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Motivation

AFM experiments generate
large quantities of
(potentially
high-dimensional) data,
under various assumptions,
from which we want to
perform inference.

We want to say meaningful
things about properties at
each site: we must reduce
the data to a manageable
form.

Data courtesy of K. Vöıtchovsky
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Summary Statistics?

What’s wrong with taking data, calculating summary statistics,
and moving on with our lives?
What if we had n = 11 observations from a bivariate dataset (x , y),
with the following sample summary statistics (correct to 2dp):

E[x ] Var[x ] E[y ] Var[y ]

9 11 7.5 4.13

Corr[x , y ] y = mx + c : c y = mx + c : m R2 value

0.82 3 0.5 0.67

Can we say anything about the structure/distribution of the
datapoints themselves?
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Spot the Dataset

E[x ] Var[x ]

9 11

E[y ] Var[y ]

7.5 4.125

Corr[x , y ] c

0.816 3

m R2 value

0.5 0.67



Introduction Physical Data UQ Calculation Statistical Tests Summary

Spot the Dataset

E[x ] Var[x ]

9 11

E[y ] Var[y ]

7.5 4.125

Corr[x , y ] c

0.816 3

m R2 value

0.5 0.67



Introduction Physical Data UQ Calculation Statistical Tests Summary

Spot the Dataset

E[x ] Var[x ]

9 11

E[y ] Var[y ]

7.5 4.125

Corr[x , y ] c

0.816 3

m R2 value

0.5 0.67

All four datasets have the relevant summary statistics!
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Driving the Point Home with a Dinosaur

The “Datasaurus Dozen”: same principle, more complex.
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Propagation of (Human) Error

The Anscombe set is a nice example of the pitfalls of assumptions,
but without any obvious physical application.

However, suppose somebody asked you:

I have a new observation of x = 15: what’s the corresponding
y?

I observed x = 15 and y = 7.5: is this an abnormal value to
observe?

How confident should I be of the above predictions?

Our considerations matter a lot in those circumstances!
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Framework for Statistical Inference

The Anscombe Quartet highlights three key steps we might wish to
follow.

1 Considering and potentially removing spurious or misleading
data alerts us to outliers, high leverage points, etc

2 Visualising the data reinforces/rebuffs any pre-existing
assumptions we have about the data

3 Critical consideration of statistical assumptions (normality?
Linearity?) with the help of the above alerts us to appropriate
statistical tests for our data.

Once done, we can be confident that the quantitative results we
obtain are reliable, robust, and relevant.
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Outline

Using some real data, we will highlight the steps that we might
take to ensure robust prediction and inference:

Establish our modelling assumptions

Investigate the data

Determine our summary values, and determine our uncertainty
structure about them

Investigate outliers and/or abnormal values

Consider data imputation where relevant

Design a statistical test.
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Caveat Emptor!

I will present an approach to dealing with the data – it is not the
approach.

No amount of statistical machinery replaces expert judgment; if
you disagree with choices I make, that’s perfectly reasonable (and
unsurprising)!

The point is that we clearly define the choices we make, so that we
know exactly the context that we make final statements and we
can defend them robustly.
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Data Structure

At each experiment site,
we have a (noisy) curve,
from which we want to
determine:

The point at which
the probe touches
the membrane;

The rupture point
and maximal force
at rupture;

The membrane
thickness.
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Data Structure

Even by-eye, the exact
values of h and δ are not
straightforward to elicit;
how do we deal with the
uncertainty this
produces? How do we
generalise this to avoid
having to do this at every
experiment site?
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The Experimental Questions

We need to identify the following:

The point at which the probe touches the membrane, xd1 ;

The rupture point, xd2 ;

The force Fr (xd2) at the rupture point.

We assume a common behaviour of the plots: flat until d1,
approximately linear to d2, then a precipitous drop until x = 0.
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Modelling Assumptions - Aside

In this, we consider the
Young’s modulus as an
indicator of the
properties of the material
– this comes with
modelling assumptions!
What if the material is
obviously inelastic? What
if it is clearly non-linear?
We will come back to this

point later!
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Examining Data

An ideal world has all experiment sites having the form of the
previous graph.
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Examining Data

However, we do not live in an ideal world. . .
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A Choice

The experimental data we have is 32× 32 = 1024 experimental
sites. We do not want to trawl through each plot and make
decisions for each individually.
I make the pragmatic decision to define:

xd1 to be the first point at which the graph turns appreciably
away from y = 0;

xd2 to be the x-value corresponding to the maximum y -value
beyond xd1 and before d = 0.

