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6D SCFTs

[Nahm ’78]: 6 is highest dimension for SCFTs.

[Witten ’95]: type IIB on C2/Γ× R1,5 gives 6D SCFT with N = (2, 0) if Γ is a finite
subgroup of SU(2)→ ADE classification:

Γ ΛADE g
Zn An−1 su(n)

Binary Dihedral Dn so(2n)
Binary Tetrahedral E6 e6
Binary Octahedral E7 e7
Binary Icosahedral E8 e8



6D SCFTs: (2,0)

[Witten ’95]: type IIB on C2/Γ× R1,5 gives 6D SCFT with N = (2, 0)

Resolution/Deformation gives ALE space XADE , H2(XADE ,Z) = −ΛADE .
D3-branes and C4 on XADE give rise to BPS strings and self-dual tensor fields B(2)

a

Conformal limit: strings become tensionless ... hallmark of 6D SCFTs

Putting these on T 2 gives N = 4 SYM, B(2)
a become vectors, τ(T 2) becomes

coupling, strings become dyons, ...
Putting these on Riemannn surfaces gives class S theories



6D SCFTs: (1,0)

Can engineer via F-Theory on non-compact singular elliptically fibred Calabi-Yau
threefolds X (IIB with varying dilaton on B)

E → X → B y2 = x3 + f(z)xw4 + g(z)w6 ∆ = 4f3 + 27g2

Classic example:
the ‘E-string’ SCFT [Ganor, Hanany ’96]
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6D SCFTs: (1,0)

Can engineer via F-Theory on non-compact singular elliptically fibred Calabi-Yau
threefolds X

E → X → B y2 = x3 + z41xw
4 + z51z2w

6

Classic example:
the ‘E-string’ SCFT [Ganor, Hanany ’96]

crepant resolution = tensor branch
global (flavour) symmetry = E8

dual: M5 probing E8 brane in het. M-theory
het. small instanton

For 〈φT 〉 = 0 get tensionless string



6D SCFTs: (1,0)

More general: start from F-Theory on smooth base and blow down to C2/Γ for Γ ∈ U(2)
reached [Heckman, Morrison, Vafa ’14]

Classification:
[Del Zotto, Heckman, Morrison, Park, Rudelius, Tomasiello, Vafa ’13-’15];
caveat: ‘frozen’ phase not included [Bhardwaj, Morrison, Tachikawa, Tomasiello ’18]



6D SCFTs: (1,0)

Lattice of BPS strings ΛS = lattice generated by curves blown down in B

e.g. Z3 with inner form

−2 1 0
1 −1 1
0 1 −4





higher form global symmetries
[Gaiotto, Kapustin, Nathan Seiberg, Willett ’15]

6D SCFTs have a ‘defect group’ of 2-form symmetries GS [Del Zotto, Heckman, Park,
Rudelius ’15; Bhardwaj, Schäfer-Nameki ’20] acting on ‘Wilson surfaces’ with
representations labelled by Ca ∈ H2(B,Z).

V (Ca) = exp

i∑
ij

aiΩij

∫
Ca

Bj


They transform as

V (Ca)→ Ug(S3)V (Ca) = exp

i∑
j

cj

∫
S3

Hj

V (Ca) = exp

2πi
∑
ij

ci Ωij aj

V (Ca)



defect group

V (Ca)→ exp

2πi
∑
ij

ci Ωij aj

V (Ca) = exp (2πi c · a)

The dynamical tensionless strings in ΛS ⊂ H2(B,Z) screen the charge of this global
symmetry and the only surving group elements are those c such that c · a ∈ Z. Hence (by
definition) c ∈ Λ∗S . The non-trivial transformations in GS only act on defects in Λ∗S and

GS = Λ∗S/ΛS ‘discriminant group’

A defect c′ ∈ H2(B,Z) (= string of infinite mass) transforms with the phase∑
ij

ci Ωij c
′
j ‘discriminant form’



Examples of GS

For (2, 0) theories:
ΛS Λ∗S/ΛS

An−1 Zn

D2n Z2 × Z2

D2n+1 Z4

E6 Z3

E7 Z2

E8 -

For our example (1, 0) theory:

−2 1 0
1 −1 1
0 1 −4

 Λ∗S/ΛS = Z2 = 〈(1/2, 0, 1/2)〉



6D Supergravity

Choosing a compact B (in the (1, 0) case) or a K3 surface (in the (2, 0) case), we have

Λ∗/Λ = H2(B,Z)∗/H2(B,Z) = 1

Hence there is no 2-form symmetry.

The self-duality of H2(B,Z) is a consequence of Poincaré duality, which fits the
self-duality of the charge lattice of 6D supergravity forced by consistency
[Kumar, Morrison, Taylor ’10; Seiberg, Taylor ’11].

The absence of 2-form symmetries is expected from the absence of global symmetries in
theories of quantum gravities. [Harlow, Ooguri ’18].



