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Preface

Dynamic stochastic optimization is the study of dynamical systems subject to random
perturbations, and which can be controlled in order to optimize some performance cri-
terion. It arises in decision-making problems under uncertainty, and finds numerous and
various applications in economics, management and finance.

Historically handled with Bellman’s and Pontryagin’s optimality principles, the re-
search on control theory has considerably developed over recent years, inspired in par-
ticular by problems emerging from mathematical finance. The dynamic programming
principle (DPP) to a stochastic control problem for Markov processes in continuous-time
leads to a nonlinear partial differential equation (PDE), called the Hamilton-Jacobi-
Bellman (HJB) equation, satisfied by the value function. The global approach for study-
ing stochastic control problems by the Bellman DPP has a suitable framework in viscosity
solutions, which have become popular in mathematical finance: this allows us to go be-
yond the classical verification approach by relaxing the lack of regularity of the value
function, and by dealing with degenerate singular controls problems arising typically in
finance. The stochastic maximum principle found a modern presentation with the con-
cept of backward stochastic differential equations (BSDEs), which led to a very active
research area with interesting applications in stochastic analysis, PDE theory and mathe-
matical finance. On the other hand, and motivated by portfolio optimization problems
in finance, another approach, called the convex duality martingale method, developed
and generated an important literature. It relies on recent results in stochastic analy-
sis and on classical methods in convex analysis and optimization. There exist several
monographs dealing with either the dynamic programming approach for stochastic con-
trol problems ([FR75], [BL78], [Kry80], [FSo93], [YZ00], [T04]) or backward stochastic
differential equations ([ElkM97], [MY00]). They mainly focus on the theoretical aspects,
and are technically of advanced level, and usually difficult to read for a nonexpert in the
topic. Moreover, although there are many papers about utility maximization by duality
methods, this approach is rarely addressed in graduate and research books, with the
exception of the forthcoming one [FBS09].

The purpose of this book is to fill in this gap, and to provide a systematic treatment of
the different aspects in the resolution of stochastic optimization problems in continuous
time with a view towards financial applications. We included recent developments and
original results on this field, which appear in monograph form for the first time. We paid
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attention to the presentation of an accessible version of the theory for those who are not
necessarily experts on stochastic control. Although the results are stated in a rather gene-
ral framework, useful for the various applications, with complete and detailed proofs, we
have outlined the intuition behind some advanced mathematical concepts. We also take
care to illustrate each of the resolution methodologies using several examples in finance.
This monograph is directed towards graduate students and researchers in mathematical
finance. It will also appeal to applied mathematicians interested in financial applications
and practitioners wishing to know more about the use of stochastic optimization methods
in finance.

The book is organized as follows. Since it is intended to be self-contained, we start
by recalling in Chapter 1 some prerequesites in stochastic calculus. We essentially collect
notions and results in stochastic analysis that will be used in the following chapters and
may also serve as a quick reference for knowledgeable readers. In Chapter 2, we formulate
in general terms the structure of a stochastic optimization problem, and outline several
examples of real applications in economics and finance. Analysis and solutions to these
examples will be detailed in the subsequent chapters by different approaches. We also
briefly discuss other control models than the one studied in this book. Chapter 3 presents
the dynamic programming method for controlled diffusion processes. The classical ap-
proach based on a verification theorem for the HJB equation when the value function is
smooth, is detailed and illustrated in various examples, including the standard Merton
portfolio selection problem. In Chapter 4, we adopt the viscosity solutions approach for
dynamic programming equations to stochastic control problems. This avoids the a pri-
ori assumption of smoothness of the value function, which is desirable as it is often not
smooth. Some original proofs are detailed in a unifying framework embedding both regu-
lar and singular control problems. A section is devoted to comparison principles, which
are key properties in viscosity solutions theory, as they provide unique characterization
of the value function. Illustrative examples coming from finance complete this chapter. In
Chapter 5, we consider optimal stopping and switching control problems, which consti-
tute a classical and important class of stochastic control problems. These problems have
attracted an increasingly renewed interest due to their various applications in finance.
We revisit their treatment by means of viscosity solutions to the associated dynamic pro-
gramming free boundary problems. We give explicit solutions to several examples arising
from the real options literature. As mentioned above, the Pontryagin maximum princi-
ple leads naturally to the notion of backward stochastic differential equations. Chapter
6 is an introduction to this theory, insisting especially on the applications of BSDEs
to stochastic control, and to its relation with nonlinear PDEs through Feynman-Kac
type formulae. We also consider reflected BSDEs, which are related to optimal stopping
problems and variational inequalities. Two applications in option hedging problems are
solved by the BSDE method. In Chapter 7, we present the convex duality martingale
approach that originates from portfolio optimization problem. The starting point of this
method is a dual representation for the superreplication cost of options relying on power-
ful decomposition theorems in stochastic analysis. We then state a general existence and
characterization result for the utility maximization problem by duality methods, and
illustrate in some particular examples how it leads to explicit solutions. We also consider
the popular mean-variance hedging problem that we study by a duality approach.
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This book is based mainly on my research studies, and also on lecture notes for
graduate courses in the Master’s programs of mathematical finance at Universities Paris
6 and Paris 7. Part of it was also used as material for an optional course at ENSAE
in Malakoff. This edition is an updated and expanded version of my book published in
French by Springer in the collection Mathématiques et Applications of the SMAI. The
text is widely reworked to take into account the rapid evolution of some of the subjects
treated. A new Chapter 5 on optimal switching problems has been added. Chapter 4 on
the viscosity solutions approach has been largely rewritten, with a detailed treatment of
the terminal condition, and of comparison principles. We also included in Chapter 6 a
new section on reflected BSDEs, which are related to optimal stopping problems, and
generate a very active research area.

I wish to thank Nicole El Karoui, who substantially reviewed several chapters, and
made helpful comments. Her seminal works on stochastic control and mathematical fi-
nance provided a rich source for this book. Several experts and friends have shown their
interest and support: Bruno Bouchard, Rama Cont, Monique Jeanblanc, Damien Lam-
berton, Philip Protter, Denis Talay and Nizar Touzi. I am grateful to Monique Pontier,
who reviewed the French edition of this book for MathSciNet, and pointed out several
misprints with useful remarks. Last but not least, I would like to thank Châu, Hugo and
Antoine for all their love.

Paris, December 2008 Huyên PHAM
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Notation

I. General notation

For any real numbers x and y:
x ∧ y = min(x, y), x ∨ y = max(x, y)
x+ = max(x, 0), x− = max(−x, 0).

For any nonnegative and nondecreasing sequence (xn)n≥1, its nondecreasing limit in
[0,∞] is denoted by lim

n→+∞
↑ xn.

For any sequence (xn)n≥1, yn ∈ conv(xk, k ≥ n) means that yn =
∑Nn

k=n λkxk where λk

∈ [0, 1], n ≤ k ≤ Nn <∞ and
∑Nn

k=n λk = 1.

II. Sets

N is the set of nonnegative integers, N
∗ = N \ {0}.

R
d denotes the d-dimensional Euclidian space. R = R

1, R+ is the set of nonnegative
real numbers, R

∗
+ = R+ \ {0} and R̄ = R ∪ {−∞, +∞}. For all x = (x1, . . . , xd), y =

(y1, . . . , yd) in R
d, we denote by . the scalar product and by |.| the Euclidian norm:

x.y =
d∑

i=1

xiyi and |x| =
√

x.x.

R
n×d is the set of real-valued n×d matrices (Rn×1 = R

n). In is the identity n×n matrix.
For all σ = (σij)1≤i≤n,1≤j≤d ∈ R

n×d, we denote by σ′ = (σji)1≤j≤d,1≤i≤n the transpose
matrix in R

d×n. We set tr(A) =
∑n

i=1 aii the trace of a n × n matrix A = (aij)1≤i,j≤n

∈ R
n×n. We choose as matricial norm on R

n×d

|σ| = (tr(σσ′))
1
2 .

Sn is the set of symmetric n× n matrices and S+
n is the set of nonnegative definite A in

Sn. We define the order on Sn as

A ≤ B ⇐⇒ B −A ∈ S+
n .

The interior, the closure and the boundary of a set O in R
d are denoted respectively by

int(O), Ō and ∂O. We denote by B(x, r) (resp. B̄(x, r)) the open (resp. closed) ball of
center x ∈ R

d, and radius r > 0.
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III. Functions and functional spaces

For any set A, the indicator of A is denoted by

1A(x) =
{

1, x ∈ A,
0, x /∈ A.

Ck(O) is the space of all real-valued continuous functions f on O with continuous deriva-
tives up to order k. Here O is an open set of R

n.

C0(T × O) is the space of all real-valued continuous functions f on T × O. Here, T =
[0, T ], with 0 < T <∞, or T = [0,∞).

C1,2([0, T ) × O) is the space of real-valued functions f on [0, T ) × O whose partial

derivatives
∂f

∂t
,

∂f

∂xi
,

∂2f

∂xi∂xj
, 1 ≤ i, j ≤ n, exist and are continuous on [0, T ) (T may

take the value ∞). If these partial derivatives of f ∈ C1,2([0, T )×O) can be extended by
continuity on [0, T ]×O (in the case T < ∞), we write f ∈ C1,2([0, T ]×O). We define
similarly for k ≥ 3 the space C1,k([0, T ]×O).

Given a function f ∈ C2(O), we denote by Df the gradient vector in R
n with components

∂f

∂xi
, 1 ≤ i ≤ n, and D2f the Hessian matrix in Sn with components

∂2f

∂xi∂xj
, 1 ≤ i, j ≤ n.

These are sometimes denoted by fx and fxx. When O is an open set in R, we simply
write f ′ and f ′′. The gradient vector and the Hessian matrix of a function x → f(t, x)
∈ C2(O) are denoted by Dxf and D2

xf .

For a function f on R
n, and p ≥ 0, the notation f(x) = o(|x|p) means that f(x)/|x|p

goes to zero as |x| goes to zero.

IV. Integration and probability

(Ω,F , P ): probability space.

P a.s. denotes “almost surely for the probability measure P” (we often omit the reference
to P when there is no ambiguity). μ a.e. denotes “almost everywhere for the measure
μ”.

B(U): Borelian σ-field generated by the open subsets of the topological space U .

σ(G): the smallest σ-field containing G, collection of subsets of Ω.

Q � P : the measure Q is absolutely continuous with respect to the measure P .

Q ∼ P : the measure Q is equivalent to P , i.e. Q � P and P � Q.
dQ
dP : Radon-Nikodym density of Q � P .

EQ(X) is the expectation under Q of the random variable X.

E(X) is the expectation of the random variable X with respect to a probability P initially
fixed. E[X|G] is the conditional expectation of X given G. Var(X) = E[(X−E(X))(X−
E(X))′] is the variance of X.

L0
+(Ω,F , P ) is the space of F-measurable random variables, which are nonnegative a.s.

Lp(Ω,F , P ; Rn) is the space of random variables X, valued in R
n, F-measurable and

such that E|X|p < ∞, for p ∈ [1,∞). We sometimes omit some arguments and write
Lp(P ) or Lp when there is no ambiguity.
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L∞(Ω,F , P ; Rn) is the space of random variables, valued in R
n, bounded, F-measurable.

We sometimes write L∞.

V. Abbreviations

ODE: ordinary differential equation

SDE: stochastic differential equation

BSDE: backward stochastic differential equation

PDE: partial differential equation

HJB: Hamilton-Jacobi-Bellman

DPP: dynamic programming principle
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Some elements of stochastic analysis

In this chapter, we present some useful concepts and results of stochastic analysis. There
are many books focusing on the classical theory presented in this chapter. We men-
tion among others Dellacherie and Meyer [DM80], Jacod [Jac79], Karatzas and Shreve
[KaSh88], Protter [Pro90] or Revuz and Yor [ReY91], from which are quoted most of
the results recalled here without proof. The reader is supposed to be familiar with the
elementary notion of the theory of integration and probabilities (see e.g. Revuz [Rev94],
[Rev97]). In the sequel, (Ω,F , P ) denotes a probability space. For p ∈ [1,∞), we de-
note by Lp = Lp(Ω,F , P ) the set of random variables ξ (valued in R

d) such that |ξ|p is
integrable, i.e. E|ξ|p < +∞.

1.1 Stochastic processes

1.1.1 Filtration and processes

A stochastic process is a family X = (Xt)t∈T of random variables valued in a measurable
space X and indexed by time t. In this chapter and for the aim of this book, we take X
= R

d equipped with its Borel σ-field. The time parameter t varying in T may be discrete
or continuous. In this book, we consider continuous-time stochastic processes, and the
time interval T is either finite T = [0, T ], 0 < T < ∞, or infinite T = [0,∞). We often
write process for stochastic process. For each ω ∈ Ω, the mapping X(ω) : t ∈ T → Xt(ω)
is called the path of the process for the event ω. The stochastic process X is said to
be càd-làg (resp. continuous) if for each ω ∈ Ω, the path X(ω) is right-continuous and
admits a left-limit (resp. is continuous). Given a stochastic process Y = (Yt)t∈T, we say
that Y is a modification of X if for all t ∈ T, we have Xt = Yt a.s., i.e. P [Xt = Yt] = 1. We
say that Y is indistinguishable from X if their paths coincide a.s.: P [Xt = Yt, ∀t ∈ T] =
1. Obviously, the notion of indistinguishability is stronger than the one of modification,
but if the two processes X and Y are càd-làg, and if Y is a modification of X, then X

and Y are indistinguishable.
The interpretation of the time parameter t involves a dynamic aspect: for modeling

the fact that uncertainty on the events of Ω becomes less and less uncertain when time
elapses, i.e. one gets more and more information, one introduces the notion of filtration.

H. Pham, Continuous-time Stochastic Control and Optimization with Financial
Applications, Stochastic Modelling and Applied Probability 61,
DOI 10.1007/978-3-540-89500-8 1, c© Springer-Verlag Berlin Heidelberg 2009
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2 1 Some elements of stochastic analysis

Definition 1.1.1 (Filtration)
A filtration on (Ω,F , P ) is an increasing family F = (Ft)t∈T of σ-fields of F : Fs ⊂ Ft

⊂ F for all 0 ≤ s ≤ t in T.

Ft is interpreted as the information known at time t, and increases as time elapses.
We set FT̄ = σ(∪t∈TFt), the smallest σ-field containing all Ft, t ∈ T. The quadruple
(Ω,F , F = (Ft)t∈T, P ) is called filtered probability space. The canonical example of
filtration is the following: if X = (Xt)t∈T is a stochastic process, the natural filtration
(or canonical) of X is

FX
t = σ(Xs, 0 ≤ s ≤ t), t ∈ T,

the smallest σ-field under which Xs is measurable for all 0 ≤ s ≤ t. FX
t is interpreted as

the whole information, which can be extracted from the observation of the paths of X

between 0 and t.
We say that a filtration F = (Ft)t∈T satisfies the usual conditions if it is right-

continuous, i.e.

Ft+ := ∩s≥tFs = Ft, ∀t ∈ T,

and if it is complete, i.e. F0 contains the negligible sets of FT̄ . We then say that the
filtered probability space (Ω,F , F = (Ft)t∈T, P ) satisfies the usual conditions. The right-
continuity of Ft means intuitively that by observing all the available information up to
time t inclusive, one learns nothing more by an infinitesimal observation in the future.
The completion of the filtration means that if an event is impossible, this impossibility
is already known at time 0. Starting from an arbitrary filtration (Ft)t∈T, one constructs
a filtration satisfying the usual conditions, by considering for any t ∈ T the σ-field Ft+

to which one adds the class of negligible sets of FT̄ . This constructed filtration is called
the augmentation of (Ft)t∈T.

In the sequel, we are given a filtration F = (Ft)t∈T on (Ω,F , P ).

Definition 1.1.2 (Adapted process)
A process (Xt)t∈T is adapted (with respect to F) if for all t ∈ T, Xt is Ft-measurable.

When one wants to be precise with respect to which filtration the process is adapted,
we write F-adapted. Thus, an adapted process is a process whose value at any time t is
revealed by the information Ft. We say sometimes that the process is nonanticipative.
It is clear that any process X is adapted with respect to F

X = (FX
t )t∈T.

Until now, the stochastic process X has been viewed either as a mapping of time t

for fixed ω (when we consider path) or as a mapping of ω for fixed t (when we consider
the random variable as in Definition 1.1.2). One can consider the two aspects by looking
at the process as a mapping on T×Ω. This leads to the following definitions:

Definition 1.1.3 (Progressively measurable, optional, predictable process)
(1) A process (Xt)t∈T is progressively measurable (with respect to F) if for any t ∈ T,
the mapping (s, ω) → Xs(ω) is measurable on [0, t]×Ω equipped with the product σ-field
B([0, t])⊗Ft.
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(2) A process (Xt)t∈T is optional (with respect to F) if the mapping (t, ω) → Xt(ω) is
measurable on T × Ω equipped with the σ-field generated by the F-adapted and càd-làg
processes.

(3) A process (Xt)t∈T is predictable (with respect to F) if the mapping (t, ω) → Xt(ω) is
measurable on T×Ω equipped with the σ-field generated by the F-adapted and continuous
processes.

When we want to specify the filtration, we write F-progressively measurable (optional
or predictable). Obviously, any progressively measurable process is adapted and measur-
able on T×Ω equipped with the product σ-field B(T)⊗F . It is also clear by definition
that any càd-làg and adapted process is optional (the converse is not true). Similarly,
any continuous and adapted process X is predictable (the converse is not true): since in
this case, Xt = lims↗t Xs, this means that the value of Xt is announced by its previous
values. Since a continuous process is càd-làg, it is clear that any predictable process
is optional. The following result gives the relation between optional and progressively
measurable process.

Proposition 1.1.1 If the process X is optional, it is progressively measurable. In par-
ticular, if it is càd-làg and adapted, it is progressively measurable.

By misuse of language, one often writes in the literature adapted process for progre-
ssively measurable process.

1.1.2 Stopping times

Having in mind the interpretation of Ft as the available information up to time t, we
want to know if an event characterized by its first arrival time τ(ω), occurred or not
before time t given the observation in Ft. This leads to the notion of stopping time.

Definition 1.1.4 (Stopping time)
(1) A random variable τ : Ω → [0,∞], i.e. a random time, is a stopping time (with
respect to the filtration F = (Ft)t∈T) if for all t ∈ T

{τ ≤ t} := {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft.

