p2
L − p2

R

)
= mk . (6.22)

Notice in particular that whenever there is both momentum and winding in the compact
direction the level of left and right movers differs.

We can take the average of the expression for the mass given by the left movers and
the right movers to obtain a more symmetric expression:

α′M2 = 2
(
Ni +N25 + Ñi + Ñ25

)
+ α′

[(
Rm

α′

)2

+

(
k

R

)2
]
. (6.23)

20So, for instance, superstring theory could in principle describe our four dimensional world if placed on
some appropriate compact six-dimensional manifold. In practice, it is necessary to introduce, beyond the
purely geometrical background, D-branes and other ingredients in the mix to get closer to the real world.
We refer to such a system as a compactification of string theory. No compactification leading to the precise
physics observed in our universe has been found yet, but steady progress in this direction has been made
during the last two decades. A good introduction to the techniques and ideas involved in this endeavour
is the book “String Theory and Particle Physics” by Ibañez and Uranga.

https://www.cambridge.org/gb/academic/subjects/physics/theoretical-physics-and-mathematical-physics/string-theory-and-particle-physics-introduction-string-phenomenology?format=HB&isbn=9780521517522
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This was all for the classical theory. The quantization presents no additional difficulties
compared to our analysis in §3. In the quantum theory we impose

ΦW (L0) = ΦW (L̃0) = 0 (6.24)

where ΦW is the Weyl quantization map introduced in §3.3. The result of the analysis is
that level matching is modified to

(N̂i + N̂25)− ( ˆ̃Ni + ˆ̃N25) = mk (6.25)

with

N̂i :=
24∑
i=2

∞∑
n=1

α̂i−nα̂
i
n (6.26a)

N̂25 :=
∞∑
n=1

α̂25
−nα̂

25
n (6.26b)

and similarly for the left movers. The mass shell condition becomes (with the same regu-
larization prescription

∑
n>0 n = − 1

12
as in §3.3)

α′M̂2 = 2
(
N̂i + N̂25 + ˆ̃Ni + ˆ̃N25 − 2

)
+ α′

[(
Rm

α′

)2

+

(
k

R

)2
]
. (6.27)

Note in particular the shift of −4 in α′M̂2 with respect to the classical result.

T-duality

We now note that the formula (6.27) is invariant if we simultaneously exchange

m↔ k and R↔ α′

R
. (6.28)

This is a rather surprising observation! We are saying that, at the level of the spectrum at
least, there is no distinction between compactifying on a very large circle and compactifying
on a very small circle. In fact, some reflection makes this equivalence somewhat reasonable:
consider first the case of R small: then the modes with nontrivial momentum k become
fairly large (this is natural: you need high energies to probe small distances), but winding
modes become light. Heuristically, it becomes easy to wrap strings in the compact direction,
but making a string move in the compact direction requires quite a bit of energy. The
situation is precisely opposite when R is large: it is very easy to move in the compact
dimension (in the limit R→∞ we go back to the 26 dimensional setting, where momentum
is no longer discrete), but it is expensive to wrap a string.
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In fact, the equivalence at the level of the spectrum can be promoted to an equivalence
at the level of the full theory, known as T-duality . It is clear from the expressions for p25

L

and p25
R in (6.15) that the action (6.28) leaving the spectrum invariant acts as (pL, pR) ↔

(pL,−pR) on the left and right moving momenta. Our task is to show that this action on
the momenta can be promoted to a symmetry of the full theory. Recall the mode expansion
for the compactified theory that we found in (6.8), which we copy here for convenience:

X25
L (σ+) = x25

L +
1

2
`2p25

L σ
+ +

i`

2

∑
n 6=0

1

n
α̃25
n e
−2inσ+

, (6.29a)

X25
R (σ−) = x25

R +
1

2
`2p25

R σ
− +

i`

2

∑
n 6=0

1

n
α25
n e
−2inσ− . (6.29b)

We can promote T-duality to a symmetry on the full left moving sector by simply declaring
that it does nothing on x25

L and the α̃25
n oscillators. On the other hand the second term

in X25
R changes sign, so we cannot take a trivial action and keep the full theory invariant.

Rather, we take the T-duality action on α25
n to be α25

n ↔ −α25
n , and similarly x25

R ↔ −x25
R .

A way of understanding better this second action is to write x25
L = 1

2
(x25 + q25) and

x25
R = 1

2
(x25 − q25). The T-duality action is then x25 ↔ q25. If we act in this way, we find

that the putative T-duality invariance of the theory is

(X25
L , X

25
R )↔ (X25

L ,−X25
R ) . (6.30)

An overall sign change in XR will lead to an isomorphic Hilbert space for the right movers,
so the only potential concern comes from the Virasoro constraints, but it is clear from their
expression (2.41) in terms of left and right movers that an overall sign change in XR will
not affect the form of these constraints.

So indeed, there is a full quantum equivalence for the bosonic string propagating on a
circle of radius R and on a circle of radius α′/R. This is rather trivial from the worldsheet
point of view, as we have seen, but it is a rather surprising behaviour from a target
spacetime point of view! Let me emphasize that T-duality is only possible because we
are dealing with strings, which are extended objects. Ordinary field theories with a finite
number of fields do no exhibit T-duality.