This has the benefit of generality, and we will deal with the
consequences soon.
For adhesion, maybe we could find both “peaks”, and gain some insight

into the adhesive behaviour across the space!



Introduction Physical Data UQ Calculation Statistical Tests Summary

Identification Uncertainty

Even with this pragmatic choice, identification is still not
straightforward.

Two different problems: noisy
data makes finding d1
difficult; sparsity of data
makes the exact position of
d2 hard to find.
The difference here could be
about 50% of the actual
observation.
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Uncertainty Quantification: d1

For identifying d1, we note that the uncertainty is due to the
‘wobble’ in the data before the probe touches the membrane. We
might make the (reasonable?) assumption that the pre-membrane
data is centred around 0 with uncorrelated noise: for d > d1, state
that y measurements y+ follow a Normal distribution:

y+ ∼ N (0, σ2)

For each experiment site, we have a large amount of data before
probe-membrane connection, so the sample variance s2 should be a
good approximation of the true variance σ2.
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Probe Wobble

s2 = 1
N−1

∑N
i=1 y

2
i since µ = 0. Our assumptions might not be

overly convincing under investigation. . .



Introduction Physical Data UQ Calculation Statistical Tests Summary

Probe Wobble

. . . but the variability due to probe approach is small and
well-behaved across much of the space.
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Asserting Uncertainty: d1

The uncertainty in y due to probe approach is small, especially
compared to uncertainty in distinguishing the data point to use
anyway, so we can include it in our general structure using the
following approach.

Finding d1: Claim

Posit a candidate d1 where the behaviour of the curve changes.
The ‘true’ d1 lies within 3 data points of the candidate point.

We encode the uncertainty in x by considering the ensemble
{xd1−3, . . . , xd1 , . . . , xd1+3} and assuming that the range of these
points corresponds to a 95% confidence interval.
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Uncertainty Quantification: d2

How do we deal with finding d2?

There may be a similar ‘wobble’ around xd2 as in xd1 , but this
isn’t the dominant source of uncertainty.

Our concern is whether, if we had higher resolution data,
would there be a more accurate value for xd2 closer to the
substrate value x = 0.

We only know two things: the maximal point of the peak, and
the location of the next-smallest data-point xd2−1.
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Assessing Uncertainty: d2

We want to favour our determination of xd2 , since our
identification is (arguably) more concrete than that of xd1 . We also
know that any misidentification is more likely to result in us
overestimating xd2 , rather than underestimating it.
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Assessing Uncertainty: d2

A Gamma distribution seems appropriate: choose shape and scale
parameter to get a long tail and sharp peak (here, α = β = 1.5).



Introduction Physical Data UQ Calculation Statistical Tests Summary

Obtaining Uncertainty in d2

A Useful Result

If X ∼ Gamma(α, β) then cX ∼ Gamma(α, β/c).

If we want next smallest observed point xd2−1 to have negligible
probability, then pick X ∗ ∼ Gamma(1.5, β) s.t. P[X = xd2−1] is
small (say 10−5).

For each experimental site, find the scaling factor c that
transforms X to xd2−1, and calculate Var [cX ].
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Rupture Peak Uncertainty

Higher uncertainty than in d1, but uniform across the space. One
anomalous value (at an edge, as with the d1 calculation).
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Induced Uncertainty in y2

To calculate the Young modulus, we need the difference in y
values, too. We need a structure for y2, then: we know that the
Young modulus calculation assumes linearity of response: if
Y = aX and X ∼ Gamma(1.5, β), then Y2 ∼ Gamma(1.5, β/a).

We therefore calculate a using the data and our ‘best guesses’ for
xd1 , xd2 , and then induce the uncertainty structure on y2
correspondingly.
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Sidenote: Another Approach

This approach uses the discrete nature of the experimental data.
We could instead fit a piecewise linear model to the data, using the
YM assumption:

f (x) =


0 for x ∈ [xd1 ,∞)

a1x for x ∈ [xd1 , xd2 ]

a2x for x ∈ [0, xd2 ]

.

Note that we have four unknowns: ai and xdi for i = 1, 2.
Optimisation to find the best fit: then the uncertainty on the
estimate of the Young’s modulus is that of the two piecewise
non-constant parts.
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Young Modulus

We have Di and Yi for i = 1, 2 for every site. The Young modulus
is therefore

E ∼ Y2 − Y1

X1 − X2

All of the quantities in E are random variables. How do we
estimate the uncertainty?
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Simulation Study

Unfortunately, the ratio of Gamma distributions minus Normal
distributions doesn’t have a nice distributional expression. But we
can simulate from it!