(2) A stopping time τ is predictable if there exists a sequence of stopping times (τn)n≥1

such that we have almost surely:
(i) limn τn = τ

(ii) τn < τ for all n on {τ > 0}.
We say that (τn)n≥1 announces τ .

We easily check that any random time equal to a positive constant t is a stopping time.
We also notice that if τ and σ are two stopping times, then τ ∧ σ, τ ∨ σ and τ + σ are
stopping times.

Given a stopping time τ , we measure the infomation cumulated until τ by

Fτ = {B ∈ FT̄ : B ∩ {τ ≤ t} ∈ Ft, ∀t ∈ T} ,
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which is a σ-field of F . It is clear that τ is Fτ -measurable. We immediately see that if
τ = t then Fτ = Ft. We state some elementary and useful properties on stopping times
(see e.g. the proofs in Ch. I, Sec. 1.2 of Karatzas and Shreve [KaSh88]).

Proposition 1.1.2 Let σ and τ be two stopping times, and ξ a random variable.
(1) For all B ∈ Fσ, we have B ∩ {σ ≤ τ} ∈ Fτ . In partcular, if σ ≤ τ then Fσ ⊂ Fτ .

(2) The events

{σ < τ}, {σ ≤ τ}, {σ = τ}

belong to Fσ∧τ = Fσ ∩ Fτ .

(3) ξ is Fτ -measurable if and only if for all t ∈ T, ξ1τ≤t is Ft-measurable.

Given a process (Xt)t∈T and a stopping time τ , we define the random variable Xτ on
{τ ∈ T} by

Xτ (ω) = Xτ(ω)(ω).

We check that if X is measurable then Xτ is a random variable on {τ ∈ T}. We then
introduce the stopped process (at τ) Xτ defined by

Xτ
t = Xτ∧t, t ∈ T.

Proposition 1.1.3 Let (Xt)t∈T be a progressively measurable process, and τ a stopping
time. Then Xτ1τ∈T is Fτ -measurable and the stopped process Xτ is progressively mea-
surable.

The next result provides an important class of stopping times.

Proposition 1.1.4 Let X be a càd-làg, adapted process, and Γ an open subset of X =
R

d.

(1) If the filtration F satisfies the usual conditions, then the hitting time of Γ defined by

σΓ = inf {t ≥ 0 : Xt ∈ Γ}

(with the convention inf ∅ = ∞) is a stopping time.

(2) If X is continuous, then the exit time of Γ defined by

τ
Γ

= inf {t ≥ 0 : Xt /∈ Γ}

is a predictable stopping time.

We end this section with the important section theorem, proved in Dellacherie and
Meyer [DM75] p. 220.

Theorem 1.1.1 (Section theorem)
Let (Xt)t∈T and (Yt)t∈T be two optional processes. Suppose that for any stopping time
τ , we have: Xτ = Yτ a.s. on {τ < ∞}. Then, the two processes X and Y are indistin-
guishable.
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1.1.3 Brownian motion

The basic example of a process is Brownian motion, a name given by the botanist Robert
Brown in 1827 to describe the irregular motion of pollen particles in a fluid. The context
of applications of Brownian motion goes far beyond the study of microscopical particles,
and is now largely used in finance for modelling stock prices, historically since Bachelier
in 1900.

Definition 1.1.5 (Standard Brownian motion)
A standard d-dimensional Brownian motion on T is a continuous process valued in R

d,
(Wt)t∈T = (W 1

t , . . . , W d
t )t∈T such that:

(i) W0 = 0.

(ii) For all 0 ≤ s < t in T, the increment Wt −Ws is independent of σ(Wu, u ≤ s) and
follows a centered Gaussian distribution with variance-covariance matrix (t− s)Id.

As an immediate consequence of the definition, the coordinates (W i
t )t∈T, i = 1, . . . , d,

of a d-dimensional standard Brownian motion, are real-valued standard Brownian mo-
tion, and independent. Conversely, real-valued independent Brownian motion generates
a vectorial Brownian motion. In the definition of a standard Brownian motion, the inde-
pendence of the increments is with respect to the natural filtration FW

s = σ(Wu, u ≤ s)
of W . The natural filtration of W is sometimes called Brownian filtration. It is often
interesting to work with a larger fltration than the natural filtration. This leads to the
following more general definition.

Definition 1.1.6 (Brownian motion with respect to a filtration)
A vectorial (d-dimensional) Brownian motion on T with respect to a filtration F = (Ft)t∈T

is a continuous F-adapted process, valued in R
d, (Wt)t∈T = (W 1

t , . . . , W d
t )t∈T such that:

(i) W0 = 0.

(ii) For all 0 ≤ s < t in T, the increment Wt −Ws is independent of Fs and follows a
centered Gaussian distribution with variance-covariance matrix (t− s)Id.

Of course, a standard Brownian motion is a Brownian motion with respect to its natural
filtration.

A major problem concerns the existence, construction and simulation of a Brownian
motion. We do not discuss this problem here, and refer to the multiple textbooks on this
topic (see e.g. Hida [Hi80], Karatzas and Shreve [KaSh88], Le Gall [LeG89] or Revuz and
Yor [ReY91]). We only state a classical property of Brownian motion.

Proposition 1.1.5 Let (Wt)t∈T be a Brownian motion with respect to (Ft)t∈T.
(1) Symmetry: (−Wt)t∈T is also a Brownian motion.

(2) Scaling: for all λ > 0, the process ((1/λ)Wλ2t)t∈T is also a Brownian motion.

(3) Invariance by translation: for all s > 0, the process (Wt+s −Ws)t∈T is a standard
Brownian motion independent of Fs.

We also recall that the augmentation of the natural filtration (FW
t )t of a Brownian

motion W is (σ(FW
t ∪N ))t whereN is the set of negligible events of (Ω,FT̄ , P ). Moreover,



6 1 Some elements of stochastic analysis

W remains a Brownian motion with respect to its augmented filtration. By misuse of
language, the augmentation of the natural filtration of W is called again natural filtration
of Brownian filtration.

1.1.4 Martingales, semimartingales

In this section, we consider real-valued processes. The proofs of results stated here can
be found for instance in Dellacherie and Meyer [DM80].

Definition 1.1.7 (Martingale)
An adapted process (Xt)t∈T is a supermartingale if E[X−

t ] < ∞ for all t ∈ T and

E[Xt|Fs] ≤ Xs, a.s. for all 0 ≤ s ≤ t, s, t ∈ T. (1.1)

X is a submartingale if −X is a supermartingale. We say that X is a martingale if it is
both a supermartingale and a submartingale.

The definition of a super(sub)-martingale depends crucially on the probability P and
on the filtration F = (Ft)t∈T specified on the measurable space (Ω,F). In this book, the
filtration will be fixed, and if it is not specified, the super(sub)-martingale property will
always refer to this filtration. However, we shall lead to consider different probability mea-
sures Q on (Ω,F), and to emphasize this fact, we shall specify Q-super(sub)-martingale.

An important example of a martingale is the Brownian motion described in the
previous section. On the other hand, a typical construction of martingale is achieved as
follows: we are given an integrable random variable ξ on (Ω,F): E|ξ| < ∞. Then, the
process defined by

Xt = E[ξ|Ft], t ∈ T,

is clearly a martingale. We say that X is closed on the right by ξ. Conversely, when T

= [0, T ], T < ∞, any martingale (Xt)t∈[0,T ] is closed on the right by ξ = XT . When
T = [0,∞), the closedness on the right of a martingale is derived from the following
convergence result:

Theorem 1.1.2 (Convergence of martingales)
(1) Let X = (Xt)t≥0 be a submartingale, càd-làg, and bounded in L1 (in particular if it
is nonnegative). Then, Xt converges a.s. when t → ∞.

(2) Let X = (Xt)t≥0 be a càd-làg martingale. Then (Xt)t≥0 is uniformly integrable if
and only if Xt converges a.s. and in L1 when t → ∞ towards a random variable X∞. In
this case, X∞ closes X on the right, i.e. Xt = E[X∞|Ft] for all t ≥ 0.

In the sequel, we denote by T̄ the interval equal to [0, T ] if T = [0, T ], and equal to
[0,∞] if T = [0,∞). We also denote by T̄ the right boundary of T. With this convention,
if (Xt)t∈T is a càd-làg uniformly integrable martingale, then XT̄ is the limit a.s. and in
L1 of Xt when t goes to T̄ . Moreover, XT̄ closes X on the right: Xt = E[XT̄ |Ft] for all
t ∈ T.

The next result is a very important property of martingales: it extends the relation
(1.1) for dates t and s replaced by stopping times.
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Theorem 1.1.3 (Optional sampling theorem)
Let M = (Mt)t∈T be a martingale càd-làg and σ, τ two bounded stopping times valued
in T, and such that σ ≤ τ . Then,

E[Mτ |Fσ] = Mσ, a.s.

A useful application of the optional sampling theorem is given by the following co-
rollary:

Corollary 1.1.1 Let X = (Xt)t∈T be a càd-làg adapted process.

(1) X is a martingale if and only if for any bounded stopping time τ valued in T, we
have Xτ ∈ L1 and

E[Xτ ] = X0.

(2) If X is a martingale and τ is a stopping time, then the stopped process Xτ is a
martingale.

We state a first fundamental inequality for martingales.

Theorem 1.1.4 (Doob’s inequality)
Let X = (Xt)t∈T be a nonnegative submartingale or a martingale, càd-làg. Then, for any
stopping time τ valued in T, we have:

P
[

sup
0≤t≤τ

|Xt| ≥ λ
]
≤ E|Xτ |

λ
, ∀λ > 0,

E
[

sup
0≤t≤τ

|Xt|
]p
≤
(

p

p− 1

)p

E
[
|Xτ |p

]
, ∀p > 1.

Notice that the first above inequality and the theorem of convergence for martingales
imply that if (Xt)t∈T is a càd-làg uniformly integrable martingale, then supt∈T

|Xt| < ∞
a.s.

In the sequel, we fix a filtered probability space (Ω,F , F = (Ft)t∈T, P ) satisfying the
usual conditions.

In the theory of processes, the concept of localization is very useful. Generally speak-
ing, we say that a progressively measurable process X is locally “truc” (or has the “truc”
local property) if there exists an increasing sequence of stopping times (τn)n≥1 (called
localizing sequence) such that τn goes a.s. to infinity and for all n, the stopped pro-
cess Xτn is “truc” (or has the “truc” property). We introduce in particular the notion
of locally bounded process, and we see that any continuous adapted process is locally
bounded: take as localizing sequence τn = inf{t ≥ 0 : |Xt| ≥ n} so that Xτn is bounded
by n. Notice that when X is not continuous with unbounded jumps, X is not locally
bounded. An important example of localization is given in the following definition.

Definition 1.1.8 (Local martingale)
Let X be a càd-làg adapted process. We say that X is a local martingale if there exists
a sequence of stopping times (τn)n≥1 such that limn→∞ τn = ∞ a.s. and the stopped
process Xτn is a martingale for all n.
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Any càd-làg martingale is a local martingale but the converse property does not hold
true: local martingales are more general than martingales, and we shall meet them in
particular with stochastic integrals (see Section 1.2). It is interesting to have conditions
ensuring that a local martingale is a martingale. The following criterion is useful in
practice.

Proposition 1.1.6 Let M = (Mt)t∈T be a local martingale. Suppose that

E

[

sup
0≤s≤t

|Ms|
]

< ∞, ∀t ∈ T. (1.2)

Then M is a martingale.

Actually, we have a necessary and sufficient condition for a local martingale M to be
a “true” martingale: it is the so-called condition (DL) stating that the family (Mτ )τ

where τ runs over the set of bounded stopping times in T, is uniformly integrable. The
sufficient condition (1.2) is often used in practice for ensuring condition (DL). We also
mention the following useful result, which is a direct consequence of Fatou’s lemma.

Proposition 1.1.7 Let M be a nonnegative local martingale such that M0 ∈ L1. Then
M is a supermartingale.

We introduce and summarize some important results on Snell envelopes, which play
a key role in optimal stopping problems. For t ∈ [0, T ], T < ∞, we denote by Tt,T the
set of stopping times valued in [t, T ].

Proposition 1.1.8 (Snell envelope)
Let H = (Ht)0≤t≤T be a real-valued F-adapted càd-làg process, in the class (DL). The
Snell envelope V of H is defined by

Vt = ess sup
τ∈Tt,T

E
[
Hτ |Ft], 0 ≤ t ≤ T,

and it is the smallest supermartingale of class (DL), which dominates H: Vt ≥ Ht,
0 ≤ t ≤ T . Furthermore, if H has only positive jumps, i.e. Ht − Ht− ≥ 0, 0 ≤ t ≤ T ,
then V is continuous, and for all t ∈ [0, T ], the stopping time

τt = inf{s ≥ t : Vs = Hs} ∧ T

is optimal after t, i.e.

Vt = E[Vτt |Ft] = E[Hτt |Ft].

We now define the important concept of quadratic variation of a (continuous) local
martingale. We say that a process A = (At)t∈T has finite variation if every path is càd-làg
and has finite variation, i.e. for all ω ∈ Ω, t ∈ T,

sup
n∑

i=1

∣
∣Ati(ω)−Ati−1(ω)

∣
∣ < ∞, (1.3)
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where the supremum is taken over all subdivisions 0 = t0 < t1 < . . . < tn = t of
[0, t]. The process A is nondecreasing if every path is càd-làg and nondecreasing. Any
process A with finite variation can be written as A = A+ − A− where A+ and A−

are two nondecreasing processes. There is uniqueness of such a decomposition if one
requires that the associated positive measures A+([0, t]) = A+

t and A−([0, t]) = A−
t are

supported by disjoint Borelians. We denote by A the signed measure, the difference of
the two finite positive measures A+ and A−. The (random) positive measure associated
to the increasing process A+ + A− is denoted by |A|: |A|([0, t]) = A+

t + A−
t equal to

(1.3), and is called the variation of A. For any process α such that

∫ t

0

|αs(ω)|d|A|s(ω) < ∞, ∀t ∈ T, ∀ω ∈ Ω,

the process
∫

αdA defined by the Stieltjes integral
∫ t

0
αs(ω)dAs(ω), for all t ∈ T and ω

∈ Ω, has finite variation. Moreover, if A is adapted and α is progressively measurable,
then

∫
αdA is adapted. For any process A with finite variation, we define Ac:

Ac
t = At −

∑

0≤s≤t

ΔAs, where ΔAs = As −As− (ΔA0 = A0).

Ac is a continuous process with finite variation, and is called the continuous part of A.

Proposition 1.1.9 Let M be a local martingale, M0 = 0. If M has predictable finite
variation, then M is indistinguishable from 0.

Theorem 1.1.5 (Quadratic variation, bracket)
(1) Let M = (Mt)t∈T and N = (Nt)t∈T be two local martingales, and one is locally
bounded (for example continuous). Then, there exists a unique predictable process with
finite variation, denoted by < M, N >, vanishing in 0, such that MN− < M, N >

is a local martingale. This local martingale is continuous if M and N are continuous.
Moreover, for all t ∈ T, if 0 = tn0 < tn1 < . . . tnkn

= t is a subdivision of [0, t] with mesh
size going to 0, then we have:

< M,N >t = lim
n→+∞

kn∑

i=1

(
Mtn

i
−Mtn

i−1

)(
Ntn

i
−Ntn

i−1

)
,

for the convergence in probability. The process < M,N > is called the bracket (or cross-
variation) of M and N . We also say that M and N are orthogonal if < M, N > = 0,
i.e. the product MN is a local martingale.

(2) When M = N , the process < M,M >, also denoted by < M > and called the
quadratic variation of M or increasing process of M , is increasing. Moreover, we have
the “polarity” relation

< M,N > =
1
2

(< M + N, M + N > − < M,M > − < N,N >) .

Example
If W = (W 1, . . . , W d) is a d-dimensional Brownian motion, we have
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< W i, W j >t = δijt

where δij = 1 if i = j and 0 otherwise. Moreover, the processes W i
t W

j
t − δijt are

martingales.

The following inequality is useful for defining below the notion of a stochastic integral.

Proposition 1.1.10 (Kunita-Watanabe inequality)
Let M and N two continuous local martingales and α, β two measurable processes on
T×Ω equipped with the product σ-field B(T)⊗F . Then for all t ∈ T,

∫ t

0

|αs||βs|d| < M,N > |s ≤
(∫ t

0

α2
sd < M, M >s

) 1
2
(∫ t

0

β2
sd < N, N >s

) 1
2

a.s.

This shows in particular that almost surely the signed measure d < M, N > is absolutely
continuous with respect to the product measure d < M >.

The following fundamental inequality for (local) martingales is very useful when we
shall focus on local martingales defined by stochastic integrals for which one can often
calculate the quadratic variation.

Theorem 1.1.6 (Burkholder-Davis-Gundy inequality)
For all p > 0, there exist positive constants cp and Cp such that for all continuous local
martingales M = (Mt)t∈T and all stopping times τ valued in T̄, we have

cpE[< M >p/2
τ ] ≤ E

[
sup

0≤t<τ
|Mt|

]p
≤ CpE[< M >p/2

τ ].

By combining the Burkholder-Davis-Gundy inequality with the condition (1.2), we
see in particular for p = 1 that if the continuous local martingale M satisfies E[

√
< M >t]

< ∞ for all t ∈ T, then M is a martingale.

We say that a càd-làg martingale M = (Mt)t∈T is square integrable if E[|Mt|2] < ∞
for all t ∈ T. We introduce the additional distinction (in the case T = [0,∞)), and say
that M is bounded in L2 if supt∈T

E[|Mt|2] < ∞. In particular, a bounded martingale in
L2 is uniformly integrable and admits a limit a.s. MT̄ when t goes to T̄ . We denote by
H

2
c the set of continuous martingales bounded in L2. The next result is a consequence of

Doob and Burkholder-Davis-Gundy inequalities.

Proposition 1.1.11 (Square integrable martingale)
Let M = (Mt)t∈T be a continuous local martingale. Then M is a square integrable mar-
tingale if and only if E[< M >t] < ∞ for all t ∈ T. In this case, M2− < M > is a
continuous martingale and if M0 = 0, we have

E[M2
t ] = E[< M >t], ∀t ∈ T.

