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Complex Models of Real-World Phenomena

Complex computer models (or simulators) are used in a variety of
fields, including

Oil Industry (oil reservoir and geology models) [3]

Climate Science (climate models of global warming) [11]

Systems Biology (genetic and metabolic network models) [10]

Cosmology (galaxy formation simulations) [9]

Nuclear Physics (quantum many-body models of nuclei) [4]

Epidemiology HIV, TB, Covid, . . . [1, 7]

Simulators are often computationally expensive: a full exploration
of the parameter space using only the simulator is infeasible.
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Uncertainty Structure for Models

Consider a simulator f (x) that represents a physical process y ,
from which we may obtain observed quantities z . Two main
sources of uncertainty are

Observational error. Our observations z of y are made
imperfectly: z = y + ϵ;

Model discrepancy. Our simulator f (x) cannot faithfully
represent the process y : y = f (x) + e.

z ϵ y e f (x)
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Uncertainty Structure for Models

Consider a stochastic simulator f (x) that represents a physical
process y , from which we may obtain observed quantities z . Two
main sources of uncertainty are

Observational error. Our observations z of y are made
imperfectly: z = y + ϵ;

Model discrepancy. Our simulator f (x) cannot faithfully
represent the process y : y = f (x) + e. Moreover, repeated
evaluations of f (x) at the same point x give different values.

z ϵ y eM eV f (x)
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Emulation

The Emulator

An emulator is a statistical approximation of a complex computer
simulator [2].

Let f (x) be an output from the simulator at a given parameter set
x ∈ Rd , corresponding to some real physical process y . Then we
define a emulator for output f (x) as

g(x) =
∑
i

βihi (xA) + u(xA) + w(x)

The hi (xA) are a collection of basis functions in the active variables
xA, βi the coefficients, u(xA) a weakly stationary process in the
active variables, and w(x) a ‘nugget term’.
Pragmatic choice: consider Bayes Linear emulators, so only need prior
beliefs for expectations, variances, and covariances.
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Emulation

The Bayes Linear Update Equations

Let D = {f (x1), f (x2), . . . , f (xn)} be runs from the simulator at
points x1, . . . , xn. The Bayes linear update equations give the
emulator’s posterior prediction for the model output at an unseen
point x , given D:

ED [g(x)] = E[g(x)] + Cov[g(x),D]Var[D]−1(D − E[D]),

VarD [g(x)] = Var[g(x)]− Cov[g(x),D]Var[D]−1Cov[D, g(x)].
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Emulation

Stochastic Emulation

The quantity Var[g(x)] encodes the uncertainty of the emulator
prediction. For stochastic models, we apply a hierarchical approach
to accurately account for model variability.

Train emulator gV (x) =
∑

i βVihVi (xVA) + uV (xVA) + wV (x)
to the stochasticity of the model output;

Use E[gV (x)] as an informed prior for Var[g(x)], and create
output emulators g(x).

gv (x) does not just contribute to the prior for g(x); it also
helps us encode uncertainty due to stochasticity, eV .



Introduction Emulation and History Matching Application Summary References

Emulation

Uncertainty Structure: Emulation

Add in the emulators into our schematic for the model structure:

z ϵ y eM eV f (x) Simulator

Emulators

x

Var[g(x)]E[gv (x)]
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Emulation

Variance Emulation

There are complications in emulating stochastic systems:

Our model output is not consistent with repeated evaluations:
output f (x) gives (f1(x), f2(x), . . . , fn(x)) which are not the
same in general;

We can only observe sample quantities at x – for example, the
mean f̄n(x) and standard deviation s2n(x);

The emulator g(x) is designed to predict the ‘true’ mean
response, M(f (x)) ̸= f̄n(x). . .
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Emulation

Variance Emulation

There are complications in emulating stochastic systems:

Our model output is not consistent with repeated evaluations:
output f (x) gives (f1(x), f2(x), . . . , fn(x)) which are not the
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We can only observe sample quantities at x – for example, the
mean f̄n(x) and standard deviation s2n(x);