Draw “lots” (say 10,000) samples from each distribution:

{x1i , x2i , y1i , y2i}, i = 1, . . . , 10000

Compute the ratio (y2i − y1i )/(x1i − x2i ) for each i ;

Use these values as empirical draws from the distribution of E .

We can then find the mean, median, variance, . . .
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The One-Size-Fits-Most Approach

Some (in fact most) of
the draws are eminently
sensible.
Some have horrible
outliers, and some are
predominantly
negative. . .
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The One-Size-Fits-Most Approach

We shouldn’t be too
surprised. We’ve made a
number of assumptions,
and we knew they
wouldn’t be completely
valid everywhere.
We need to examine the
problem spots by-hand.
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Expert Judgement

We could just discard the sites where we’ve obtained nonsense –
but what if interesting physics is causing the breakdown in our
assumptions?

Instead, we’ll go through the problem sites by-hand, identify the
relevant points, put a reasonable amount of uncertainty on the
determinations, and redraw E at these sites.

We might still get garbage, but at least we know we’ve done what we can.
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Problem Sites
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Imputation

Unsurprisingly, some of the test sites stray too far from our
assumptions to allow a good determination. Despite our best
efforts, the results are still not good.

If we think that the membrane should be ‘well-behaved’ across
space, then we can try to use data imputation – we must keep
note of where we’ve applied it, though, as the results are the least
reliable we have.
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Imputation - Results

Use the nearest neighbours of a problem site to estimate the value
at that point (8 neighbours in a middle cell; 5 on an edge; 3 at a
corner).
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Imputation - Results

We can also weight the estimation by the original, based on how
(un)reliable our original value was (maintain some structure while
regularising the result).



Introduction Physical Data UQ Calculation Statistical Tests Summary

Thickness and Rupture

Play the same game with the membrane thickness and rupture
force. . .
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Thickness and Rupture

Play the same game with the membrane thickness and rupture
force. . .
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Summary – Modelling Framework

Find the values of interest at each site;

Quantify the uncertainty we have in these determinations;

Propagate the uncertainties through to the quantities of
interest;

Visually inspect any anomalous results; consider violation of
assumptions;

If desired, perform data imputation.
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Statstical Tests: Problem Framing

We now have clean data and and understanding of the
uncertainties at every site.

We can now start to answer questions with some confidence:

What parts of the membrane have ‘interesting’ properties?

Are there regions where our physical assumptions break down?

Can we say anything about the general structure were we to
perform a similar experiment?

Here, we will look at substantial deviations from “background”.
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Background Definition

If we want to identify deviations from a background signal, we
need to know what the background is!

Expert judgement might come in, here – perhaps we’ve performed
control experiments to assess what the background might be. If so,
we can obtain a mean estimate µ and uncertainty σ to test with.

I am not an expert, so sampled a 50-cell section of the site that
looks like background to calculate the statistics.
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Sampled Background

Not ideal – but using
the sample standard
deviation means that my
smaller dataset will be
accounted for. For
rupture force:

µ = 0.901nN

σ = 0.131nN
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Testing Significance

Significance is a loaded word, but it serves the purpose. What
we mean henceforth is the following:

Is the deviation from background so large that, even accounting for
all the uncertainties in the system, it is still noteworthy?

Many ways to do this: focus on three simple ideas.

Classical Significance Testing

Empirical Confidence Intervals

Implausibility

Different distributional assumptions in each of these – very context
dependent.
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Significance Testing

We a priori stated that the random variable corresponding to
thickness was normally distributed. If µB is the mean background
thickness with standard deviation σB , and µi , σi are the mean and
standard deviation of the thickness at site i , then under the
hypothesis that the means are not different

Z =
µi − µB√
σ2
i + σ2

B

∼ N (0, 1).

These are standard Z -scores: compare to critical values of the
Normal distribution to get significance values.



Introduction Physical Data UQ Calculation Statistical Tests Summary

Significance: Thickness
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Empirical CIs

We have draws of the rupture force at each site from our sampling
previously

For N samples Xi we calculate an empirical (1− α)% confidence
interval as

ECIi = [X(N×α/2),X(N×(1−α/2))]

where X(k) is the kth sorted sample.
If our background interval [µ− nσ, µ+ nσ] does not overlap with
ECIi for chosen n, we consider this significant at that site.
One-way: if we only want sites where the rupture force is higher, then we
check if µ+ nσ ≥ X(N×α/2).
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Empirical CIs: Rupture Force (n = 3)
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Implausibility

Implausibility is a concept drawn from history matching that
requires no distributional assumptions: define implausibility I (x) at
site x for an output quantity f (x) as

I (x)2 =
(E[f (x)]− µ)2

Var[f (x)] + σ2

If I (x) is “large”, then there is a signficant difference between the
background and our observation. If it is “small”, then either the
observation is close to the background or the uncertainty at that
site is large.
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Implausibility: Young Modulus
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Combining Measures

Depending on the research problem, we might want to identify
points where:

The behaviour is such that imputation/manual handling was
necessary;

The thickness is significantly larger than the background;

The rupture force is significantly higher than the background;

The Young modulus is significantly higher than background.