Moreover, M is bounded in L2 if and only if E[< M >T̄ ] < ∞, and in this case

E[M2
T̄ ] = E[< M >T̄ ].

The space H
2
c endowed with the scalar product
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(M,N)H2 = E[< M,N >T̄ ]

is a Hilbert space.

The next theorem is known as the Doob-Meyer decomposition theorem for super-
martingales.

Theorem 1.1.7 (Doob-Meyer decomposition)
Let X be a càd-làg supermartingale. Then X admits a unique decomposition in the form

X = X0 + M −A

where M is a càd-làg local martingale null in 0, and A is a predictable process, increasing
and null in 0. If X is nonnegative, then A is integrable, i.e. E[AT̄ ] < ∞ where AT̄ =
limt→T̄ At a.s.

We finally introduce a fundamental class of finite quadratic variation processes, ex-
tending the (local) super(sub)-martingales, and largely used in financial modeling, espe-
cially in the context of this book.

Definition 1.1.9 (Semimartingale)
A semimartingale is a càd-làg adapted process X having a decomposition in the form:

X = X0 + M + A (1.4)

where M is a càd-làg local martingale null in 0, and A is a adapted process with finite
variation and null in 0. A continuous semimartingale is a semimartingale such that in
the decomposition (1.4), M and A are continuous. Such a decomposition where M and
A are continuous is unique.

We define the bracket of a continuous semimartingale X = X0 +M +A by: < X,X > =
< M,M >, and the following property holds: for all t ∈ T, if 0 = tn0 < tn1 < . . . tnkn

= t is
a subdivision of [0, t] with mesh size going to 0, we have the convergence in probability

< X,X >t = lim
n→∞

kn∑

i=1

(
Xtn

i
−Xtn

i−1

)2

.

This property is very important since it shows that the bracket does not change under a
change of absolute probability measure Q under which X is still a Q-semimartingale.

The main theorems stated above for super(sub)-martingales considered càd-làg paths
of the processes. The next theorem gives sufficient conditions ensuring this property.

Theorem 1.1.8 Let F = (Ft)t∈T be a filtration satisfying the usual conditions, and X

= (Xt)t∈T be a supermartingale. Then X has a càd-làg modification if and only if the
mapping t ∈ T → E[Xt] is right-continuous (this is the case in particular if X is a
martingale). Moreover, in this case, the càd-làg modification remains a supermartingale
with respect to F.
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For a proof of this result, we refer to Karatzas and Shreve [KaSh88], Theorem 3.13 in
Ch. 1.

In the sequel, we say that a vectorial process X = (X1, . . . , Xd) is a martingale (resp.
supermartingale, resp. semimartingale) (local) if each of the real-valued components Xi, i

= 1, . . . , d is a martingale (resp. supermartingale, resp. semimartingale) (local). We also
define the matricial bracket of a vectorial continuous semimartingale X = (X1, . . . , Xd):
< X > = < X,X ′ >, by its components < Xi, Xj >, i, j = 1, . . . , d.

1.2 Stochastic integral and applications

1.2.1 Stochastic integral with respect to a continuous semimartingale

In this section, we define the stochastic integral with respect to a continuous semimartin-
gale X. We first consider the case where X is unidimensional. With the decomposition
(1.4), we define the integral with respect to X as the sum of two integrals, one with
respect to the finite variation part A and the other with respect to the continuous local
martingale M . The integral with respect to A is defined pathwise (for almost all ω) as
a Stieljes integral. On the other hand, if the martingale M is not zero, it does not have
finite variation, and one cannot define the integral with respect to M pathwise like for
Stieljes integrals. The notion of a stochastic integral with respect to M is due to Itô
when M is a Brownian motion, and is based on the existence of a quadratic variation
< M >, which allows us to define the integral as a limit of simple sequences of Riemann
type in L2.

A simple (or elementary) process is a process in the form

αt =
n∑

k=1

α(k)1(tk,tk+1](t), (1.5)

where 0 ≤ t0 < t1 < . . . < tn is a sequence of stopping times in T and α(k) is a
Ftk

-measurable random variable, and bounded for all k. We denote by E the set of
simple processes. When M is bounded in L2, i.e. M ∈ H

2
c , we define L2(M) as the set

of progressively measurable processes α such that E[
∫ T̄

0
|αt|2d < M >t] < ∞. It is a

Hilbert space for the scalar product

(α, β)
L2(M)

= E
[ ∫ T̄

0

αtβtd < M >t

]
,

and the set of simple processes is dense in L2(M). The stochastic integral of a simple
process (1.5) is defined by

∫ t

0

αsdMs =
n∑

k=1

α(k).(Mtk+1∧t −Mtk∧t), t ∈ T,

and belongs to H
2
c . Moreover, we have the isometry relation

E
[(
∫ T̄

0

αt dMt

)2
]

= E
[ ∫ T̄

0

|αt|2d < M >t

]
.
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By density of E in L2(M), we can extend the mapping α →
∫

αdM to an isometry from
L2(M) into H

2
c . For any α ∈ L2(M), the stochastic integral

∫
αdM is characterized by

the relation

<

∫

αdM, N > =
∫

α d < M, N >, ∀N ∈ H
2
c .

Moreover, if τ is a stopping time, we have
∫ t∧τ

0

αsdMs =
∫ t

0

αs1[0,τ ]dMs =
∫ t

0

αsdMs∧τ , t ∈ T.

This identity relation allows us to extend by localization the definition of stochastic
integral to a continuous local martingale, and for a larger class of integrands.

Let M be a continuous local martingale. We denote by L2
loc(M) the set of progressively

measurable processes α such that for all t ∈ T

∫ t

0

|αs|2d < M >s < ∞, a.s.

For any α ∈ L2
loc(M), there exists a unique continuous local martingale null in 0, called

the stochastic integral of α with respect to M and denoted by
∫

αdM , such that

<

∫

αdM, N > =
∫

α d < M, N >

for all continuous local martingale N . This definition extends the one above when M ∈
H

2
c and α ∈ L2(M).

When considering stochastic integrals with respect to a vectorial continuous local
martingale, a first idea is to take the sum of stochastic integrals with respect to each
of the components. However, in order to get “good” representation and martingale de-
composition (see Section 1.2.4) properties, we have to construct the stochastic integral
by using an isometry relation as in the one-dimensional case to obtain suitable closure
properties. We speak about vectorial stochastic integration. Sufficient conditions ensur-
ing that these two notions of vectorial and componentwise stochastic integration are
studied in [CS93]. This is for example the case when M is a d-dimensional Brownian
motion. On the other hand, when one defines the stochastic integral with respect to a
semimartingale, while it is natural and sufficient in practical applications to consider in a
first stage integrands with respect to the finite variation and martingale parts, this class
of integrands is not large enough in theory when studying closure and stability properties
for stochastic integrals. The semimartingale topology was introduced by Emery [Em79]
and is quite appropriate for the study of stochastic integrals.

The following three paragraphs, marked with an asterisk and concerning vectorial
stochastic integration and semimartingale topology, may be omitted in a first reading.
We start by defining the integral with respect to a vectorial process with finite variation,
and then with respect to a vectorial continuous local martingale. The presentation is
inspired by Jacod [Jac79], ch. IV.

Stieltjes integral with respect to a vectorial process with finite variation∗
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Let A = (A1, . . . , Ad) be a vectorial process whose components are continuous with
finite variation. There exists an increasing process Γ (for example dΓ =

∑d
i=1 d|Ai|)

and a vectorial predictable process γ = (γ1, . . . , γd) (derived from the Radon-Nikodym
theorem) such that

Ai =
∫

γidΓ, i = 1, . . . , d. (1.6)

We denote by LS(A) the set of progressively measurable processes α = (α1, . . . , αd) such
that

∫ t

0

∣
∣
∣
∣
∣

d∑

i=1

αi
uγi

u

∣
∣
∣
∣
∣
dΓu < ∞, a.s. ∀t ∈ T.

We then set

∫

αdA =
∫ d∑

i=1

αiγidΓ,

with the convention that
∫ t

0
αu(ω)dAu(ω) = 0 if ω is in the negligible set where

∫ t

0

∣
∣
∣
∑d

i=1 αi
uγi

u(ω)
∣
∣
∣ dΓu(ω) = ∞. The process

∫
αdA does not depend on the choice of

(γ, Γ ) satisfying (1.6), and is also continuous with finite variation. Notice that LS(A)
contains (and in general strictly) the set of progressively measurable processes α =
(α1, . . . , αd) such that for all i = 1, . . . , d, αi ∈ LS(Ai), i.e.

∫ t

0
|αi

u|d|Ai|u < ∞ for all t

in T for which we have:
∫

αdA =
∑d

i=1

∫
αidAi, often denoted by

∫
α′dA.

Stochastic integral with respect to a vectorial continuous local martingale∗

Let M = (M1, . . . , Md) be a continous local martingale valued in R
d. We denote by

< M > the matricial bracket with components < M i, M j >. There exists a predictable
increasing process C such that d < M i, M j > is absolutely continuous with respect
to the positive measure dC: for example C =

∑d
i=1 < M i >. By the Radon-Nikodym

theorem, there exists a predictable process c valued in S+
d such that

< M > =
∫

c dC, i.e. < M i, M j > =
∫

cijdC, i, j = 1, . . . , d. (1.7)

We define L2
loc(M) as the set of progressively measurable processes α = (α1, . . . , αd)

valued in R
d such that for all t ∈ T

∫ t

0

α′
ud < M >u αu :=

∫ t

0

α′
ucuαudCu < ∞, a.s. (1.8)

We mention that the expression
∫ t

0
α′

ud < M >u αu does not depend on the choice of
c and C satisfying (1.7). For all α ∈ L2

loc(M), there exists a unique continuous local
martingale null in 0, called the stochastic integral of α with respect to M , and denoted
by
∫

αdM , such that

<

∫

αdM, N > =
∫

α d < M, N >
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for any continuous local martingale N . The integral on the right-hand side of the above
equality is the Stieltjes integral with respect to the vectorial process with finite variation
< M,N > = (< M1, N >, . . . , < Md, N >). This Stieltjes integral is well-defined by the
Kunita-Watanabe inequality. In particular, we have

<

∫

αdM,

∫

αdM > =
∫

α′d < M > α.

Notice that if for all i = 1, . . . , d, αi ∈ L2
loc(M

i), i.e.
∫ t

0
|αi

u|2d < M i >u < ∞ for all t in
T, then α = (α1, . . . , αd) ∈ L2

loc(M) and
∫

αdM =
∑d

i=1

∫
αidM i. The converse does not

hold true in general: the set L2
loc(M) is strictly larger than the set {α = (α1, . . . , αd) :

αi ∈ L2
loc(M

i), i = 1, . . . , d}. However, if the processes M i are pairwise orthogonal, i.e.
< M i, M j > = 0 for i �= j, we have equality of these two sets, and we often write instead
of
∫

αdM :

∫

α.dM :=
d∑

i=1

∫

αidM i.

This is typically the case when M is a d-dimensional Brownian motion W = (W 1, . . . , W d),
the condition (1.8) on L2

loc(W ) is then written as

∫ t

0

|αu|2du =
d∑

i=1

∫ t

0

|αi
u|2du < ∞, a.s., ∀t ∈ T.

Moreover,
∫

αdM is a bounded martingale in L2 if and only if α ∈ L2(M), defined as

the set of progressively measurable processes α such that E[
∫ T̄

0
α′

td < M >t αt] < ∞.
In this case, we have

E
[(
∫ T̄

0

αtdMt

)2
]

= E
[ ∫ T̄

0

α′
td < M >t αt

]
.

In the general case, for α ∈ L2
loc(M), a localizing sequence of stopping times for the local

martingale
∫

αdM is for example

τn = inf
{

t ∈ T :
∫ t

0

α′
ud < M >u αu ≥ n

}

,

for which the stopped stochastic integral
∫ .∧τn αdM is a bounded martingale in L2 with

E[<
∫ .∧τn αdM >T̄ ] ≤ n. When M is a d-dimensional Brownian motion W and α is

a continous process, another example of a localizing sequence for the continuous local
martingale

∫
α.dW is

τn = inf {t ∈ T : |αt| ≥ n} .

In this case, the stopped stochastic integral
∫ .∧τn α.dW is a square integrable martingale

with E[<
∫ .∧τn α.dW >t] = E[

∫ t∧τn

0
|αu|2du] ≤ n2t, for all t ∈ T.

Stochastic integral with respect to a vectorial continuous semimartigale∗
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Let X be a vectorial continous semimartingale written in the form X = M +A where M

is a vectorial continuous local martingale and A is a vectorial continuous process with
finite variation. Naturally, for all α ∈ L2

loc(M) ∩ LS(A), one can define the stochastic
integral of α with respect to X by setting

∫

αdX =
∫

αdM +
∫

αdA.

Notice that the locally bounded progressively measurable processes α, i.e. sup0≤s≤t |αs|
< ∞ a.s. for all t in T, belong to L2

loc(M) ∩ LS(A). This class of integrands, sufficient in
most practical applications, is not large enough in theory when one is looking at closure
and stability properties of stochastic integrals. The semimartingale topology is quite
suitable for the study of stochastic integrals. This topology is defined by the distance
between two semimartingales (here continuous) X = (Xt)t∈T and Y = (Yt)t∈T:

DE(X,Y ) = sup
|α|≤1

(∑

n≥1

2−nE
[∣
∣
∣

∫ T̄∧n

0

αtdXt −
∫ T̄∧n

0

αtdYt

∣
∣
∣ ∧ 1

])
,

where the supremum is taken over all progressively measurable processes α bounded by
1.

Definition 1.2.10 Let X be a continuous semimartingale. Let α be a progressively mea-
surable process and α(n) the bounded truncated process α1|α|≤n. We say that α is inte-
grable with respect to X and we write α ∈ L(X), if the sequence of semimartingales
∫

α(n)dX converges for the semimartingale topology to a semimartingale Y , and we then
set
∫

αdX = Y .

We have the following properties for this general class of integrands:

• If X is a local martingale, L2
loc(X) ⊂ L(X).

• If X has finite variation, LS(X) ⊂ L(X).

• L(X) ∩ L(Y ) ⊂ L(X + Y ) and
∫

αdX +
∫

αdY =
∫

αd(X + Y ).

• L(X) is a vector space and
∫

αdX +
∫

βdX =
∫

(α + β)dX.

Moreover, the space {
∫

αdX : α ∈ L(X)} is closed in the space of semimartingales for
the semimartingale topology. Finally, since the semimartingale topology is invariant by
change of equivalent probability measure, the same holds true for L(X). Warning: if X

is a continuous local martingale and α lies in L(X), the stochastic integral
∫

αdX is not
always a local martingale. Actually,

∫
αdS is a local martingale if and only if α lies in

L2
loc(M). We also know that when the process

∫
αdX is lower-bounded, then it is a local

martingale and also a supermartingale.

1.2.2 Itô process

In finance, we often use Itô processes as continuous semimartingales for modeling the
dynamics of asset prices.
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Definition 1.2.11 Let W = (W 1, . . . , W d) be a d-dimensional Brownian motion on
a filtered probability space (Ω,F , F, P ). We define an Itô process as a process X =
(X1, . . . , Xn) valued in R

n such that a.s.

Xt = X0 +
∫ t

0

bsds +
∫ t

0

σsdWs, t ∈ T, (1.9)

i.e. Xi
t = Xi

0 +
∫ t

0

bi
sds +

d∑

j=1

∫ t

0

σij
s dW j

s , t ∈ T, 1 ≤ i ≤ n,

where X0 is F0-measurable, b = (b1, . . . , bn) and σ = (σ1, . . . , σn) = (σij)1≤i≤n,1≤j≤d

are progressively measurable processes valued respectively in R
n and R

n×d such that bi ∈
LS(dt) and σi ∈ L2

loc(W ), i = 1, . . . , n, i.e.
∫ t

0

|bs|ds +
∫ t

0

|σs|2ds < ∞, a.s., ∀t ∈ T.

We often write (1.9) in the differential form

dXt = btdt + σtdWt.

1.2.3 Itô’s formula

1. Let X = (X1, . . . , Xd) be a continuous semimartingale valued in R
d and f a function

of class C1,2 on T×R
d. Then (f(t,Xt))t∈T is a semimartingale and we have for all t ∈ T

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂t
(u,Xu)du +

d∑

i=1

∫ t

0

∂f

∂xi
(u,Xu)dXi

u

+
1
2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(u,Xu)d < Xi, Xj >u .

In this expression, the various integrands are continuous, hence locally bounded, and the
stochastic integrals or Stieltjes integrals are well-defined.

2. In this book, we shall also use in an example (see Section 4.5) Itô’s formula for a
semimartingale X = (X1, . . . , Xd) in the form

Xi = M i + Ai, i = 1, . . . , d,

where M i is a continuous martingale and Ai is an adapted process with finite variation.
We denote by Ai,c the continuous part of Ai. If f is a function of class C1,2 on T× R

d,
(f(t,Xt))t∈T is a semimartingale and we have for all t ∈ T

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂t
(u,Xu)du +

d∑

i=1

∫ t

0

∂f

∂xi
(u,Xu)dM i

u

+
1
2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(u,Xu)d < M i, M j >u

+
d∑

i=1

∫ t

0

∂f

∂xi
(u,Xu)dAi,c

u +
∑

0<s≤t

[f(s,Xs)− f(s,Xs−)] .
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1.2.4 Martingale representation theorem

In this section, we state some martingale representation theorems by means of
stochastic integrals.

The first result is the Brownian martingale representation theorem, also known as
the Itô representation theorem.

Theorem 1.2.9 (Representation of Brownian martingales)
Assume that F is the natural (augmented) filtration of a standard d-dimensional Brow-
nian motion W = (W 1, . . . , W d). Let M = (Mt)t∈T be a càd-làg local martingale. Then
there exists α = (α1, . . . , αd) ∈ L2

loc(W ) such that

Mt = M0 +
∫ t

0

αu.dWu = M0 +
d∑

i=1

∫ t

0

αi
tdW i

t , t ∈ T, a.s.

Moreover, if M is bounded in L2 then α ∈ L2(W ), i.e. E[
∫ T̄

0
|αt|2dt] < ∞.

For a proof, we may consult ch. 3, sec. 3.4 in Karatzas and Shreve [KaSh88] or ch. V in
Revuz and Yor [ReY91]. This result shows in particular that any martingale with respect
to a Brownian filtration is continuous (up to an indistinguishable process).