The emulator g(x) is designed to predict the ‘true’ mean
response, M(f (x)) ̸= f̄n(x). . .
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Emulation

Second-Order Exchangeability

Link the ‘true’ mean of the system to sample quantities using
second-order exchangeability:

fk(x) = M(f (x)) +Rk(f (x)),

where Rk(f (x)), k = 1, . . . , n are uncorrelated, zero-mean
residuals. Then E[f̄n(x)] = E[M(f (x))], with variability related via
Var[f̄n(x)] = Var[M(f (x))] + Var[Rk(f (x))]. Similar structure for
stochasticity via

[Rk(f (x))]
2 = M(V (x)) +Rk(V (x)).

A similar argument holds if we also emulate covariance, by considering
Rk(fi (x))Rk(fj(x)).
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The History Matching Framework

History Matching

Given observed data corresponding to a simulator output, what
combinations of input parameters could give rise to output
consistent with this observation?

History matching works on the principle of complementarity: a
point x is considered unsuitable if even accounting for the
uncertainties in the system, the prediction ED [g(x)] cannot be
‘close’ to the observed value z . Closeness is defined via an
implausibility measure

I 2(x) = ED [g(x)− z ]⊤VarD [g(x)− z ]−1(ED [g(x)− z ])
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The History Matching Framework

Implausibility Structure for Stochastic Systems

Suppose we can only observe sample quantities in reality – i.e.
inferring reproduction rate from a (relatively) small sample of the
population. Then VarD [g(x)− z ] has the form

VarD [g(x)] + Var[eM ] + Var[ϵ]

+
1

m

(
ExpD [gv (x)] + 2ρ

√
ExpD [gv (x)]VRϵ + VRϵ + VRe

)
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The History Matching Framework

Implausibility Structure for Stochastic Systems

Suppose we can only observe sample quantities in reality – i.e.
inferring reproduction rate from a (relatively) small sample of the
population. Then VarD [g(x)− z ] has the form

VarD [g(x)]+Var[eM ] + Var[ϵ]

+
1

m

(
ExpD [gv (x)] + 2ρ

√
ExpD [gv (x)]VRϵ + VRϵ + VRe

)
‘Deterministic’ uncertainty, albeit VarD [g(x)] has informed prior
variance based on hierarchical emulation
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The History Matching Framework

Implausibility Structure for Stochastic Systems

Suppose we can only observe sample quantities in reality – i.e.
inferring reproduction rate from a (relatively) small sample of the
population. Then VarD [g(x)− z ] has the form

VarD [g(x)] + Var[eM ] + Var[ϵ]

+
1

m

(
ExpD [gv (x)] + 2ρ

√
ExpD [gv (x)]VRϵ + VRϵ + VRe

)
Contribution to stochasticity from observed sample standard
deviations
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The History Matching Framework

Implausibility Structure for Stochastic Systems

Suppose we can only observe sample quantities in reality – i.e.
inferring reproduction rate from a (relatively) small sample of the
population. Then VarD [g(x)− z ] has the form

VarD [g(x)] + Var[eM ] + Var[ϵ]

+
1

m

(
ExpD [gv (x)] + 2ρ

√
ExpD [gv (x)]VRϵ + VRϵ + VRe

)
Variance of the residual variation in measurement and model
discrepancy (second-order exhangeability)
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The History Matching Framework

Implausibility Structure for Stochastic Systems

Suppose we can only observe sample quantities in reality – i.e.
inferring reproduction rate from a (relatively) small sample of the
population. Then VarD [g(x)− z ] has the form

VarD [g(x)] + Var[eM ] + Var[ϵ]

+
1

m

(
ExpD [gv (x)] + 2ρ

√
ExpD [gv (x)]VRϵ + VRϵ + VRe

)
Link between model structure and stochasticity: eg over-dispersion
of model output vs observation gives ρ < 0.
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The History Matching Framework

Emulation and HM: Summary

Emulators can efficiently and robustly predict simulator output at
unseen points, given a small collection of known runs.

