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6D SCFTs

[Nahm '78]: 6 is highest dimension for SCFTs.

[Witten "95]: type IIB on C2/T" x R"° gives 6D SCFT with N = (2,0) if I is a finite
subgroup of SU(2) — ADE classification:
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6D SCFTs: (2,0)

[Witten "95]: type IIB on C2/T" x R"® gives 6D SCFT with N = (2, 0)

Resolution/Deformation gives ALE space X apg, H*(XapEg,Z) = —AaDE.

D3-branes and C, on X 4pg give rise to BPS strings and self-dual tensor fields Béz)
Conformal limit: strings become tensionless ... hallmark of 6D SCFTs

Putting these on T2 gives N = 4 SYM, B%?) become vectors, 7(T?) becomes
coupling, strings become dyons, ...

Putting these on Riemannn surfaces gives class S theories



6D SCFTs: (1,0)

Can engineer via F-Theory on non-compact singular elliptically fibred Calabi-Yau
threefolds X (lIB with varying dilaton on B)

E—-X—>B y? =23 + f(2)zw® + g(2)w® A =4f3 42747

Classic example:
the ‘E-string’ SCFT [Ganor, Hanany "96]




6D SCFTs: (1,0)

Can engineer via F-Theory on non-compact singular elliptically fibred Calabi-Yau
threefolds X
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Classic example:
the ‘E-string’ SCFT [Ganor, Hanany "96]




6D SCFTs: (1,0)

Can engineer via F-Theory on non-compact singular elliptically fibred Calabi-Yau
threefolds X

EFE—-X—-B v =2+ z%zw4 + 22 zw®
Classic example:
the ‘E-string’ SCFT [Ganor, Hanany "96]
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global (flavour) symmetry = Fg



6D SCFTs: (1,0)

Can engineer via F-Theory on non-compact singular elliptically fibred Calabi-Yau
threefolds X

EFE—-X—-B v =2+ z%zw4 + 22 zw®
Classic example:
the ‘E-string’ SCFT [Ganor, Hanany "96] f
' 4
crepant resolution = tensor branch s o _
global (flavour) symmetry = Ejg E

dual: M5 probing Eg brane in het. M-theory
het. small instanton

For (¢r) = 0 get tensionless string
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6D SCFTs: (1,0)

More general: start from F-Theory on smooth base and blow down to C?/T for " € U(2)
reached [Heckman, Morrison, Vafa ’14]
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Classification:

[Del Zotto, Heckman, Morrison, Park, Rudelius, Tomasiello, Vafa '13-'15];
caveat: ‘frozen’ phase not included [Bhardwaj, Morrison, Tachikawa, Tomasiello '18]



6D SCFTs: (1,0)

Lattice of BPS strings A = lattice generated by curves blown down in B
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higher form global symmetries
[Gaiotto, Kapustin, Nathan Seiberg, Willett '15]

6D SCFTs have a ‘defect group’ of 2-form symmetries G5 [Del Zotto, Heckman, Park,
Rudelius '15; Bhardwaj, Schafer-Nameki '20] acting on ‘Wilson surfaces’ with
representations labelled by C, € Hs(B,Z).

V(C —exp(Zal za/ )

They transform as

V(C,) = Uy(S*)V(C,) = exp (ich/ Hj) V(C,) = exp (2#2’20,» Q5 aj) V(C,)

j Ss ij



defect group

ij

V(Ca) — exp (27”' Z ci Qi aj) V(C,) = exp (2mi ¢ a)

The dynamical tensionless strings in As C Hy(B,Z) screen the charge of this global
symmetry and the only surving group elements are those ¢ such that ¢ - a € Z. Hence (by
definition) ¢ € A%. The non-trivial transformations in G's only act on defects in Ag and

Gs =A5/As ‘discriminant group’
A defect ¢’ € Hy(B,Z) (= string of infinite mass) transforms with the phase

Z ci Qij ¢ ‘discriminant form’
ij



Examples of G

For (2,0) theories:

As Ag/As
Anq Ln,
Dgn ZQ X Z2
D2n+1 Z4
E6 ZB
E7 ZZ
Eg -
-2 -1

S o

Ay/As = Zo = ((1/2,0,1/2))



6D Supergravity

Choosing a compact B (in the (1,0) case) or a K3 surface (in the (2,0) case), we have
A* /A = H*(B,Z)*/H*(B,Z) = 1
Hence there is no 2-form symmetry.