The second result is the projection theorem on the space of stochastic integrals with
respect to a continuous local martingale. It originally appeared in Kunita and Watanabe
[KW67], and then in Galtchouk [Ga76]. We may find a proof in Jacod [Jac79], ch. IV,
sec. 2.

Theorem 1.2.10 (Galtchouk-Kunita-Watanabe decomposition)
Let M = (M1, . . . , Md) be a continuous local martingale valued in R

d and N a real-
valued càd-làg local martingale. Then there exist α ∈ L2

loc(M) and R, a càd-làg local
martingale orthogonal to M (< R,M i > = 0, i = 1, . . . , d) null in 0 such that

Nt = N0 +
∫ t

0

αudMu + Rt, t ∈ T, a.s.

Furthermore, if N is bounded in L2 then α ∈ L2(M) and R is also bounded in L2.

The next result, due to Yor [Yo78], considers the problem of the limit in L1 of
integrands with respect to a martingale.

Theorem 1.2.11 Let M be a continuous local martingale and (α(n))n≥1 a sequence of
processes in L(M) such that for all n,

∫
α(n)dM is uniformly integrable and the sequence

(
∫ T̄

0
α

(n)
t dMt)n≥1 converges in L1 to a random variable ξ ∈ L1. Then there exists α ∈

L(M) such that
∫

αdM is a uniformly integrable martingale and ξ =
∫ T̄

0
αtdMt.

1.2.5 Girsanov’s theorem

In this section, we focus on the effect of a change of probability measure on the notions
of semimartingales and martingales. The presentation is inspired by ch. 4, sec. 3.5 in
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Karatzas and Shreve [KaSh88] and ch. VIII in Revuz and Yor [ReY91]. We are given
a filtered probability space (Ω,F , F = (Ft)t∈T, P ) satisfying the usual conditions. To
simplify the notation, we suppose that F = FT̄ .

Let Q be a probability measure on (Ω,F) such that Q is absolutely continuous with
respect to P , denoted by Q � P . Let ZT̄ be the associated Radon-Nikodym density,
often denoted by

ZT̄ =
dQ

dP
or Q = ZT̄ .P.

For all t ∈ T, the restriction of Q to Ft is absolutely continuous with respect to the
restriction of P to Ft. Let Zt be the corresponding Radon-Nikodym density, often denoted
by

Zt =
dQ

dP

∣
∣
∣
∣
Ft

.

Then the process (Zt)t∈T is a positive martingale (under P with respect to (Ft)t∈T),
closed on the right by ZT̄ :

Zt = E[ZT̄ |Ft], a.s. ∀ t ∈ T.

Up to modification, we may suppose that the paths of Z are càd-làg. Z is also called the
martingale density process of Q (with respect to P ). Z is positive, and actually we have

Zt > 0, ∀ t ∈ T, Q a.s,

which means that Q[τ < ∞] = 0, where τ = inf{t : Zt = 0 or Zt− = 0}: this follows from
the fact that the martingale Z vanishes on [τ,∞). When Q is equivalent to P , denoted
by Q ∼ P , we write without ambiguity Zt > 0, for all t in T, a.s. In the sequel, we denote
by EQ the expectation operator under Q. When a property is relative to Q, we shall
specify the reference to Q. When it is not specified, the property is implicitly relative to
P , the initial probability measure on (Ω,F).

Proposition 1.2.12 (Bayes formula)
Let Q � P and Z its martingale density process. For all stopping times σ ≤ τ valued in
T, ξ Fτ -measurable random variable such that EQ[|ξ|] < ∞, we have

EQ [ξ| Fσ] =
E [Zτ ξ| Fσ]

Zσ
, Q a.s.

The Bayes formula shows in particular that a process X is a Q-(super)martingale (local)
if and only if ZX is a (super)martingale (local).

Theorem 1.2.12 (Girsanov)
Let Q � P and Z its martingale density process. We suppose that Z is continuous. Let
M be a continuous local martingale. Then the process

MQ = M −
∫

1
Z

d < M, Z >
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is a continuous local martingale under Q. Moreover, if N is a continuous local martingale,
we have

< MQ, NQ > = < M,N > .

If Q ∼ P , i.e. Z is strictly positive a.s., then there exists a unique continuous local
martingale L null in t = 0, such that

Zt = exp
(

Lt −
1
2

< L,L >t

)

=: Et(L), t ∈ T, a.s.

and L is given by

Lt =
∫ t

0

1
Zs

dZs, t ∈ T, a.s.

The Q-local martingale MQ is then written also as:

MQ = M− < M,L > .

In the case of a Brownian motion, we have the following important result.

Theorem 1.2.13 (Cameron-Martin)
Let W be a Brownian motion. Let Q ∼ P with martingale density process

dQ

dP

∣
∣
∣
∣
Ft

= Et(L),

where L is a continuous local martingale. Then the process

WQ = W− < W,L >

is a Q-Brownian motion.

In the applications of the Girsanov-Cameron-Martin theorem, we start with a contin-
uous local martingale L null on 0 and we construct Q ∼ P by setting Q = Et(L).P on Ft.
This obviously requires the process E(L) to be a martingale. In general, we know that
E(L) is a local martingale, called the Doléans-Dade exponential. It is also a (strictly) pos-
itive process and so a supermartingale, which ensures the existence of the a.s. limit ET̄ (L)
of Et(L) when t goes to T̄ . The Doléans-Dade exponential E(L) is then a martingale if
and only if E[ET̄ (L)] = 1. In this case, we can define a probability measure Q ∼ P with
Radon-Nikodym density ET̄ (L) = dQ/dP , and with martingale density process Et(L) =
dQ/dP |Ft . We may then apply the Girsanov-Cameron-Martin theorem. Therefore, it is
important to get conditions for E(L) to be a martingale.

Proposition 1.2.13 (Novikov’s condition)
Let L be a continuous local martingale, L0 = 0, such that

E
[
exp
(1
2

< L,L >T̄

)]
< ∞.

Then L and E(L) are uniformly integrable martingales with E[exp(LT̄ /2)] < ∞.
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Case of Brownian motion
Consider a d-dimensional Brownian motion W = (W 1, . . . , W d) with respect to (Ft)t∈T.
A common choice of local martingale L is

Lt =
∫ t

0

λs.dWs =
d∑

i=1

∫ t

0

λi
sdW i

s ,

where λ = (λ1, . . . , λd) lies in L2
loc(W ). The associated process E(L) is

Et(L) = exp
(∫ t

0

λu.dWu −
1
2

∫ t

0

|λu|2du
)
, t ∈ T. (1.10)

When E(L) is a martingale so that one can define probability measure Q ∼ P with
martingale density process E(L), the Girsanov-Cameron-Martin theorem asserts that
WQ = (WQ,1, . . . , WQ,d) with

WQ,i = W i −
∫

λidt, i = 1, . . . , d (1.11)

is a Q-Brownian motion. Notice that in the case where F is the Brownian filtration
and from the Itô martingale representation theorem 1.2.9, any probability Q ∼ P has
a martingale density process in the form (1.10). Finally, the Novikov condition ensuring
that E(L) is a martingale is written as

E
[
exp
(1

2

∫ T̄

0

|λt|2dt
)]

< ∞.

We end this section by stating a representation theorem for Brownian martingales
under a change of probability measure.

Theorem 1.2.14 (Itô’s representation under a change of probability)
Assume that F is the natural (augmented) filtration of a standard d-dimensional Brow-
nian motion W = (W 1, . . . , W d). Let Q ∼ P with martingale density process Z given
by (1.10) and WQ the Brownian motion under Q given by (1.11). Let M = (Mt)t∈T a
càd-làg Q-local martingale. Then there exists α = (α1, . . . , αd) ∈ L2

loc(W
Q) such that:

Mt = M0 +
∫ t

0

αu.dWQ
u = M0 +

d∑

i=1

∫ t

0

αi
tdWQ,i

t , t ∈ T, a.s.

This result is the basis for the replication problem in complete markets in finance. It
will also be used in the sequel of this book. Notice that it cannot be deduced as a direct
consequence of Itô’s representation theorem 1.2.9 applied to the Q-martingale M with
respect to the filtration F. Indeed, the filtration F is the natural filtration of W and not
of WQ. In order to show Theorem 1.2.14, one first boils down to the probability measure
P from the Bayes formula by writing that N = ZM is a local martingale. We may then
apply Itô’s representation theorem 1.2.9 (under P ) to N , and then go back to M =
N/Z from Itô’s formula (see the details in the proof of Proposition 5.8.6 in Karatzas and
Shreve [KaSh88]).
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1.3 Stochastic differential equations

We recall in this section some results about stochastic differential equations (SDE) with
random coefficients, with respect to a Brownian motion.

1.3.1 Strong solutions of SDE

We only introduce the concept of strong solutions of SDE. We fix a filtered probability
space (Ω,F , F = (Ft)t∈T, P ) satisfying the usual conditions and a d-dimensional Brow-
nian motion W = (W 1, . . . , W d) with respect to F. We are given functions b(t, x, ω) =
(bi(t, x, ω))1≤i≤d, σ(t, x, ω) = (σij(t, x, ω))1≤i≤n,1≤j≤d defined on T×R

n×Ω, and valued
respectively in R

n and R
n×d. We assume that for all ω, the functions b(., ., ω) and σ(., ., ω)

are Borelian on T × R
n and for all x ∈ R

n, the processes b(., x, .) and σ(., x, .), written
b(., x) and σ(., x) for simplification, are progressively measurable. We then consider the
SDE valued in R

n:

dXt = b(t,Xt)dt + σ(t,Xt)dWt (1.12)

which is also written componentwise:

dXi
t = bi(t,Xt)dt +

d∑

j=1

σij(t,Xt)dW j
t , 1 ≤ i ≤ d. (1.13)

In the applications for this book, we shall mainly consider two types of situations:

(1) b and σ are deterministic Borelian functions b(t, x), σ(t, x) of t and x, and we speak
about diffusion for the SDE (1.12).

(2) The random coefficients b(t, x, ω) and σ(t, x, ω) are in the form b̃(t, x, αt(ω)),
σ̃(t, x, αt(ω)) where b̃, σ̃ are deterministic Borelian functions on T × R

n × A, A set
of R

m, and α = (αt)t∈T is a progressively measurable process valued in A. This case
arises in stochastic control problems studied in Chapters 3 and 4, and we say that the
SDE (1.12) is a controlled diffusion by α.

Definition 1.3.12 (Strong solution of SDE)
A strong solution of the SDE (1.12) starting at time t is a vectorial progressively mea-
surable process X = (X1, . . . , Xn) such that

∫ s

t

|b(u,Xu)|du +
∫ s

t

|σ(u,Xu)|2du < ∞, a.s., ∀t ≤ s ∈ T,

and the following relations:

Xs = Xt +
∫ s

t

b(u,Xu)du +
∫ s

t

σ(u,Xu)dWu, t ≤ s ∈ T,

i.e.

Xi
s = Xi

t +
∫ s

t

bi(u,Xu)du +
d∑

j=1

∫ s

t

σij(u,Xu)dW j
u , t ≤ s ∈ T, 1 ≤ i ≤ d,

hold true a.s.
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Notice that a strong solution of SDE (1.12) is a continuous process (up to an indistin-
guishable process).

We mention that there exists another concept of solution to the SDE (1.12), called
weak, where the filtered probability space (Ω,F , F = (Ft)t∈T, P ) and the Brownian
motion W are part of the unknown of the SDE, in addition to X.

Existence and uniqueness of a strong solution to the SDE (1.12) is ensured by the
following Lipschitz and linear growth conditions: there exists a (deterministic) constant
K and a real-valued process κ such that for all t ∈ T, ω ∈ Ω, x, y ∈ R

n

|b(t, x, ω)− b(t, y, ω)|+ |σ(t, x, ω)− σ(t, y, ω)| ≤ K|x− y|, (1.14)

|b(t, x, ω)|+ |σ(t, x, ω)| ≤ κt(ω) + K|x|, (1.15)

with

E

[∫ t

0

|κu|2du

]

< ∞, ∀t ∈ T. (1.16)

Under (1.14), a natural choice for κ is κt = |b(t, 0)| + |σ(t, 0)| once it satisfies the
condition (1.16).

Theorem 1.3.15 Under conditions (1.14), (1.15) and (1.16), there exists for all t ∈ T,
a strong solution to the SDE (1.12) starting at time t. Moreover, for any ξ Ft-measurable
random variable valued in R

n, such that E[|ξ|p] < ∞, for some p > 1, there is uniqueness
of a strong solution X starting from ξ at time t, i.e. Xt = ξ. The uniqueness is pathwise
and means that if X and Y are two such strong solutions, we have P [Xs = Ys, ∀t ≤ s ∈ T]
= 1. This solution is square integrable: for all T > t, there exists a constant CT such
that

E
[

sup
t≤s≤T

|Xs|p
]
≤ CT (1 + E[|ξ|p]).

This result is standard and one can find a proof in the books of Gihman and Skorohod
[GS72], Ikeda and Watanabe [IW81], Krylov [Kry80] or Protter [Pro90]. We usually
denote by Xt,ξ = {Xt,ξ

s , t ≤ s ∈ T} the strong solution to the SDE (1.12) starting from
ξ at time t. When t = 0, we simply write Xξ = X0,ξ. By pathwise uniqueness, we notice
that for all t ≤ θ in T, and x ∈ R

n, we have a.s.

Xt,x
s = X

θ,Xt,x
θ

s , ∀ θ ≤ s ∈ T.

When b and σ are deterministic functions of t and x, we also know that the strong
solution to the SDE (1.12) is adapted with respect to the natural filtration of W . We
also have the Markov property of any strong solution to the SDE (1.12): for any Borelian
bounded function g on R

d, for all t ≤ θ in T, we have

E [g(Xθ)| Ft] = ϕθ(t,Xt)

where ϕθ is the function defined on T× R
d by

ϕθ(t, x) = E
[
g(Xt,x

θ )
]
.
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Given a strong solution to the SDE (1.12) starting at time t, and a function f of class
C1,2 on T× R

n, Itô’s formula to f(s,Xs), t ≤ s in T, is written as

f(s,Xs) = f(t,Xt) +
∫ s

t

∂f

∂t
(u,Xu) + Luf(u,Xu)du

+
∫ s

t

Dxf(u,Xu)′σ(u,Xu)dWu

where

Lt(ω)f(t, x) = b(t, x, ω).Dxf(t, x) +
1
2
tr(σ(t, x, ω))σ′(t, x, ω)D2

xf(t, x))

=
n∑

i=1

bi(t, x, ω))
∂f

∂xi
(t, x) +

n∑

i,k=1

γik(t, x, ω)
∂2f

∂xi∂xk
(t, x),

and γ(t, x) = σ(t, x)σ′(t, x) is n× n matrix-valued with components

γik(t, x) =
d∑

j=1

σij(t, x)σkj(t, x).

1.3.2 Estimates on the moments of solutions to SDE

In this section, we give some estimates on the moments of solutions to the SDE (1.12).
Notice that under condition (1.14), there exists a finite positive constant β0 such that
for all t ∈ T, ω ∈ Ω, x, y ∈ R

n

(b(t, x, ω)− b(t, y, ω)).(x− y) +
1
2
|σ(t, x, ω)− σ(t, y, ω)|2 ≤ β0|x− y|2.

The following estimates are essentially based on the Burkholder-Davis-Gundy and
Doob inequalities, Itô’s formula and Gronwall’s lemma that we recall here.

Lemma 1.3.1 (Gronwall)
Let g be a continuous positive function on R+ such that

g(t) ≤ h(t) + C

∫ t

0

g(s)ds, 0 ≤ t ≤ T,

where C is a positive constant, and h is an integrable function on [0, T ], T > 0. Then

g(t) ≤ h(t) + C

∫ t

0

h(s)eC(t−s)ds, 0 ≤ t ≤ T.

Theorem 1.3.16 Assume that conditions (1.14), (1.15) and (1.16) hold.
(1) There exists a constant C (depending on K) such that for all t ≤ θ in T and x ∈ R

n

E
[

sup
t≤s≤θ

∣
∣Xt,x

s

∣
∣2
]
≤ C|x|2 + CeC(θ−t)E

[ ∫ θ

t

|x|2 + |κu|2du
]

(1.17)

E
[

sup
t≤s≤θ

∣
∣Xt,x

s − x
∣
∣2
]
≤ CeC(θ−t)E

[ ∫ θ

t

|x|2 + |κu|2du
]
. (1.18)
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(2) For all 0 ≤ t ≤ s in T and x, y ∈ R
n

E
[

sup
t≤u≤s

∣
∣Xt,x

u −Xt,y
u

∣
∣2
]
≤ e2β0(s−t)|x− y|2. (1.19)

We may find a proof of these estimates in Krylov [Kry80], ch. 2. Notice that the inequality
(1.18) implies in particular that

lim
h↓0

E
[

sup
s∈[t,t+h]

∣
∣Xt,x

s − x
∣
∣2
]

= 0.

1.3.3 Feynman-Kac formula

In this section, we consider the SDE (1.12) with deterministic coefficients b(t, x) and
σ(t, x). For all t ∈ T, we introduce the differential operator of second order:

(Ltϕ)(x) = b(t, x).Dxϕ(x) +
1
2
tr(σ(t, x)σ′(t, x)D2

xϕ(x)), ϕ ∈ C2(Rn).

Lt is called the infinitesimal generator of the diffusion (1.12). If X is a solution to the SDE
(1.12), v(t, x) a (real-valued) function of class C1,2 on T × R

n and r(t, x) a continuous
function on T× R

d, we obtain by Itô’s formula

Mt := e−
R t
0 r(s,Xs)dsv(t,Xt)−

∫ t

0

e−
R s
0 r(u,Xu)du

(
∂v

∂t
+ Lsv − rv

)

(s,Xs)ds

= v(0, X0) +
∫ t

0

e−
R s
0 r(u,Xu)duDxv(s,Xs)′σ(s,Xs)dWs. (1.20)

The process M is thus a continuous local martingale.
On a finite horizon interval T = [0, T ], we consider the Cauchy linear parabolic partial

differential equation (PDE):

rv − ∂v

∂t
− Ltv = f, on [0, T )× R

n (1.21)

v(T, .) = g, on R
n, (1.22)

where f (resp. g) is a continuous function from [0, T ] × R
n (resp. R

n) into R. We also
assume that the function r is nonnegative. We give here a simple version of the Feynman-
Kac representation theorem. Recall that Xt,x denotes the soluton to the diffusion (1.12)
starting from x at time t.