We can construct hierarchical emulators that allow for a nuanced
prior determination of stochastic variability and account for
imperfect data arising from computational constraints.

History matching allows us to leverage the uncertainty structure to
find all acceptable matches to data arising from our model,
accounting for any beliefs we have about observations, model
inadequacies, and dispersion.
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The hmer Package

Specificational Burden

Bayes linear framework reduces the specificational burden, but
there are still some quantities to determine.

E[β], h(x), hyperparameters in u(x), Var[eM ], Var[ϵ], fourth-order
quantities for (co)variance emulation, prior statements on
VRϵ ,VRe , ρ . . .

Some of these must come from expert elicitation. For all the
others. . .
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The hmer Package

Obligatory Plug: hmer [5]

Automated prior
specifications for
deterministic and
stochastic models

Diagnostics on emulators

Robust point proposal
schemes

Visualisation

Customisability via
Proto emulator
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The HPVsim model

Developed by Institute for Disease Modelling: one of the
‘Starsim’ models [8, 6]

Detailed contact structure, sexual networks, genotype-specific
parametrisation, . . .

Large populations handled using dynamic rescaling:
computational efficiency without compromised accuracy of
results

https://docs.idmod.org/projects/hpvsim/en/latest/

https://docs.idmod.org/projects/hpvsim/en/latest/
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Natural History
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Problem Statement

Model run-time per parameter set: 2 minutes to 1 hour

22 observational targets: new cancer cases, aggregated by
age, and proportion of four genotype classes in individuals
with cancer and high-grade lesions (CIN3)

33 input parameters identified for calibration problem

Epidemiological interest:

What age group should be targeted for HPV screening? What
about for vaccination?
What would the impact of interventions be on future cancer
incidence?
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Emulating HPVsim

Sensitivity analysis on non-varying parameters to estimate
internal model discrepancy; simulation studies on population
size to motivate external model discrepancy

16 waves of emulation performed

All waves use hierarchical emulation; final wave emulates
covariances between outputs

16 repetitions per parameter set, 330 parameter sets per wave

Final non-implausible region used to simulate future cancer
cases with higher repetition number
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Results of Emulation
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Results of Emulation
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Analysis of the Non-Implausible Region

Final non-implausible region: 5× 10−17 of original parameter
space

Over all waves, 800 points proposed consistent with
observational data and uncertainty (‘yield’ ∼ 10%)

Last wave emulators’ proposal: yield over 50%

Non-identifiability of parameters encapsulated by correlations
within final non-implausible region.
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HPV Demographics

Genotype peaks for HPV
broadly similar, suggesting
vaccination might be
optimal around ages 16-17.
Cancer most aggressive for
HPV16: average 21 years
from HPV acquisition vs
∼ 30 years for other
genotypes.
Higher uncertainty in ‘hi5’
and ‘ohr’ genotypes.
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Future Cancer Cases

High variability in possible
cancer cases in 2030 (no
intervention).
Consequence of limited
historical data and large
uncertainty in observations.
Understanding of the
variability is crucial for
meaningful statements
about predicting the
efficacy of intervention
strategies via modelling.
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Emulating HPVsim

HPVsim is a complex, high-dimensional, moderately expensive
simulator of HPV and cervical cancer, with high sensitivity to
stochastic effects.

Hierarchical emulation allows us to accurately quantify all sources
of uncertainty and find a complete parameter space consistent with
observational data.

The resulting space can be used to determine latent properties of
the disease progression and aid in prediction for future scenario
analysis/intervention modelling.
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Open Questions and Future Research

Future data gathering: what observational data will be most
effective in inferring disease properties?

Decision support for intervention: propagating uncertainty in
simulator predictions to ensure robust analysis and decision
making.

Similarities between countries: if we repeat the analysis for a
different country, how similar are the results? Are there
obvious geographical/demographic trends?
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