What if we choose a compact base and track the behavior of the
two-form symmetries ? N = (2, 0)

Moduli space of IIB on a K3 surface: Grassmanian of 5-planes Σ5:

O(Λ5,21) \O(5, 21)/ (O(5)×O(21)) .

If Σ5 ⊥ ⊕iΓi = ΛS the theory has the associated SCFTs as subsectors which have 2-form
symmetries

GS = Λ∗S/ΛS = ⊕iΓ
∗
i /Γi

However, now we should think of all elements of Λ5,21 = U5 ⊕ (−E8)2 as dynamical
objects screening 2-form symmetries. Unscreened subgroup G of GS must act trivially on
η ∈ Λ5,21, i.e. need γ s.t. γ · η ∈ Z for all η ∈ Λ5,21 Hence γ ∈ Λ∗5,21 = Λ5,21 and

G = (Λ5,21 ∩ Λ∗S)/ΛS



primitivity

An embedding ΛS ↪→ Λ5,21 is called primitive if

Λ5,21 ∩ (ΛS ⊗Q) = ΛS

primitive not primitive



primitivity and G

An embedding ΛS ↪→ Λ5,21 is called primitive if

Λ5,21 ∩ (ΛS ⊗Q) = ΛS

Rewrite
G = (Λ5,21 ∩ Λ∗S)/ΛS = Λ5,21 ∩ (ΛS ⊗Q) /ΛS

Hence if ΛS ↪→ Λ5,21 is primitive, G is trivial.

In general:
G = tor (Λ5,21/ΛS)

tor: elements η of Λ5,21 that are not in ΛS , but a multiple of η is in ΛS .



G = tor (Λ5,21/ΛS)

By construction, each Γi is primitively embedded into Λ5,21 but together they do not need
to be. Example:

E8 = (a1, a2, a3, a4, a5, a6, a7, a8) all ai ∈ Z or Z + 1
2

∑
ai ∈ 2Z

Sublattice A4
1 generated by:

η1 = (1, 1, 0, 0, 0, 0, 0, 0)

η2 = (0, 0, 1, 1, 0, 0, 0, 0)

η3 = (0, 0, 0, 0, 1, 1, 0, 0)

η4 = (0, 0, 0, 0, 0, 0, 1, 1)

η1 + η2 + η3 + η4 = (18). But now (1/28) is in (A4
1 ⊗Q) ∩ E8 but not A4

1.



G = tor (Λ5,21/ΛS)

General class of (geometric) models: consider an elliptically fibred K3 surface; Moduli
space

O(Λ2,18) \O(2, 18)/ (O(2)×O(18)) .

ADE singularities: Γi ⊥ Σ2. Γi ↪→ Λ2,18. ΛS = ⊕iΓi

tor (Λ5,21/ΛS) = tor (Λ2,18/ΛS) = tor(Mordell-Weil group)

Mordell-Weil group = the group of sections of the fibration. Hence torsional sections give
rise to unbroken 2-form symmetries.

But they should not be there by the general logic ! → they must be gauged!

This is not unfamiliar from 0-form, i.e. flavour, symmetries.



gauged 2-form symmetries and duality

Consider again putting IIB on an elliptically fibred K3 surface X with certain ADE
singularities ∼ singular fibres ∼ algebras gi.
Gauged two-form symmetries:

G = torMW (X)

Put this theory on S1. Gauge group of 5D theory is

⊗iGi/G

We can also think of this as F-Theory on E ×X × S1 or M-Theory on E ×X.
This is dual to F-Theory on X (using the elliptic fibration on X) times E times S1. Here it is
known that torMW (X) changes the global structure of the gauge group as observed
above [Mayrhofer,Morrison,Till,Weigand ’14]

Heterotic version: het strings on T 5 [Fraiman, Parra De Freitas ’21]



(1, 0) theories

Start from a smooth 3fold with base B and blow down B → Bo

The structure of how the (not self-dual) lattice ΛS sits inside the self-dual lattice H2(B,Z)
was answered by [Del Zotto, Heckman, Morrison, Park ’14].



(1, 0) theories

Start from a smooth 3fold with base B and blow down B → Bo

Again
G = (H2(B,Z) ∩ Λ∗S) /ΛS

where ΛS = ⊕iΓi.



(1, 0) theories

Start from a smooth 3fold with base B and blow down B → Bo

If Bo = B̂o/Zn then
G = Zn



(1, 0) theories

Start from a smooth 3fold with base B and blow down B → Bo

If Bo = B̂o/Zn then
G = Zn

Again: can make examples where this is mapped to torsional Mordell-Weil group under
duality



Thank you!

• 6D SCFTs have 2-form symmetries GS

• These can be subsectors of 6D supergravity theories
• GS must be broken or gauged
• worked out when there is a gauged subgroup G for (2, 0) theories and (1, 0) theories

engineered in F-Theory with toric bases

general lesson:
G = tor

(
charge lattice

charge lattice of SCFT sector

)
similar: gauged 1-form symmetries and global structure of gauge group