Theorem 1.3.17 (Feynman-Kac representation)
Let v be a function C1,2([0, T [×R

d) ∩ C0([0, T ] × R
d) with dervative in x bounded and

solution to the Cauchy problem (1.21)-(1.22). Then v admits the representation

v(t, x) = E

[∫ T

t

e−
R s

t
r(u,Xt,x

u )duf(s,Xt,x
s )ds + e−

R T
t

r(u,Xt,x
u )dug(Xt,x

T )

]

, (1.23)

for all (t, x) ∈ [0, T ]× R
d.
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The proof of this result follows from the fact that when v has a bounded derivative in
x, the integrand of the stochastic integral in (1.20) lies in L2(W ) from the linear growth
condition in x of σ and the estimate (1.17). Hence, M is a (square integrable) martingale
and the representation (1.23) is simply derived by writing that E[MT ] = E[Mt]. We may
also obtain this Feynman-Kac representation under other conditions on v, for example
with v satisfying a quadratic growth condition. We shall show such a result in Chapter
3 in the more general case of controlled diffusion (see Theorem 3.5.2 and Remark 3.5.5).
We shall also see a version of the Feynman-Kac theorem on an infinite horizon for elliptic
PDE problems (see Theorem 3.5.3 and Remark 3.5.6).

The application of the previous theorem requires the existence of a smooth solution
v to the Cauchy problem (1.21)-(1.22). This type of result is typically obtained under an
assumption of uniform ellipticity on the operator Lt:

∃ε > 0, ∀ (t, x) ∈ [0, T ]× R
n, ∀y ∈ R

n, y′σσ′(t, x)y ≥ ε|y|2, (1.24)

boundedness conditions on b, σ, and polynomial growth condition on f and g (see Fried-
man [Fr75] p. 147). There also exist other sufficient conditions relaxing the uniform el-
lipticity condition (1.24) but requiring stronger regularity conditions on the coefficients
(see Krylov [Kry80] p. 118).

In the general case where there is no smooth solution to the Cauchy problem (1.21)-
(1.22), this PDE may be formulated by means of the concept of weak solution, called
viscosity solution. This notion will be developed in Chapter 4 in the more general frame-
work of controlled diffusion, leading to a nonlinear PDE called Hamilton-Jacobi-Bellman.
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Stochastic optimization problems. Examples in

finance

2.1 Introduction

In this chapter, we outline the basic structure of a stochastic optimization problem
in continuous time, and we illustrate it through several examples from mathematical
finance. The solution to these problems will be detailed later.

In general terms, a stochastic optimization problem is formulated with the following
features:

• State of the system: We consider a dynamic system caracterized by its state at
any time, and evolving in an uncertain environment formalized by a probability space
(Ω,F , P ). The state of the system represents the set of quantitative variables needed to
describe the problem. We denote by Xt(ω) the state of the system at time t in a world
scenario ω ∈ Ω. We then have to describe the (continuous-time) dynamics of the state
system, i.e. the mapping t �→ Xt(ω) for all ω, through a stochastic differential equation
or process.

• Control: The dynamics t → Xt of the system is typically influenced by a control
modeled as a process α = (αt)t whose value is decided at any time t in function of
the available information. The control α should satisfy some constraints, and is called
admissible control. We denote by A the set of admissible controls.

• Performance/cost criterion: The objective is to maximize (or minimize) over all
admissible controls a functional J(X,α). We shall consider typically objective functionals
in the form

E
[ ∫ T

0

f(Xt, ω, αt)dt + g(XT , ω)
]
, on a finite horizon T <∞,

and

E
[ ∫ ∞

0

e−βtf(Xt, ω, αt)dt
]
, on an infinite horizon.

The function f is a running profit function, g is a terminal reward function, and β > 0 is
a discount factor. In other situations, the controller may also decide directly the horizon
or ending time of his objective. The corresponding optimization problem is called optimal

H. Pham, Continuous-time Stochastic Control and Optimization with Financial
Applications, Stochastic Modelling and Applied Probability 61,
DOI 10.1007/978-3-540-89500-8 2, c© Springer-Verlag Berlin Heidelberg 2009
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stopping time. Extensions of optimal stopping problems with multiple decision times will
be considered in Chapter 5. In a general formulation, the control can be mixed, composed
of a pair control/stopping time (α, τ), and the objective functional is in the form

J(X,α, τ) = E
[ ∫ τ

0

f(Xt, αt)dt + g(Xτ )
]
.

The maximum value, called he value function, is defined by

v = sup
α,τ

J(X,α, τ).

The main goal in a stochastic optimization problem is to find the maximizing control
process and/or stopping time attaining the value function to be determined.

2.2 Examples

We present several examples of stochastic optimization problems arising in economics
and finance. Other examples and solutions will be provided in the later chapters by
different approaches.

2.2.1 Portfolio allocation

We consider a financial market consisting of a riskless asset with strictly positive price
process S0 representing the savings account, and n risky assets of price process S repre-
senting stocks. An agent may invest in this market at any time t, with a number of shares
αt in the n risky assets. By denoting by Xt its wealth at time t, the number of shares
invested in the savings account at time t is (Xt − αt.St)/S0

t . The self-financed wealth
process evolves according to

dXt = (Xt − αt.St)
dS0

t

S0
t

+ αtdSt.

The control is the process α valued in A, subset of R
n. The portfolio allocation problem

is to choose the best investment in these assets. Classical modeling for describing the
behavior and preferences of agents and investors are: expected utility criterion and mean-
variance criterion.

In the first criterion relying on the theory of choice in uncertainty, the agent com-
pares random incomes for which he knows the probability distributions. Under some
conditions on the preferences, Von Neumann and Morgenstern show that they can be
represented through the expectation of some function, called utility. By denoting by U

the utility function of the agent, the random income X is preferred to a random income
X ′ if E[U(X)] ≥ E[U(X ′)]. The utility function U is nondecreasing and concave, this
last feature formulating the risk aversion of the agent. We refer to Föllmer and Schied
[FoS02] for a longer discussion on the preferences representation of agents. In this port-
folio allocation context, the criterion consists of maximizing the expected utility from
terminal wealth on a finite horizon T < ∞:
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sup
α

E
[
U(XT )

]
. (2.1)

The problem originally studied by Merton [Mer69] is a particular case of the model
described above with a Black-Scholes model for the risky asset:

dS0
t = rS0

t dt,

dSt = μStdt + σStdWt.

where μ, r, σ > 0 are constants, W is a Brownian motion on a filtered probability space
(Ω,F , F = (Ft)0≤t≤T , P ), and with a utility function in the form

U(x) =

{
xp−1

p , x ≥ 0
−∞ x < 0,

with p < 1, p �= 0, the limiting case p = 0 corresponding to a logarithmic utility function:
U(x) = lnx, x > 0. These popular utility functions are called CRRA (Constant Relative
Risk Aversion) since the relative risk aversion defined by η = −xU ′′(x)/U ′(x), is constant
in this case, equal to 1− p.

The mean-variance criterion, introduced by Markowitz [Ma52], relies on the assump-
tion that the preferences of the agent depend only on the expectation and variance of
his random incomes. To formulate the feature that the agent likes wealth and is risk-
averse, the mean-variance criterion focuses on MV-efficient portfolios, i.e. minimizing the
variance given an expectation. In our context, the optimization problem is written as

inf
α
{Var(XT ) : E(XT ) = m} .

We shall see that this problem may be reduced to the resolution of a problem in the form
(2.1) for some quadratic utility function:

U(x) = λ− x2, λ ∈ R.

2.2.2 Production-consumption model

We consider the following model for a production unit. The capital value Kt at time t

evolves according to the investment rate It in capital and the price St per unit of capital
by

dKt = Kt
dSt

St
+ Itdt.

The debt Lt of this production unit evolves in terms of the interest rate r, the consump-
tion rate Ct and the productivity rate Pt of capital:

dLt = rLtdt− Kt

St
dPt + (It + Ct)dt.

We choose a dynamics model for (St, Pt):
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dSt = μStdt + σ1StdW 1
t ,

dPt = bdt + σ2dW 2
t ,

where (W 1, W 2) is a two-dimensional Brownian motion on a filtered probability space
(Ω,F , F = (Ft)t, P ) and μ, b, σ1, σ2 are constants, σ1, σ2 > 0. The net vaue of this
production unit is

Xt = Kt − Lt.

We impose the constraints

Kt ≥ 0, Ct ≥ 0, Xt > 0, t ≥ 0.

We denote by kt = Kt/Xt and ct = Ct/Xt the control variables for investment and
consumption. The dynamics of the controlled system is then governed by:

dXt = Xt

[

kt

(

μ− r +
b

St

)

+ (r − ct)
]

dt

+ ktXtσ1dW 1
t + kt

Xt

St
σ2dW 2

t ,

dSt = μStdt + σ1StdW 1
t .

Given a discount factor β > 0 and a utility function U , the objective is to determine the
optimal investment and consumption for the production unit:

sup
(k,c)

E
[ ∫ ∞

0

e−βtU(ctXt)dt
]
.

2.2.3 Irreversible investment model

We consider a firm with production goods (electricity, oil, etc.) The firm may increase
its production capacity by transferring capital from an activity sector to another one.
The controlled dynamics of its production capacity then evolves according to

dXt = Xt(−δdt + σdWt) + αtdt.

δ ≥ 0 is the depreciation rate of the production, σ > 0 is the volatility, αtdt is the
capital-unit number obtained by the firm for a cost λαtdt. λ > 0 is interpreted as a
conversion factor from an activity sector to another one. The control α is valued in R+.
This is an irreversible model for the capital expansion of the firm. The profit function of
the company is an increasing, concave function Π from R+ into R, and the optimization
problem for the firm is

sup
α

E
[ ∫ ∞

0

e−βt
(
Π(Xt)dt − λαtdt

)]
.
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2.2.4 Quadratic hedging of options

We consider risky assets with price process S and a riskless asset with strictly positive
price process S0. A derivative asset with underlying S and maturity T is a financial
contract whose value at expiration T (also called payoff) is determined explicitly in
terms of the underlying asset price S at (or until) T . Options are the most traded ones
among the derivative products in financial markets: those are financial instruments giving
the right to make a transaction on the underlying at a date and price fixed in advance.
Standard options on the underlying S are European call options and put options, which
can be exercised only at the maturity T , at an exercise price K (called strike), and whose
payoffs are respectively given by g(ST ) = (ST −K)+ and (K − ST )+. More generally,
we define a contingent claim as a financial contract characterized by its payoff H at
maturity T , where H is a FT -measurable random variable. The principle of hedging
and valuation by arbitrage of an option or contingent claim consists of finding a self-
financing portfolio strategy based on the basic assets S0 and S of the market, and such
that wealth at maturity T coincides with the option payoff (we speak about perfect
replication). This is always possible in the framework of complete market, typically the
Black-Scholes model, but in general we are in the context of incomplete markets where
perfect replication is not attainable. In this case, various criteria are used for hedging
and pricing options. We consider the popular quadratic hedging criterion, and in the
next section the superreplication criterion, which both lead to interesting stochastic
optimization problems.

An agent invests a number of shares αt in the risky assets at time t. Its self-financed
wealth process is then governed by

dXt = αtdSt + (Xt − αtSt)
dS0

t

S0
t

.

We are given a contingent claim of maturity T , represented by a random variable H

FT -measurable. The quadratic hedging criterion consists of determining the portfolio
strategy α∗ minimizing the residual hedging error for the quadratic norm:

inf
α

E [H −XT ]2 .

2.2.5 Superreplication cost in uncertain volatility

We consider the price of an asset whose volatility αt is unknown but we know a priori
that it is valued in an interval A = [σ, σ̄]. The dynamics of the risky asset price under a
martingale probability measure is

dXt = αtXtdWt.

Given a payoff option g(XT ) at maturity T , its superreplication cost is given by

sup
α

E[g(XT )].

One can show by duality methods that this cost is the minimal initial capital, which
allows us to find a self-financed portfolio strategy with a terminal wealth dominating the
option payoff g(ST ) for any possible realizations of the volatility, see for example Denis
and Martini [DeMa06].
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2.2.6 Optimal selling of an asset

We consider an agent of a firm owning an asset or good with price process Xt that she
wants to sell. Suppose that at the selling of this asset, there is a fixed transaction fee K

> 0. The agent is looking for the optimal time to sell the asset and her objective is to
solve the optimal stopping problem:

sup
τ

E[e−βτ (Xτ −K)],

where the supremum runs over all stopping times on [0,∞], and β > 0 is a positive
discount factor.

2.2.7 Valuation of natural resources

We consider a firm producing some natural resources (oil, gas, etc.) with price process X.
The running profit of the production is given by a nondecreasing function f depending on
the price, and the firm may decide at any time to stop the production at a fixed constant
cost−K. The real options value of the firm is then given by the optimal stopping problem:

sup
τ

E
[ ∫ τ

0

e−βtf(Xt)dt + e−βτK
]
.

2.3 Other optimization problems in finance

2.3.1 Ergodic and risk-sensitive control problems

Some stochastic systems may exhibit in the long term a stationary behavior characterized
by an invariant measure. This measure, when it exists, is obtained by calculating the
average of the state of the system over a long time. An ergodic control problem then
consists in optimizing over the long term some criterion taking into account this invariant
measure.

A standard formulation resulting from the criteria described above consists in opti-
mizing over controls α a functional in the form

lim sup
T→∞

1
T

E
[ ∫ T

0

f(Xt, αt)dt
]
,

or

lim sup
T→∞

1
T

ln E
[
exp
(∫ T

0

f(Xt, αt)dt
)]

.

This last formulation is called risk-sensitive control in the literature, and was recently
largely used in mathematical finance as a criterion for portfolio management over the
long term.

Another criterion based on the large-deviation behavior type of the system: P [XT /T ≥
c] � e−I(c)T , when T goes to infnity, consists in maximizing over controls α a functional
in the form
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lim sup
T→∞

1
T

lnP
[XT

T
≥ c
]
.

This large-deviation control problem is interpreted in finance as the asymptotic version
of the quantile or value-at-risk (VaR) criterion consisting in maximizing the probability
that the terminal value XT of a portfolio overperforms some benchmark.

2.3.2 Superreplication under gamma constraints

We consider a Black-Scholes model for a financial market with one stock of price process
S and one riskless bond supposed for simplicity equal to a constant:

dSt = μStdt + σStdWt.

The wealth process X of an agent starting from an initial capital x and investing a
number of shares αt at time t in the stock is given by

dXt = αtdSt, X0 = x.

The control process α is assumed to be a semimartingale in the form

dαt = dBt + γtdSt

where B is a finite variation process and γ is an adapted process constrained to take
values in an interval [γ, γ̄].

Given an option payoff g(ST ), the superreplication problem is

v = inf {x : ∃ (α,B, γ), such that XT ≥ g(ST ) a.s.} .

The new feature is that the constraint carries not directly on α but on the “derivative”
of α with respect to the variations dS of the price.

2.3.3 Robust utility maximization problem and risk measures

In the examples described in Section 2.2.1 and 2.2.4, the utility of the portfolio and/or
option payoff to be optimized, is measured according to the Von Neumann-Morgenstern
criterion. The risk of the uncertain payoff −X is valued by the risk measure ρ(−X)
written as an expectation −EU(−X) under some fixed probability measure and for a
given utility function U . Other risk measures were recently proposed such as

ρ(−X) = sup
Q∈Q

EQ[X] (2.2)

or

ρ(−X) = − inf
Q∈Q

EQ[U(−X)], (2.3)

where Q is a set of probability measures. The representation (2.2) is inspired from the
theory of coherent risk measures initiated by Artzner et al. [ADEH99]. For specific choices
of Q, this embeds in particular the well-known measures of VaR type. Robust utility
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functionals of the form (2.3) were suggested by Gilboa and Schmeidler [GS89]. Risk
measures in the form

−ρ(−X) =
∫ ∞

0

ψ(P [U(−X) ≥ x])dx,

where ψ is a probability distortion, i.e. a function from [0, 1] into [0, 1], and U is a utility
function from R+ into R+, were recently considered as a portfolio choice model, and
include Yaari’s criterion, Choquet expected utility, and the behavorial portfolio selection
model.

2.3.4 Forward performance criterion

In the traditional portfolio choice criterion, the utility function is given exogenously and
the performance of the portfolio problem is measured in backward time by the value
function expressed as the supremum over portfolio strategies of the expected utility
from terminal wealth (in the finite horizon case). Recently, Musiela and Zariphopoulou
[MuZa07] introduced a new class of performance criterion. It is characterized by a deter-
ministic datum u0(x) at the beginning of the period, and a family of adapted processes
Ut(x), x ∈ R, such that: U0(x) = u0(x), Ut(Xt) is a supermartingale for any wealth
process, and there exists a wealth process X∗

t s.t. Ut(X∗
t ) is a martingale. Thus, this

criterion is defined for all bounded trading horizons, and is not exogenously given.

2.4 Bibliographical remarks

The first papers on stochastic control appeared in the 1960s with linear state processes
and quadratic costs. Such problems, called stochastic linear regulators, arise in engineer-
ing applications, see e.g. Davis [Da77] for an introduction to this topic.

Applications of stochastic optimal control to management and finance problems were
developed from the 1970s, especially with the seminal paper by Merton [Mer69] on port-
folio selection. The model and results of Merton were then extended by many authors,
among them Zariphopoulou [Zar88], Davis and Norman [DN90], Øksendal and Sulem
[OS02]. These problems are also studied in the monograph by Karatzas and Shreve
[KaSh98]. The model of consumption-production in Section 2.2.2 is formulated in Flem-
ing and Pang [FP05]. Investment models for firms are considered in the book of Dixit
and Pindick [DP94]. The example of irreversible investment problem described in Sec-
tion 2.2.3 is a simplified version of a model studied in Guo and Pham [GP05]. The
mean-variance criterion for portfolio selection was historically formulated by Markowitz
[Ma52] in a static framework over one period. The quadratic hedging criterion presented
in Section 2.2.4 was introduced by Föllmer and Sondermann [FoS86]. The superreplica-
tion problem under uncertain volatility was initially studied by Avellaneda, Levy and
Paras [ALP95].