Could require all/some conditions satisfied, or count how many are
satisfied for each site.
We might also want the opposite: significantly thinner/weaker
membranes. If so, we simply reverse some of the arguments above.



Introduction Physical Data UQ Calculation Statistical Tests Summary

Set Definitions

Define sets

O: Points at which manual identification or imputation was
necessary;

Pα: Points with thickness p-value smaller than α;

CIn: Points with non-overlapping force confidence intervals
with background [µ− nσ, µ+ nσ];

Ic : Points with Young modulus implausibility greater than c.
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Combined Measures – Example

α = 0.05, n = 3, c = 3
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UQ for SPM

Considering data variability is crucical for ensuring results are
robust, reproducible, and reliable.

Expert judgement/careful consideration of visualisations
allows us to make best use of summary statistics and
reasonably quantify our uncertainties.

Once we understand the structure of the data we have, any
uncertainties can be carried through to statistical testing,
both empirically and parametrically.
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Statistical Relevance

Points that have statistically significant differences as a result of
our tests can be considered and can aid further experimental
design:

Boundary effects – are edge locations more likely to display
anomalies? Can we design experiments to combat this, if so?

Are impurities in the medium causing significance? Extreme
values might be due to properties of the medium or a probe
failure at a given site.

Multiple experiments: if we assume a common background
medium, then what differences can we determine from two
experiments? Tests for homogeneity (χ2, KS, Wilcoxon,. . . )

Identification: if we have statistically appropriate conditions
under which a site is classed as ‘anomalous’, we can create a
classification scheme for future experiments.
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Take-Home

Statistical tools can give us ways to justify intuition or expert
judgement formally. Different tools to deal with parametric (i.e.
we know the distribution) and non-parametric (no known/tractable
distribution) data, but we can always quantify the data.

They are not a complete replacement for expert judgement!
Inspect your data, consider your plots, and use your knowledge to
guide the determinations you make (all the easier to defend them).
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Finally. . .

1 Plot (a subset of) your data – persuade yourself the summary
statistics you plan to use are meaningful for the problem at
hand.

2 Consider the process used to extract the summaries: identify
uncertainties in using them.

3 Attach distributions to the quantities or, where not possible,
use a simulation study to empirically evaluate.

4 Examine outliers/anomalies – impute if it is statistically
justified.

5 Perform statistical testing for significance using the summary
quantities and the associated uncertainties.

6 Break any of these rules sooner than do anything barbarous.
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Another Approach - Emulation

An emulator is a statistical surrogate for a physical process or
model. It predicts at unseen points in parameter space and
encodes its uncertainties about those predictions.

The general structure is

f (x) = Global Regression Term + Local Variation
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An emulator is a statistical surrogate for a physical process or
model. It predicts at unseen points in parameter space and
encodes its uncertainties about those predictions.

The general structure is

f (x) =

p∑
j=1

βjhj(x) + u(x)



Emulation - Update

Set up prior specifications: namely, expectation E[f (x)] and
uncertainty Var[f (x)], as well as correlation between different
points Cov[f (x), f (x ′)]. Then when given data D, obtain posterior
predictions

ED [f (x)] = E[f (x)] + Cov[f (x),D]Var[D]−1(D − E[D]),

VarD [f (x)] = Var[f (x)]− Cov[f (x),D]Var[D]−1Cov[D, f (x)]

Using the Bayes linear framework here: no explicit distributions required

for the posterior update.



Emulation - Prediction



Emulation - Implausibility

Can use a measure like implausibility to assess substantial
deviations from baseline.

One-dimensional
projection along a ‘line
of interest’: running
from bottom-left (1, 29)
to top-right (32, 4).
‘Significant’ points have
no overlap between the
blue and red errorbars.



Emulation - Summary

A form of statistical interpolation, except with robust
extrapolation ability.

Prediction uncertainty comes automatically along with the
predictions themselves.

No need to specify distributions; distribution-free measures
can be applied to predictions to determine significant
deviations.

Similarly dependent on prior specifications – expert judgement
still matters!

More complex to set up than some other methods.
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