T-duality for type II

The previous discussion was about the bosonic string, but the superstring also exhibits
T-duality. Assume, as before, that we place either of the type II superstrings on R1,8×S1

R,
with X9 ∼ X9 + 2πR. The discussion in the bosonic sector is just as in the case of the
bosonic string, so we have a potential duality acting as (X9

L, X
9
R)↔ (X9

L,−X9
R). In order

to preserve supersymmetry we therefore want

(ψ9
L, ψ

9
R)↔ (ψ9

L,−ψ9
R) . (6.31)
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So we find that the left moving sector of the superstring is entirely unaffected by T-duality.
On the other hand the action on the right movers is more interesting.

The action on the NS is still not very interesting, as we just have a map

b25
−r |0〉NS ↔ −b

25
−r |0〉NS (6.32)

with |0〉NS invariant. This is simply a relabelling of the states, but the theory is still
isomorphic.

On the other hand, there is an interesting subtlety in the R sector. Recall from our
discussion in §5.4 that the vacuum in the R sector is degenerate. We construct the vacuum
by defining operators (5.42)

Aa± :=
1

2
(γ2a ± iγ2a+1) , (6.33)

and then defining a state |0〉R by imposing Aa− |0〉R = 0 for all a ∈ {1, 2, 3, 4}. The rest of
the states in the lowest R sector are constructed by acting with Aa+ on |0〉R. Finally, as
in §5.5, we impose the GSO projection by demanding that in the physical theory we only
keep states created by an even number of Aa+ applications on the left moving R |0〉R state
(for the IIB string) or an odd number of Aa+ application (for IIA).

Coming back to T-duality: the action (6.31) induces an action on the Aa± given by

(A1
±, A

2
±, A

3
±, A

4
±)↔ (A1

±, A
2
±, A

3
±, A

4
∓) . (6.34)

Note the change in sign in the last element, coming from the fact that γ9 =
√

2d̂9
0 changes

sign under T-duality. For clarity of argument, let me denote by Ba
± the Clifford algebra

operators in the T-dual picture, so that

(B1
±, B

2
±, B

3
±, B

4
±) := (A1

±, A
2
±, A

3
±, A

4
∓) . (6.35)

If we start with a state |0〉R in the original description, after T-duality it is no longer true
that B4

− |0〉R = 0. We instead define a new state |0〉′R := B4
− |0〉R such that Ba

− |0〉
′
R = 0

for all a. So far this is a minor relabelling of states without physical consequence, but it
becomes rather significant when we apply the GSO projection: keeping the state |0〉R in the
spectrum would require imposing (−1)FR = 1 in the R sector in the original description,
but (−1)FR = −1 in the new description (since |0〉R = B4

+ |0〉
′
R in the T-dual description,

which involves an odd number of B+ applications).
Assume for concreteness that we start with the IIB theory on a circle of radius R. This

involves the GSO projection (−1)FR = (−1)FL = 1 on both the NS and R sectors. As we
have just argued, the T-dual theory on a circle of radius α′/R has identical projection on
the left movers, and NS right movers, but projection (−1)FR = −1 on the R right movers.
This is precisely the projection that defines the IIA theory!21 So, summarising:

IIA on S1
R = IIB on S1

α′/R .

21In the conventions used in §5.5 this is only true up to an overall relabelling of what we mean by left
and right movers, but this overall relabelling leads to a equivalent theory.
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This is conceptually a very important result: while the IIA and IIB superstring theories
look very different, they become exactly the same quantum theory once compactified on a
circle. A slightly different perspective on this: if we start from the (unique) type II theory
on a circle, the IIA and IIB ten dimensional theories arise from taking the R → 0 and
R→∞ limits.

§6.2 T-duality action on D-branes

There is a loose thread in the previous discussion that we need to tie up. We have shown
that T-duality holds for the closed string. Does it also hold in the presence of D-branes?
That is, does it also hold for open strings? Indeed it does, as we now show.

Consider the open bosonic string with NN boundary conditions in all directions, com-
pactified on a circle of radius R, which we will take to be along the X25 direction. (It is
not difficult to extend the discussion to the case of the superstring, one obtains the same
result that we will obtain below.) We have

∂σX
25(τ, σ)

∣∣∣∣
σ=0,π

= 0 . (6.36)

In terms of left and right movers this is

∂σ(X25
L (σ+) +X25

R (σ−))

∣∣∣∣
σ=0,π

= 0 . (6.37)

Now, since X25
L (σ+) and X25

R (σ−) depend on σ only via σ± = τ ± σ we can use the chain
rule to write

∂σXL(σ+) = ∂σ+X25
L (σ+) = ∂τXL(σ+) (6.38a)

−∂σXR(σ−) = ∂σ−X
25
R (σ−) = ∂τXR(σ−) , (6.38b)

so we can rewrite the NN boundary condition as

∂τ (X
25
L (σ+)−X25

R (σ−))

∣∣∣∣
σ=0,π

= 0 . (6.39)

T-duality on the X25 direction sends (X25
L , X

25
R )→ (X25

L ,−X25
R ), so in the T-dual descrip-

tion of the theory the boundary condition becomes

∂τ (X
25
L (σ+) +X25

R (σ−))

∣∣∣∣
σ=0,π

= ∂τX
25(τ, σ)

∣∣∣∣
σ=0,π

= 0 , (6.40)

which is the DD boundary condition that we have been writing as δX25(τ, σ)
∣∣
σ=0,π

= 0.
So we learn that NN boundary conditions get mapped to DD boundary conditions. In

the language of D-branes, we have that Dp-branes wrapping the S1 with radius R turn
into D(p− 1)-branes localised at a point in the S1 with radius α′/R.
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