Optimal stopping problems were largely studied in the literature, initially in the
1960s, and then with a renewed interest due to the various applications in finance, in
particular American options and real options. We mention the works by Dynkin [Dyn63],
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Van Morbecke [Van76], Shiryaev [Sh78], El Karoui [Elk81], or more recently the book
by Peskir and Shiryaev [PeSh06]. There are many papers about the pricing of Ameri-
can options, and we refer to the article by Lamberton [Lam98] for an overview on this
subject. The example of optimal selling of an asset in paragraph 2.2.6 is outlined in the
book [Oks00]. The application of optimal stopping problem to the valuation of natural
resources in Section 2.2.7 is studied in [KMZ98]. Optimal stopping models arising in firm
production are studied for instance in Duckworth and Zervos [DZ00].

Ergodic control problems were studied by Lasry [Las74], Karatzas [Kar80], Bensous-
san and Nagai [BN91], Fleming and McEneaney [FM95]. Applications of risk-sensitive
control problems in finance are developed in the papers by Bielecki and Pliska [BP99],
Fleming and Sheu [FS00], or Nagai [Na03].

The large -deviation control problem in finance was introduced and developed in
Pham [Pha03a], [Pha03b]. Some variation was recently studied in Hata, Nagai and Sheu
[HaNaSh08].

The superreplication problem under gamma constraints was developed by Soner and
Touzi [ST00], and Cheridito, Soner and Touzi [CST05].

Coherent risk measures initiated by Artzner et al [ADEH99] were then developed
by many other authors. We mention in particular convex risk measures introduced by
Föllmer and Schied [FoS02], and Frittelli and Rosazza Gianin [FG04]. Optimization prob-
lems in finance with risk measures are recently studied in the papers by Schied [Schi05],
Gundel [Gu05], Barrieu and El Karoui [BElk04]. The Choquet expected utility criterion
is studied in Carlier and Dana [CaDa06], and behavorial portfolio selection is devel-
oped in Jin and Zhou [JiZh08]. The forward performance criterion for investment was
introduced by Musiela and Zariphopoulou [MuZa07].

The list of control models outlined in this book is of course not exhaustive. There
are other interesting optimization problems in finance: we may cite partial observation
contro problems (see the book by Bensoussan [Ben92]), or impulse control problems
(see Jeanblanc-Picqué and Shiryaev [JS95] or Øksendal and Sulem [OS04]). For others
examples of control models in finance, we may refer to the books of Kamien and Schwartz
[KS81], Seierstad and Sydsaeter [SS87], Sethi and Zhang [SZ94] or Korn [Kor97]. We also
mention a recent book by Schmidli [Schm08] on stochastic control in insurance.
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The classical PDE approach to dynamic programming

3.1 Introduction

In this chapter, we use the dynamic programming method for solving stochastic con-
trol problems. We consider in Section 3.2 the framework of controlled diffusion and the
problem is formulated on finite or infinite horizon. The basic idea of the approach is to
consider a family of control problems by varying the initial state values, and to derive
some relations between the associated value functions. This principle, called the dynamic
programming principle and initiated in the 1950s by Bellman, is stated precisely in Sec-
tion 3.3. This approach yields a certain partial differential equation (PDE), of second
order and nonlinear, called Hamilton-Jacobi-Bellman (HJB), and formally derived in
Section 3.4. When this PDE can be solved by the explicit or theoretical achievement of a
smooth solution, the verification theorem proved in Section 3.5, validates the optimality
of the candidate solution to the HJB equation. This classical approach to the dynamic
programming is called the verification step. We illustrate this method in Section 3.6 by
solving three examples in finance. The main drawback of this approach is to suppose the
existence of a regular solution to the HJB equation. This is not the case in general, and
we give in Section 3.7 a simple example inspired by finance pointing out this feature.

3.2 Controlled diffusion processes

We consider a control model where the state of the system is governed by a stochastic
differential equation (SDE) valued in R

n:

dXs = b(Xs, αs)ds + σ(Xs, αs)dWs, (3.1)

where W is a d-dimensional Brownian motion on a filtered probability space (Ω,F , F =
(Ft)t≥0, P ) satisfying the usual conditions. We can consider coefficients b(t, x, a) and
σ(t, x, a) depending on time t, but in the case of infinite horizon problems described be-
low, it is important that coefficients do not depend on time in order to get the stationarity
of the problem, and so a value function independent of time.

The control α = (αs) is a progressively measurable (with respect to F) process, valued
in A, subset of R

m.
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The measurable functions b : R
n×A → R

n and σ : R
n×A → R

n×d satisfy a uniform
Lipschitz condition in A: ∃ K ≥ 0, ∀ x, y ∈ R

n, ∀ a ∈ A,

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ K|x− y|. (3.2)

In the sequel, for 0 ≤ t ≤ T ≤ ∞, we denote by Tt,T the set of stopping times valued
in [t, T ]. When t = 0 and T = ∞, we simply write T = T0,∞.

Finite horizon problem.
We fix a finite horizon 0 < T < ∞. We denote by A the set of control processes α such
that

E
[ ∫ T

0

|b(0, αt)|2 + |σ(0, αt)|2dt
]

< ∞. (3.3)

In the above condition (3.3), the element x = 0 is an arbitrary value of the diffusion and if
this element does not lie in the support of the diffusion, we may take any arbitrary value
in this support. From Section 1.3 in Chapter 1, the conditions (3.2) and (3.3) ensure for
all α ∈ A and for any initial condition (t, x) ∈ [0, T ]×R

n, the existence and uniqueness
of a strong solution to the SDE (with random coefficients) (3.1) starting from x at s =
t. We then denote by {Xt,x

s , t ≤ s ≤ T} this solution with a.s. continuous paths. We also
recall that under these conditions on b, σ and α, we have

E
[

sup
t≤s≤T

|Xt,x
s |2

]
< ∞. (3.4)

lim
h↓0+

E
[

sup
s∈[t,t+h]

∣
∣Xt,x

s − x
∣
∣2
]

= 0. (3.5)

Functional objective.

Let f : [0, T ]×R
n×A → R and g : R

n → R two measurable functions. We suppose that:

(Hg) (i) g is lower-bounded

or (ii) g satisfies a quadratic growth condition: |g(x)| ≤ C(1 + |x|2), ∀x ∈ R
n,

for some constant C independent of x.

For (t, x) ∈ [0, T ]×R
n, we denote by A(t, x) the subset of controls α in A such that

E
[ ∫ T

t

∣
∣f(s,Xt,x

s , αs)
∣
∣ ds
]

< ∞, (3.6)

and we assume that A(t, x) is not empty for all (t, x) ∈ [0, T ]× R
n. We can then define

under (Hg) the gain function:

J(t, x, α) = E
[ ∫ T

t

f(s,Xt,x
s , αs)ds + g(Xt,x

T )
]
,

for all (t, x) ∈ [0, T ] × R
n and α ∈ A(t, x). The objective is to maximize over control

processes the gain function J , and we introduce the associated value function:

v(t, x) = sup
α∈A(t,x)

J(t, x, α). (3.7)
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• Given an initial condition (t, x) ∈ [0, T )×R
n, we say that α̂ ∈ A(t, x) is an optimal

control if v(t, x) = J(t, x, α̂).
• A control process α in the form αs = a(s,Xt,x

s ) for some measurable function a

from [0, T ]× R
n into A, is called Markovian control.

In the sequel, we shall implicitly assume that the value function v is measurable in its
arguments. This point is not trivial a priori, and we refer to measurable section theorems
(see Appendix in Chapter III in Dellacherie and Meyer [DM75]) for sufficient conditions.

Remark 3.2.1 When f satisfies a quadratic growth condition in x, i.e. there exist a
positive constant C and a positive function κ : A → R+ such that

|f(t, x, a)| ≤ C(1 + |x|2) + κ(a), ∀(t, x, a) ∈ [0, T ]× R
n ×A, (3.8)

then the estimate (3.4) shows that for all (t, x) ∈ [0, T ]×R
n, for any constant control α

= a in A

E
[ ∫ T

t

∣
∣f(s,Xt,x

s , a)
∣
∣ ds
]

< ∞.

Hence, the constant controls in A lie in A(t, x). Moreover, if there exists a positive
constant C such that κ(a) ≤ C(1+|b(0, a)|2+|σ(0, a)|2), for all a in A, then the conditions
(3.3) and (3.4) show that for all (t, x) ∈ [0, T ]× R

n, for any control α ∈ A

E
[ ∫ T

t

∣
∣f(s,Xt,x

s , αs)
∣
∣ ds
]

< ∞.

In other words, in this case, A(t, x) = A.

Infinite horizon problem.
We denote by A0 the set of control processes α such that

E
[ ∫ T

0

|b(0, αt)|2 + |σ(0, αt)|2dt
]

< ∞, ∀ T > 0. (3.9)

Given an initial condition t = 0, x ∈ R
n, and a control α ∈ A0, there exists a unique

strong solution, denoted by {Xx
s , s ≥ 0}, to (3.1) starting from x at t = 0. We recall the

following estimate (see Theorem 1.3.16):

E
[
|Xx

s |
2
]
≤ C|x|2 + CeCsE

[∫ s

0

|x|2 + |b(0, αu)|2 + |σ(0, αu)|2du

]

, (3.10)

for some constant C independent of s, x and α.

Functional objective.

Let β > 0 and f : R
n × A → R a measurable function. For x ∈ R

n, we denote by A(x)
the subset of controls α in A0 such that

E

[∫ ∞

0

e−βs |f(Xx
s , αs)| ds

]

< ∞, (3.11)

and we assume that A(x) is not empty for all x ∈ R
n. We then define the gain function:
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J(x, α) = E
[ ∫ ∞

0

e−βsf(Xx
s , αs)ds

]
,

for all x ∈ R
n and α ∈ A(x), and the associated value function

v(x) = sup
α∈A(x)

J(x, α). (3.12)

• Given an initial condition x ∈ R
n, we say that α̂ ∈ A(x) is an optimal control if

v(x) = J(x, α̂).
• A control process α in the form αs = a(s,Xx

s ) for some measurable function a from
R+ × R

n into A, is called Markovian control.

Notice that it is important to suppose here that the function f(x, a) does not depend
on time in order to get the stationarity of the problem, i.e. the value function does not
depend on the initial date at which the optimization problem is considered.

Remark 3.2.2 When f satisfies a quadratic growth condition in x, i.e. there exist a
positive constant C and a positive function κ : A → R+ such that

|f(x, a)| ≤ C(1 + |x|2) + κ(a), ∀(x, a) ∈ R
n ×A, (3.13)

then the estimate (3.10) shows that for β > 0 large enough, for all x ∈ R
n, a ∈ A

E
[ ∫ ∞

0

e−βs |f(Xx
s , a)| ds

]
< ∞.

Hence, the constant controls in A belong to A(x).

3.3 Dynamic programming principle

The dynamic programming principle (DPP) is a fundamental principle in the theory of
stochastic control. In the context of controlled diffusion processes described in the previ-
ous section, and in fact more generally for controlled Markov processes, it is formulated
as follows:

Theorem 3.3.1 (Dynamic programming principle)
(1) Finite horizon: let (t, x) ∈ [0, T ]× R

n. Then we have

v(t, x) = sup
α∈A(t,x)

sup
θ∈Tt,T

E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]

(3.14)

= sup
α∈A(t,x)

inf
θ∈Tt,T

E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
. (3.15)

(2) Infinite horizon: let x ∈ R
n. Then we have

v(x) = sup
α∈A(x)

sup
θ∈T

E
[ ∫ θ

0

e−βsf(Xx
s , αs)ds + e−βθv(Xx

θ )
]

(3.16)

= sup
α∈A(x)

inf
θ∈T

E
[ ∫ θ

0

e−βsf(Xx
s , αs)ds + e−βθv(Xx

θ )
]
, (3.17)

with the convention that e−βθ(ω) = 0 when θ(ω) = ∞.
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Remark 3.3.3 In the sequel, we shall often use the following equivalent formulation (in
the finite horizon case) of the dynamic programming principle:
(i) For all α ∈ A(t, x) and θ ∈ Tt,T :

v(t, x) ≥ E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
. (3.18)

(ii) For all ε > 0, there exists α ∈ A(t, x) such that for all θ ∈ Tt,T

v(t, x)− ε ≤ E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
. (3.19)

This is a stronger version than the usual version of the DPP, which is written in the
finite horizon case as

v(t, x) = sup
α∈A(t,x)

E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
, (3.20)

for any stopping time θ ∈ Tt,T . We have a similar remark in the infinite horizon case.

The interpretation of the DPP is that the optimization problem can be split in two
parts: an optimal control on the whole time interval [t, T ] may be obtained by first
searching for an optimal control from time θ given the state value Xt,x

θ , i.e. compute
v(θ,Xt,x

θ ), and then maximizing over controls on [t, θ] the quantity

E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
.

Proof of the DPP.
We consider the finite horizon case.
1. Given an admissible control α ∈ A(t, x), we have by pathwise uniqueness of the flow
of the SDE for X, the Markovian structure

Xt,x
s = X

θ,Xt,x
θ

s , s ≥ θ,

for any stopping time θ valued in [t, T ]. By the law of iterated conditional expectation,
we then get

J(t, x, α) = E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + J(θ,Xt,x

θ , α)
]
,

and since J(., ., α) ≤ v, θ is arbitrary in Tt,T

J(t, x, α) ≤ inf
θ∈Tt,T

E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]

≤ sup
α∈A(t,x)

inf
θ∈Tt,T

E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
.

By taking the supremum over α in the left hand side term, we obtain the inequality:
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v(t, x) ≤ sup
α∈A(t,x)

inf
θ∈Tt,T

E

[∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )

]

. (3.21)

2. Fix some arbitrary control α ∈ A(t, x) and θ ∈ Tt,T . By definition of the value
functions, for any ε > 0 and ω ∈ Ω, there exists αε,ω ∈ A(θ(ω), Xt,x

θ(ω)(ω)), which is

an ε-optimal control for v(θ(ω), Xt,x
θ(ω)(ω)), i.e.

v(θ(ω), Xt,x
θ(ω)(ω))− ε ≤ J(θ(ω), Xt,x

θ(ω)(ω), αε,ω). (3.22)

Let us now define the process

α̂s(ω) =
{

αs(ω), s ∈ [0, θ(ω)]
αε,ω

s (ω), s ∈ [θ(ω), T ].

There are delicate measurability questions here, but it can be shown by the measurable
selection theorem (see e.g. Chapter 7 in [BeSh78]) that the process α̂ is progressively mea-
surable, and so lies in A(t, x). By using again the law of iterated conditional expectation,
and from (3.22), we then get

v(t, x) ≥ J(t, x, α̂) = E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + J(θ,Xt,x

θ , αε)
]

≥ E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
− ε.

From the arbitrariness of α ∈ A(t, x), θ ∈ Tt,T and ε > 0, we obtain the inequality

v(t, x) ≥ sup
α∈A(t,x)

sup
θ∈Tt,T

E
[ ∫ θ

t

f(s,Xt,x
s , αs)ds + v(θ,Xt,x

θ )
]
. (3.23)

By combining the two relations (3.21) and (3.23), we get the required result.

3.4 Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman equation (HJB) is the infinitesimal version of the dynamic
programming principle: it describes the local behavior of the value function when we send
the stopping time θ in (3.20) to t. The HJB equation is also called dynamic programming
equation. In this chapter, we shall use the HJB equation in a classical way as follows:

• Derive the HJB equation formally
• Obtain or try to show the existence of a smooth solution by PDE techniques
• Verification step: show that the smooth solution is the value function by Itô’s formula
• As a byproduct, we obtain an optimal feedback control.

3.4.1 Formal derivation of HJB

Finite horizon problem.
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Let us consider the time θ = t + h and a constant control αs = a, for some arbitrary a

in A, in the relation (3.18) of the dynamic programming principle:

v(t, x) ≥ E
[ ∫ t+h

t

f(s,Xt,x
s , a)ds + v(t + h,Xt,x

t+h)
]
. (3.24)

By assuming that v is smooth enough, we may apply Itô’s formula between t and t + h:

v(t + h,Xt,x
t+h) = v(t, x) +

∫ t+h

t

(
∂v

∂t
+ Lav

)

(s,Xt,x
s )ds + (local) martingale,

where La is the operator associated to the diffusion (3.1) for the constant control a, and
defined by (see Section 1.3.1)

Lav = b(x, a).Dxv +
1
2
tr
(
σ(x, a)σ′(x, a)D2

xv
)
.

By substituting into (3.24), we then get

0 ≥ E
[ ∫ t+h

t

(∂v

∂t
+ Lav

)
(s,Xt,x

s ) + f(s,Xt,x
s , a)ds

]
.

Dividing by h and sending h to 0, this yields by the mean-value theorem

0 ≥ ∂v

∂t
(t, x) + Lav(t, x) + f(t, x, a).

Since this holds true for any a ∈ A, we obtain the inequality

− ∂v

∂t
(t, x)− sup

a∈A

[
Lav(t, x) + f(t, x, a)

]
≥ 0. (3.25)

On the other hand, suppose that α∗ is an optimal control. Then in (3.20), we have

v(t, x) = E
[ ∫ t+h

t

f(s,X∗
s , α∗

s)ds + v(t + h,X∗
t+h)

]
,

where X∗ is the state system solution to (3.1) starting from x at t, with the control α∗.
By similar arguments as above, we then get

− ∂v

∂t
(t, x)− Lα∗

t v(t, x)− f(t, x, α∗
t ) = 0, (3.26)

which combined with (3.25), suggests that v should satisfy

− ∂v

∂t
(t, x)− sup

a∈A

[
Lav(t, x) + f(t, x, a)

]
= 0, ∀(t, x) ∈ [0, T )× R

n, (3.27)

if the above supremum in a is finite. We shall see later how to deal with the case when this
supremum is infinite, which may arise typically when the control space A is unbounded.
We often rewrite this PDE in the form

− ∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) = 0, ∀(t, x) ∈ [0, T )× R
n, (3.28)
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where for (t, x, p, M) ∈ [0, T ]× R
n × R

n × Sn

H(t, x, p, M) = sup
a∈A

[
b(x, a).p +

1
2
tr (σσ′(x, a)M) + f(t, x, a)

]
.