The self-duality of H2(B,Z) is a consequence of Poincaré duality, which fits the
self-duality of the charge lattice of 6D supergravity forced by consistency
[Kumar, Morrison, Taylor ’10; Seiberg, Taylor '11].

The absence of 2-form symmetries is expected from the absence of global symmetries in
theories of quantum gravities. [Harlow, Ooguri ’18].



What if we choose a compact base and track the behavior of the
two-form symmetries ? N = (2,0)

Moduli space of IIB on a K3 surface: Grassmanian of 5-planes X5:
O(A5,21) \ O(5,21)/(O(5) x O(21)) .

If X5 L @;I'; = As the theory has the associated SCFTs as subsectors which have 2-form

symmetries
GS = AZ‘/AS - @zfz‘/ﬂ

However, now we should think of all elements of A5 2; = U® @ (—Es)? as dynamical
objects screening 2-form symmetries. Unscreened subgroup G of Gg must act trivially on
n € As 21, 1.6. need y s.t. v-n € Zforallm € As 21 Hence v € A3 51 = A5 21 and

G - (A5721 n Ag)/AS



primitivity

An embedding Ag — As 2; is called primitive if

As21N(As ®Q) = Ag
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primitive not primitive



primitivity and G

An embedding Ag — As 2; is called primitive if
As21N(As®Q) = Ag

Rewrite
G=(As521NAS)/As =As521 N (As ®Q) /As

Hence if Ag < A5 21 is primitive, G is trivial.
In general:
G = tor (A5,21/As)

tor: elements 7 of A5 ; that are not in Ag, but a multiple of n is in Ag.



G — tor (A5’21/A5)

By construction, each T'; is primitively embedded into A5 2; but together they do not need
to be. Example:

Es:(al,ag,ag,a4,a5,a6,a7,a8) all ai€ZOFZ+% ZaiGQZ
Sublattice A} generated by:
m = (1,1,0,0,0,0,0,0)
N2 = (0707 ]-7 1; 070707 O)
13 = (07070303 1, 17070)
ns = (0,0,0,0,0,0,1,1)
N1+ n2 +n3 +ng = (18). But now (1/28) is in (A} ® Q) N Eg but not A}.



G — tor (A5’21/A5)

General class of (geometric) models: consider an elliptically fibored K3 surface; Moduli
space
O(A2,18) \ O(2,18)/ (0(2) x O(18)) .

ADE singularities: I'; L 3s. I'; < Ag 15. Ag = ;I
tor (As21/Ag) =tor (Ag15/As) = tor(Mordell-Weil group)

Mordell-Weil group = the group of sections of the fibration. Hence torsional sections give
rise to unbroken 2-form symmetries.

But they should not be there by the general logic | — they must be gauged!

This is not unfamiliar from 0-form, i.e. flavour, symmetries.



gauged 2-form symmetries and duality

Consider again putting IIB on an elliptically fibred K3 surface X with certain ADE
singularities ~ singular fibres ~ algebras g;.
Gauged two-form symmetries:

G =tor MW (X)

Put this theory on S*. Gauge group of 5D theory is
®:G;/G

We can also think of this as F-Theory on E x X x S or M-Theory on E x X.

This is dual to F-Theory on X (using the elliptic fibration on X) times E times S*. Here it is
known that tor MW (X)) changes the global structure of the gauge group as observed
above [Mayrhofer,Morrison,Till, Weigand '14]

Heterotic version: het strings on T [Fraiman, Parra De Freitas '21]



(1,0) theories

Start from a smooth 3fold with base B and blow down B — B,
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The structure of how the (not self-dual) lattice A sits inside the self-dual lattice Hy(B,Z)
was answered by [Del Zotto, Heckman, Morrison, Park ’14].



(1,0) theories

Start from a smooth 3fold with base B and blow down B — B,
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Again
G = (H2(B,Z) NAg) /As

where Ag = ®;I;.



(1,0) theories

Start from a smooth 3fold with base B and blow down B — B,
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If B, = B,/Z, then



(1,0) theories

Start from a smooth 3fold with base B and blow down B — B,
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Z.
If B, = B,/Z, then
G =7y,

Again: can make examples where this is mapped to torsional Mordell-Weil group under
duality



Thank youl!

6D SCFTs have 2-form symmetries G
These can be subsectors of 6D supergravity theories
G's must be broken or gauged

o worked out when there is a gauged subgroup G for (2,0) theories and (1,0) theories
engineered in F-Theory with toric bases

general lesson:

G — tor ( charge lattice )

charge lattice of SCFT sector
similar: gauged 1-form symmetries and global structure of gauge group