This function H is called the Hamiltonian of the associated control problem. The equation
(3.28) is called the dynamic programing equation or Hamilton-Jacobi-Bellman (HJB)
equation. The regular terminal condition associated to this PDE is

v(T, x) = g(x), ∀x ∈ R
n, (3.29)

which results immediately from the very definition (3.7) of the value function v considered
at the horizon date T .

Remark 3.4.4 (1) When the control space A is reduced to a singleton {a0}, i.e. there
is no control on the state process, the HJB equation is reduced to the linear Cauchy
problem:

− ∂v

∂t
(t, x)− La0v(t, x) = f(t, x, a0), ∀(t, x) ∈ [0, T )× R

n (3.30)

v(T, x) = g(x), ∀x ∈ R
n. (3.31)

2) The optimality argument of the dynamic programming principle suggests that if
one can find a measurable function α∗(t, x) such that

sup
a∈A

[Lav(t, x)f(t, x, a)] = Lα∗(t,x)v(t, x) + f(t, x, α∗(t, x)),

i.e.

α∗(t, x) ∈ arg max
a∈A

[
Lav(t, x) + f(t, x, a)

]
,

then we would get

−∂v

∂t
− Lα∗(t,x)v(t, x)− f(t, x, α∗(t, x)) = 0, v(T, .) = g,

and so by Feynman-Kac formula

v(t, x) = E
[ ∫ T

t

f(X∗
s , α∗(s,X∗

s ))ds + g(X∗
T )
]
,

where X∗ is the solution to the SDE

dX∗
s = b(X∗

s , α∗(s,X∗
s )) + σ(X∗

s , α∗(s,X∗
s ))dWs, t ≤ s ≤ T

X∗
t = x.

As a byproduct, this shows that the process α∗(s,X∗
s ) is an optimal Markovian control.

Infinite horizon problem.
By using similar arguments as in the finite horizon case, we derive formally the HJB
equation for the value function in (3.12):
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βv(x)− sup
a∈A

[Lav(x) + f(x, a)] = 0, ∀x ∈ R
n,

which may be written also as

βv(x)−H(x,Dv(x), D2v(x)) = 0, ∀x ∈ R
n,

where for (x, p,M) ∈ R
n × R

n × Sn

H(x, p,M) = sup
a∈A

[
b(x, a).p +

1
2
tr (σσ′(x, a)M) + f(x, a)

]
.

3.4.2 Remarks and extensions

1. The results in the finite horizon case are easily extended when the gain function J to
be maximized has the general form

J(t, x, α) = E
[ ∫ T

t

Γ (t, s)f(s,Xt,x
s , αs)ds + Γ (t, T )g(Xt,x

T )
]
,

where

Γ (t, s) = exp
(
−
∫ s

t

β(u,Xt,x
u , αu)du

)
, t ≤ s ≤ T,

and β is a measurable function on [0, T ]×R
n×A. In this case, the Hamiltonian associated

to the stochastic control problem is

H(t, x, v, p, M) = sup
a∈A

[
− β(t, x, a)v + b(x, a).p +

1
2
tr (σ(x, a)σ′(x, a)M) + f(t, x, a)

]
.

2. When the control space A is unbounded, the Hamiltonian

H(t, x, p, M) = sup
a∈A

[
b(x, a).p +

1
2
tr (σσ′(x, a)M) + f(t, x, a)

]
.

may take the value ∞ in some domain of (t, x, p, M). More precisely, assume that there
exists a continuous function G(t, x, p, M) on [0, T ]× R

n × R
n × Sn such that

H(t, x, p, M) < ∞⇐⇒ G(t, x, p, M) ≥ 0.

Then from the arguments leading to the HJB equation (3.28), we must have

G(t, x, Dxv(t, x), D2
xv(t, x)) ≥ 0, (3.32)

and − ∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) ≥ 0 (3.33)

Moreover, if inequality (3.32) is strict at some (t, x) ∈ [0, T ) × R
n, then there exists

a neighborhood of (t, x, Dxv(t, x), D2
xv(t, x)) for which H is finite. Then, formally the

optimal control should be attained in a neighborhood of (t, x), and by similar argument
as in (3.28), we should have equality in (3.33). We then obtain a variational inequality
for the dynamic programming equation:
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min
[
− ∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)),

G(t, x, Dxv(t, x), D2
xv(t, x))

]
= 0. (3.34)

In this case, we say that the control problem is singular, in contrast with the regular
case of HJB equation (3.28). A typical case of a singular problem arises when the control
influences linearly the dynamics of the system and the gain function. For example, in
the one-dimensional case n = 1, A = R+, and

b(x, a) = b̂(x) + a, σ(x, a) = σ̂(x), f(t, x, a) = f̂(t, x)− a,

we have

H(t, x, p, M) =

{
b̂(x)p + 1

2 σ̂(x)2M + f̂(t, x) if − p + 1 ≥ 0
∞ if − p + 1 < 0.

The variational inequality is then written as

min
[
− ∂v

∂t
(t, x)− b̂(x)

∂v

∂x
(t, x)− 1

2
σ̂(x)2

∂2v

∂x2
(t, x) , −∂v

∂x
(t, x) + 1

]
= 0.

We shall give in Section 3.7. another example of singular control arising in finance and
where the control is in the diffusion term. In singular control problem, the value function
is in general discontinuous in T so that (3.29) is not the relevant terminal condition. We
shall study in the next chapter how to derive rigorously the HJB equation (or variational
inequality) with the concept of viscosity solutions to handle the lack a priori of regularity
of the value function, and also to determine the correct terminal condition.

3. When looking at the minimization problem

v(t, x) = sup
α∈A(t,x)

E
[ ∫ T

t

f(s,Xt,x
s , αs)ds + g(Xt,x

T )
]
,

we can go back to a maximization problem by considering the value function −v. This
is equivalent to considering a Hamiltonian function:

H(t, x, p, M) = inf
a∈A

[
b(x, a).p +

1
2
tr (σ(x, a)σ′(x, a)M) + f(t, x, a)

]
,

with an HJB equation:

−∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) = 0.

When H may take the value −∞, and assuming that there exists a continuous function
G(t, x, p, M) on [0, T ]× R

n × R
n × Sn such that

H(t, x, p, M) > −∞ ⇐⇒ G(t, x, p, M) ≤ 0,

the HJB variational inequality is written as

max
[
− ∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) , G(t, x, Dxv(t, x), D2
xv(t, x))

]
= 0.

We have an analogous remark in the case of the infinite horizon minimization problem.
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3.5 Verification theorem

The crucial step in the classical approach to dynamic programming consists in proving
that, given a smooth solution to the HJB equation, this candidate coincides with the
value function. This result is called the verification theorem, and allows us to exhibit as
byproduct an optimal Markovian control. The proof relies essentially on Itô’s formula.
The assertions on the sufficient conditions may slightly vary from a problem to another
one, and should be adapted in the context of the considered problem. We formulate a
general version of the verification theorem given the assumptions defined in the previous
paragraphs.

Theorem 3.5.2 (Finite horizon)
Let w be a function in C1,2([0, T ) × R

n) ∩ C0([0, T ] × R
n), and satisfying a quadratic

growth condition, i.e. there exists a constant C such that

|w(t, x)| ≤ C(1 + |x|2), ∀(t, x) ∈ [0, T ]× R
n.

(i) Suppose that

− ∂w

∂t
(t, x)− sup

a∈A

[
Law(t, x) + f(t, x, a)

]
≥ 0, (t, x) ∈ [0, T )× R

n, (3.35)

w(T, x) ≥ g(x), x ∈ Rn. (3.36)

Then w ≥ v on [0, T ]× R
n.

(ii) Suppose further that w(T.) = g, and there exists a measurable function α̂(t, x),
(t, x) ∈ [0, T )× R

n, valued in A such that

−∂w

∂t
(t, x)− sup

a∈A

[
Law(t, x) + f(t, x, a)

]
= −∂w

∂t
(t, x)− Lα̂(t,x)w(t, x)− f(t, x, α̂(t, x))

= 0,

the SDE

dXs = b(Xs, α̂(s,Xs))ds + σ(Xs, α̂(s,Xs))dWs

admits a unique solution, denoted by X̂t,x
s , given an initial condition Xt = x, and the

process {α̂(s, X̂t,x
s ) t ≤ s ≤ T} lies in A(t, x). Then

w = v on [0, T ]× R
n,

and α̂ is an optimal Markovian control.

Proof. (i) Since w ∈ C1,2([0, T )×R
n), we have for all (t, x) ∈ [0, T )×R

n, α ∈ A(t, x),
s ∈ [t, T ), and any stopping time τ valued in [t,∞), by Itô’s formula

w(s ∧ τ, Xt,x
s∧τ ) = w(t, x) +

∫ s∧τ

t

∂w

∂t
(u,Xt,x

u ) + Lαuw(u,Xt,x
u )du

+
∫ s∧τ

t

Dxw(u,Xt,x
u )′σ(Xt,x

u , αu)dWu.
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We choose τ = τn = inf{s ≥ t :
∫ s

t
|Dxw(u,Xt,x

u )′σ(Xt,x
u , αu)|2du ≥ n}, and we no-

tice that τn ↗ ∞ when n goes to infinity. The stopped process {
∫ s∧τn

t
Dxw(u,Xt,x

u )′

σ(Xt,x
u , αu)dWu, t ≤ s ≤ T} is then a martingale, and by taking the expectation, we get

E
[
w(s ∧ τn, Xt,x

s∧τn
)
]

= w(t, x) + E
[ ∫ s∧τn

t

∂w

∂t
(u,Xt,x

u ) + Lαuw(u,Xt,x
u )du

]
.

Since w satisfies (3.35), we have

∂w

∂t
(u,Xt,x

u ) + Lαuw(u,Xt,x
u ) + f(Xt,x

u , αu) ≤ 0, ∀α ∈ A(t, x),

and so

E
[
w(s ∧ τn, Xt,x

s∧τn
)
]
≤ w(t, x)−E

[ ∫ s∧τn

t

f(Xt,x
u , αu)du

]
, ∀α ∈ A(t, x). (3.37)

We have
∣
∣
∣
∣

∫ s∧τn

t

f(Xt,x
u , αu)du

∣
∣
∣
∣ ≤
∫ T

t

∣
∣f(Xt,x

u , αu)
∣
∣ du,

and the right-hand-side term is integrable by the integrability condition on A(t, x). Since
w satisfies a quadratic growth condition, we have

∣
∣w(s ∧ τn, Xt,x

s∧τn
)
∣
∣ ≤ C(1 + sup

s∈[t,T ]

|Xt,x
s |2),

and the right-hand-side term is integrable from (3.4). We can then apply the dominated
convergence theorem, and send n to infinity into (3.37):

E
[
w(s,Xt,x

s )
]
≤ w(t, x)− E

[ ∫ s

t

f(Xt,x
u , αu)du

]
, ∀α ∈ A(t, x).

Since w is continuous on [0, T ] × R
n, by sending s to T , we obtain by the dominated

convergence theorem and by (3.36)

E
[
g(Xt,x

T )
]
≤ w(t, x)−E

[ ∫ T

t

f(Xt,x
u , αu)du

]
, ∀α ∈ A(t, x).

From the arbitrariness of α ∈ A(t, x), we deduce that w(t, x) ≤ v(t, x), for all (t, x) ∈
[0, T ]× R

n.
(ii) We apply Itô’s formula to w(u, X̂t,x

u ) between t ∈ [0, T ) and s ∈ [t, T ) (after an
eventual localization for removing the stochastic integral term in the expectation ):

E
[
w(s, X̂t,x

s )
]

= w(t, x) + E
[ ∫ s

t

∂w

∂t
(u, X̂t,x

u ) + Lα̂(u,X̂t,x
u )w(u, X̂t,x

u )du
]
.

Now, by definition of α̂(t, x), we have

−∂w

∂t
− Lα̂(t,x)w(t, x)− f(t, x, α̂(t, x)) = 0,

and so
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E
[
w(s, X̂t,x

s )
]

= w(t, x)− E
[ ∫ s

t

f(X̂t,x
u , α̂(u, X̂t,x

u ))du
]
.

By sending s to T , we then obtain

w(t, x) = E
[ ∫ T

t

f(X̂t,x
u , α̂(u, X̂t,x

u ))du + g(X̂t,x
T )
]

= J(t, x, α̂).

This shows that w(t, x) = J(t, x, α̂) ≤ v(t, x), and finally that w = v with α̂ as an optimal
Markovian control. �

Remark 3.5.5 In the particular case where the control space A is reduced to a singleton
{a0}, this verification theorem is a version of the Feynman-Kac formula: it states that if
w is a function in C1,2([0, T )×R

n) ∩ C0([0, T )×R
n) with a quadratic growth condition,

the solution to the Cauchy problem (3.30)-(3.31), then w admits the representation

w(t, x) = E
[ ∫ T

t

f(Xt,x
s , a0)ds + g(Xt,x

T )
]
.

Theorem 3.5.3 (Infinite horizon)
Let w ∈ C2(Rn), and satisfies a quadratic growth condition.
(i) Suppose that

βw(x)− sup
a∈A

[Law(x) + f(x, a)] ≥ 0, x ∈ R
n, (3.38)

lim sup
T→∞

e−βT E[w(Xx
T )] ≥ 0, ∀x ∈ R

n, ∀α ∈ A(x), (3.39)

Then w ≥ v on R
n.

(ii) Suppose further that for all x ∈ R
n, there exists a measurable function α̂(x), x ∈

R
n, valued in A such that

βw(x)− sup
a∈A

[Law(x) + f(x, a)] = βw(x)− Lα̂(x)w(x)− f(x, α̂(x))

= 0,

the SDE

dXs = b(Xs, α̂(Xs))ds + σ(Xs, α̂(Xs))dWs

admits a unique solution, denoted by X̂x
s , given an initial condition X0 = x, satisfying

lim inf
T→∞

e−βT E[w(X̂x
T ] ≤ 0, (3.40)

and the process {α̂(X̂x
s ), s ≥ 0}, lies in A(x). Then

w(x) = v(x), ∀x ∈ R
n

and α̂ is an optimal Markovian control.
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Proof. (i) Let w ∈ C2(Rn) and α ∈ A(x). By Itô’s formula applied to e−βtw(Xx
t )

between 0 and T ∧ τn, we have

e−β(T∧τn)w(Xx
T∧τn

) = w(x) +
∫ T∧τn

0

e−βu [Lαuw(Xx
u)− βw(Xx

u)] du

+
∫ T∧τn

0

e−βuDw(Xx
u)′σ(Xx

u , αu)dWu.

Here, τn is the stopping time: τn = inf{t ≥ 0 :
∫ t

0
|Dxw(u,Xx

u)′σ(Xx
u , αu)|2du ≥ n}, so

that the stopped stochastic integral is a martingale, and by taking the expectation

E
[
e−β(T∧τn)w(Xx

T∧τn
)
]

= w(x) + E
[ ∫ T∧τn

0

e−βu (−βw + Lαuw) (Xx
u)du

]

≤ w(x)− E
[ ∫ T∧τn

0

e−βuf(Xx
u , αu)du

]
, (3.41)

from (3.38). By the quadratic growth condition on w and the integrability condition
(3.11), we may apply the dominated convergence theorem and send n to infinity:

E
[
e−βT w(Xx

T )
]
≤ w(x)− E

[ ∫ T

0

e−βuf(Xx
u , αu)du

]
, ∀α ∈ A(x). (3.42)

By sending T to infinity, we have by (3.39) and the dominated convergence theorem

w(x) ≥ E
[ ∫ ∞

0

e−βtf(Xx
t , αt)dt

]
, ∀α ∈ A(x),

and so w(x) ≥ v(x), ∀x ∈ R
n.

(ii) By repeating the above arguments and observing that the control α̂ achieves
equality in (3.42), we have

E
[
e−βT w(X̂x

T )
]

= w(x)− E
[ ∫ T

0

e−βuf(X̂x
u , α̂(X̂x

u))du
]
.

By sending T to infinity and from (3.40), we then deduce

w(x) ≤ J(x, α̂) = E
[ ∫ ∞

0

e−βuf(X̂x
u , α̂(X̂x

u))du
]
,

and therefore w(x) = v(x) = J(x, α̂). �

Remark 3.5.6 In the particular case where the control space A is reduced to a singleton
{a0}, this verification theorem is a version of the Feynman-Kac formula on an infinite
horizon: it states that if w is a function C2(Rn) with a quadratic growth condition, the
solution to the linear elliptic PDE

βw(x)− La0w(x)− f(x, a0) = 0, x ∈ R
n,

lim
T→∞

e−βT E[w(Xx
T )] = 0, x ∈ R

n,

then w admits the representation

w(t, x) = E
[ ∫ ∞

0

e−βtf(Xx
t , a0)dt

]
.
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The two previous theorems suggest the following strategy for solving stochastic con-
trol problems. In the finite horizon case, we first try to solve the nonlinear HJB equation:

− ∂w

∂t
− sup

a∈A
[Law(t, x) + f(t, x, a)] = 0, (t, x) ∈ [0, T )× R

n, (3.43)

with the terminal condition w(T, x) = g(x). Then, fix (t, x) ∈ [0, T )×R
n, and solve supa∈A

[Law(t, x) + f(t, x, a)] as a maximum problem in a ∈ A. Denote by a∗(t, x) the value of
a that realizes this maximum. If this nonlinear PDE with a terminal condition admits a
smooth solution w, then w is the value function to the stochastic control problem, and
a∗ is an optimal Markovian control. This approach is valid once the HJB equation (3.43)
has the solution C1,2 satisfying the conditions for applying the verification theorem.
Existence results for smooth solutions to parabolic PDEs of HJB type are provided in
Fleming and Rishel [FR75], Gilbarg and Trudinger [GT85] or Krylov [Kry87]. The main
required condition is a uniform ellipticity condition:

there exists a constant c > 0 such that

y′σ(x, a)σ′(x, a)y ≥ c|y|2, ∀x, y ∈ R
n, ∀a ∈ A.

We also mention that in the verification of conditions (ii) in Theorems 3.5.2 and 3.5.3,
it is not always easy to obtain the existence of a solution to the SDE associated to the
candidate α̂ for the optimal control.

3.6 Applications

3.6.1 Merton portfolio allocation problem in finite horizon

We consider again the example described in Section 2.2.1 in the framework of the Black-
Scholes-Merton model over a finite horizon T . An agent invests at any time t a proportion
αt of his wealth in a stock of price S (governed by geometric Brownian motion) and 1−αt

in a bond of price S0 with interest rate r. The investor faces the portfolio constraint that
at any time t, αt is valued in A closed convex subset of R. His wealth process evolves
according to

dXt =
Xtαt

St
dSt +

Xt(1− αt)
S0

t

dS0
t

= Xt (αtμ + (1− αt)r) dt + XtαtσdWt.

We denote byA the set of progressively measurable processes α valued in A, and such that
∫ T

0
|αs|2ds < ∞ a.s. This integrability condition ensures the existence and uniqueness of

a stong solution to the SDE governing the wealth process controlled by α ∈ A (to see this
consider the logarithm of the positive wealth process). Given a portfolio strategy α ∈ A,
we denote by Xt,x the corresponding wealth process starting from an initial capital Xt =
x > 0 at time t. The agent wants to maximize the expected utility from terminal wealth
at horizon T . The value function of the utility maximization problem is then defined by

v(t, x) = sup
α∈A

E
[
U(Xt,x

T )
]
, (t, x) ∈ [0, T ]× R+. (3.44)
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The utility function U is increasing and concave on R+. Let us check that for all t ∈
[0, T ], v(t, .) is also increasing and concave in x. Fix some arbitrary 0 < x ≤ y and α

a control process in A. We write Zs = Xt,x
s − Xt,y

s . Then the process Z satisfies the
following SDE: dZs = Zs

[(
αsμ + (1−αs)r

)
ds + αsσdWs

]
, Zt = y− x ≥ 0, and so Zs ≥

0, i.e. Xt,y
s ≥ Xt,x

s for all s ≥ t. Since U is increasing, we have U(Xt,x
T ) ≤ U(Xt,y

T ), and
thus

E
[
U(Xt,x

T )
]
≤ E

[
U(Xt,y

T )
]
≤ v(t, y), ∀α ∈ A.

This shows v(t, x) ≤ v(t, y). Now, let 0 < x1, x2, α1, α2 two control processes in A, and
λ ∈ [0, 1]. We write xλ = λx1 + (1− λ)x2, Xt,xi the wealth process starting from xi at
time t, and controlled by αi, i = 1, 2. We write

αλ
s =

λXt,x1
s α1

s + (1− λ)Xt,x2
s α2

s

λXt,x1
s + (1− λ)Xt,x2

s

.

Observe that by convexity of A, the process αλ lies in A. Moreover, from the linear
dynamics of the wealth process, we see that Xλ := λXt,x1 + (1−λ)Xt,x2 is governed by

dXλ
s = Xλ

s

(
αλ

s μ + (1− αλ
s )r
)
ds + Xλ

s αλ
s σdWs, s ≥ t,

Xλ
t = xλ.

This shows that λXt,x1 + (1 − λ)Xt,x2 is a wealth process starting from xλ at t, and
controlled by αλ. By the concavity of the utility function U , we have

U
(
λXt,x1

T + (1− λ)Xt,x2
T

)
≥ λU(Xt,x1

T ) + (1− λ)U(Xt,x2
T ),

and so

v(λx1 + (1− λ)x2) ≥ λE
[
U(Xt,x1

T )
]
+ (1− λ)E

[
U(Xt,x2

T )
]
.

Since this holds true for any α1, α2 in A, we deduce that

v(λx1 + (1− λ)x2) ≥ λv(x1) + (1− λ)v(x2).

Actually, if U is strictly concave and if there exists an optimal control, the above argu-
ments show that the value function v is also strictly concave in x.

The HJB equation for the stochastic control problem (3.44) is

− ∂w

∂t
− sup

a∈A
[Law(t, x)] = 0, (3.45)

together with the terminal condition

w(T, x) = U(x), x ∈ R+. (3.46)

Here, Law(t, x) = x(aμ+(1−a)r)
∂w

∂x
+ 1

2x2a2σ2 ∂2w

∂x2
. It turns out that for the particular

case of power utility functions of CRRA type, as considered originally in Merton

U(x) =
xp

p
, x ≥ 0, p < 1, p �= 0,
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one can find explicitly a smooth solution to (3.45)-(3.46). We are looking for a candidate
solution in the form

w(t, x) = φ(t)U(x),

for some positive function φ. By substituting into (3.45)-(3.46), we derive that φ should
satisfy the ordinary differential equation

φ′(t) + ρφ(t) = 0, φ(T ) = 1,

where

ρ = p sup
a∈A

[
a(μ− r) + r − 1

2
a2(1− p)σ2

]
. (3.47)

We then obtain φ(t) = exp(ρ(T − t)). Hence, the function given by

w(t, x) = exp(ρ(T − t))U(x), (t, x) ∈ [0, T ]× R+, (3.48)

is strictly increasing and concave in x, and is a smooth solution to (3.45)-(3.46). Fur-
thermore, the function a ∈ A �→ a(μ− r) + r − 1

2a2(1− p)σ2 is strictly concave on the
closed convex set A, and thus attains its maximum at some constant â. By construction,
â attains the supremum of supa∈A[Law(t, x)]. Moreover, the wealth process associated
to the constant control â

dXt = Xt (âμ + (1− â)r) dt + XtâσdWt,

admits a unique solution given an initial condition. From the verification Theorem 3.5.2,
this proves that the value function to the utility maximization problem (3.44) is equal
to (3.48), and the optimal proportion of wealth to invest in stock is constant given by â.
Finally, notice that when A = R, the values of â and ρ are explicitly given by

â =
μ− r

σ2(1− p)
, (3.49)

and

ρ =
(μ− r)2

2σ2

p

1− p
+ rp.

3.6.2 Investment-consumption problem with random time horizon

We consider a setup with intertemporal utility from lifetime consumption. We use a
similar framework as in the previous section for the model on asset prices. A control is a
pair of progressively measurable process (α, c) valued in A×R+ for some closed convex
subset A of R such that

∫∞
0
|αt|2dt +

∫∞
0

ctdt < ∞ a.s. We denote by A× C the set of
control processes. The quantity αt represents the proportion of wealth invested in stock,
and ct is the consumption per unit of wealth. Given (α, c) ∈ A×C, there exists a unique
solution, denoted by Xx, to the SDE governing the wealth process

dXt = Xt (αtμ + (1− αt)r − ct) dt + XtαtσdWt,
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given an initial condition X0 = x ≥ 0. The agent’s investment-consumption problem is
to maximize over strategies (α, c) the expected utility from intertemporal consumption
up to a random horizon τ . The random factors, which may affect the horizon τ of the
investor, are for example death, changes in the opportunity set, or time of an exogenous
shock to the investment-consumption process (e.g. purchasing or selling a house). Given
a utility function u for consumption, we then consider the corresponding value function:

v(x) = sup
(α,c)∈A×C

E
[ ∫ τ

0

e−βtu(ctX
x
t )dt

]
.

We assume that the random time τ is independent of the securities market model, i.e. τ

is independent of F∞, and we denote by F (t) = P [τ ≤ t] = P [τ ≤ t|F∞] the distribution
function of τ . The value function can then be written as

v(x) = sup
(α,c)∈A×C

E
[ ∫ ∞

0

e−βtu(ctX
x
t )1t<τdt

]

= sup
(α,c)∈A×C

E
[ ∫ ∞

0

e−βtu(ctX
x
t )(1− F (t))dt

]
.

We also specialize our setup by assuming an exponential distribution for the random
time horizon: 1− F (t) = e−λt for some positive constant λ, also called intensity. In this
case, the intertemporal consumption utility problem with random horizon is turned into
an infinite horizon problem:

v(x) = sup
(α,c)∈A×C

E
[ ∫ τ

0

e−(β+λ)tu(ctX
x
t )dt

]
,

with adjusted discount factor β̂ = β + λ. The HJB equation associated to this control
problem is

β̂w(x)− sup
a∈A,c≥0

[
La,cw(x) + u(cx)

]
= 0, x ≥ 0,

where La,cw(x) = x(aμ+(1−a)r−c)w′ + 1
2x2a2σ2w′′. By defining ũ(z) = supC≥0[u(C)−

Cz], the Legendre transform of u, this HJB equation may be written as

β̂w(x)− sup
a∈A

[
Law(x)

]
− ũ(w′) = 0, x ≥ 0, (3.50)

where Law(x) = x(aμ+(1−a)r)w′ + 1
2x2a2σ2w′′. As in the previous section, we consider

a power utility function u(C) = Cp/p for p < 1, p �= 0, so that ũ(z) = z−q/q with q =
p/(1−p), and a maximum attained in C∗(z) = z

1
p−1 . We are then looking for a candidate

solution to the HJB equation in the form

w(x) = Ku(x),

for some positive constant K. By substituting into the HJB equation (3.50), we derive
an equation satisfied by the unknown K:

(β̂ − ρ)
K

p
− 1

q
K−q = 0,
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where ρ is as in (3.47). Such an equation admits a positive solution for K if and only if
β̂ > ρ, i.e. the discount factor β satisfies

β > ρ− λ,

and in this case, K is given by

K =
( 1− p

β + λ− ρ

)1−p

.

Hence, with this value of K, the function w(x) = Ku(x) solves the HJB equation (3.50),
with an argument max in the HJB equation given by

â = arg max
a∈A

[a(μ− r) + r − 1
2
a2(1− p)σ2]

ĉ =
1
x

(w′(x))
1

p−1 = K
1

p−1 .

Moreover, the wealth process associated to these constant controls (â, ĉ)

dXt = Xt

(
âμ + (1− â)r − ĉ

)
dt + XtâσdWt,

is a Brownian geometric motion, and so admits a unique solution, denoted by X̂x, given
an initial condition X̂x

0 = x. Finally, a straightforward calculation shows that

e−β̂T E[w(X̂x
T )] = Ku(x) exp

(
− (β̂ − ρ)T − ĉpT

)

→ 0, as T goes to infinity,

since β̂ > ρ. From the verification theorem 3.5.3, this proves that v(x) = w(x) = Ku(x),
and the optimal controls are constant given by (â, ĉ). We observe that the optimal pro-
portion of wealth is not affected by the uncertainty on the time horizon.

3.6.3 A model of production-consumption on infinite horizon

We develop the example of Section 2.2.2. We consider the following model for a produc-
tion firm. Its capital value Kt evolves according to the investment rate It and the price
St per unit of capital:

dKt = Kt
dSt

St
+ Itdt.

The debt Lt of this firm is determined by the interest rate r, the consumption Ct, and
the productivity rate Pt of capital:

dLt = rLtdt− Kt

St
dPt + (It + Ct)dt.

We assume a model for the dynamics of (Yt = lnSt, Pt) as

dYt =
(

μ− σ2
1

2

)

dt + σ1dW 1
t

dPt = bdt + σ2dW 2
t ,
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where (W 1, W 2) is a two-dimensional Brownian motion on a filtered probability space
(Ω,F , F = (Ft)t≥0, P ), and μ, b, σ1, σ2 are constants, σ1, σ2 > 0. The net value of the
firm is

Xt = Kt − Lt,

and the following constraints are required:

Kt ≥ 0, Ct ≥ 0, Xt > 0, t ≥ 0.

We denote by kt = Kt/Xt and ct = Ct/Xt the control variables of investment and
consumption. The dynamics of the controlled system is then governed by

dXt = Xt

[
kt(μ− r + be−Yt) + (r − ct)

]
dt

+ ktXtσ1dW 1
t + ktXte

−Ytσ2dW 2
t (3.51)

dYt =
(

μ− σ2
1

2

)

dt + σ1dW 1
t . (3.52)

Given a discount factor β > 0, and a power utility function:

U(C) =
Cγ

γ
, C ≥ 0, with 0 < γ < 1,

we denote by A(x, y) the set of progressively measurable processes (k, c) valued in R+×
R+ such that

∫ T

0

k2
t dt +

∫ T

0

c2
t dt < ∞, a.s., ∀T > 0,

E

[∫ ∞

0

e−βtU(ctX
x,y
t )dt

]

< ∞,

where (Xx,y, Y y) is the solution to the SDE (3.51)-(3.52) starting from (x, y) at t = 0.
The objective is to find the optimal investment and production for this production firm,
and we study the stochastic optimal control on an infinite horizon:

v(x, y) = sup
(k,c)∈A(x,y)

E
[ ∫ ∞

0

e−βtU(ctX
x,y
t )dt

]
. (3.53)

The associated HJB equation is

βv −
(

μ− σ2
1

2

)
∂v

∂y
− rx

∂v

∂x
− σ2

1

2
∂2v

∂y2
− sup

c≥0

[
U(cx)− cx

∂v

∂x

]
(3.54)

− sup
k≥0

[
k(μ− r + be−y)x

∂v

∂x
+

1
2
k2x2(σ2

1 + e−2yσ2
2)

∂2v

∂x2
+ kxσ2

1

∂2v

∂x∂y

]
= 0.

By observing that Xx,y is expressed in the form Xx,y = x exp(Z(y)) where Z(y) is
written as an exponential of process in terms of (k, c) and Y y, we deduce that

v(x, y) = xγv(1, y).

We are then looking for a candidate solution to HJB (3.54) in the form
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v(x, y) =
xγ

γ
exp (ϕ(y)) ,

for some function ϕ(y). By substituting into (3.54), we obtain the ordinary differential
equation (ODE) satisfied by ϕ:

β − γr − σ2
1

2
(
ϕyy + ϕ2

y

)
−
(

μ− σ2
1

2

)

ϕy

− sup
c≥0

[
cγe−ϕ − cγ

]
− γ sup

k≥0
G(y, ϕy, k) = 0, (3.55)

where

G(y, p, k) = −k2

2
(1− γ)(σ2

1 + σ2
2e−2y) + k(μ− r + be−y + σ2

1p).

One can show that for β large enough, there exists a unique smooth C2 bounded solution
ϕ to the ODE (3.55). We refer to [FP05] for the details. Since G(y, p, 0) = 0, we derive
that at any extremum point y of ϕy, i.e. ϕyy(y) = 0:

0 ≤ β − γr −
(

μ− σ2
1

2

)

ϕy(y)− σ2
1

2
ϕ2

y(y)− (1− γ)e
γϕ(y)
γ−1 .

Since ϕ is bounded, this shows that ϕy is also bounded on R.
By construction, the positive function w(x, y) = (xγ/γ)eϕ(y) is a solution to the HJB

equation (3.54). From the first part of the verification theorem 3.5.3, we deduce that w

≥ v. On the other hand, let us consider the functions

k̂(y) =
(

be−y + μ− r + σ2
1ϕy

(1− γ)(σ2
1 + σ2

2e−2y)

)

+

∈ arg min
k≥0

G(y, ϕy, k)

ĉ(y) = exp
(

ϕ(y)
γ − 1

)

∈ argmin
c≥0

[
cγ − cγe−ϕ

]
.

Since ϕ and ϕy are bounded, this implies that the functions ĉ, k̂, e−yk̂ are also bounded
in y. We deduce that there exists a constant M > 0 such that

E
[∣
∣X̂x,y

t

∣
∣2
]
≤ x2 exp(Mt), ∀t > 0,

where we denote by X̂x,y the solution to (3.51) controlled by (k̂(Y y
t ), ĉ(Y y

t ))t≥0. This
shows that the control (k̂(Y y

t ), ĉ(Y y
t ))t≥0 lies in A(x, y):

E
[ ∫ ∞

0

e−βtU(ĉ(Y y
t )X̂x,y

t )dt
]

< ∞, (3.56)

Moreover, since ϕ is bounded, the function ĉ(y) is lower-bounded by a strictly positive
constant. We then get the existence of a constant B > 0 such that:

0 ≤ e−βT w(X̂x,y
T , Y y

T ) ≤ Be−βT U(ĉ(Y y
T )X̂x,y

T ),

which, combined with (3.56), yields

lim
T→∞

E
[
e−βT w(X̂x,y

T , Y y
T )
]

= 0.

We conclude with the second part of the verification theorem 3.5.3 that w = v and
(k̂(Y y

t ), ĉ(Y y
t ))t≥0 is an optimal Markovian control.
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3.7 Example of singular stochastic control problem

We consider a controlled process governed by

dXs = αsdWs,

where α is a progressively measurable process valued in A = R and such that E[
∫ T

0
|αs|2ds]

< ∞. We denote by A this set of control processes. Let g be a nonnegative measurable
function with linear growth condition on R, and consider the stochastic control problem

v(t, x) = sup
α∈A

E[g(Xt,x
T )], (t, x) ∈ [0, T ]× R. (3.57)

We now see that for a large choice of functions g, the value function v is not smooth.
From the dynamic programming principle, we have for any stopping time θ ∈ Tt,T ,

and any constant control αt = a ∈ R

v(t, x) ≥ E
[
v(θ,Xt,x

θ )
]
. (3.58)

Suppose that v is smooth C1,2, and apply Itô’s formula to v(s,Xt,x
s ) between s = t ∈

[0, T ) and s = θ = (t + h) ∧ τ where τ = inf{s ≥ t : |Xt,x
s − x| ≥ 1}. By observing that

the stochastic integral appearing in Itô’s formula is a stopped martingale, we obtain by
substituting into (3.58)

0 ≥ E
[ 1
h

∫ (t+h)∧τ

t

(∂v

∂t
+ a2 ∂2v

∂x2

)
(s,Xt,x

s )ds
]
. (3.59)

Notice that by continuity a.s. of the path Xt,x
s , we have a.s. θ = t + h for h ≤ h̄(ω)

small enough. We deduce by the mean-value theorem that the random variable inside

the expectation in (3.59) converges a.s. to
(∂v

∂t
+ a2 ∂2v

∂x2

)
(t, x) when h goes to zero.

Moreover, since this random variable is bounded by a constant independent of h, we can
apply the dominated convergence theorem, and obtain that when h goes to zero

0 ≥ ∂v

∂t
(t, x) + a2 ∂2v

∂x2
(t, x), ∀(t, x) ∈ [0, T )× R. (3.60)

Since this inequality holds true for any a in R, this implies in particular that:
∂2v

∂x2
≤ 0

on [0, T )× R, and so

v(t, .) is concave on R for all t ∈ [0, T ). (3.61)

On the other hand, since the zero constant control lies in A, it is immediate by definition
of the value function that

v(t, x) ≥ g(x), ∀(t, x) ∈ [0, T ]× R.

Denoting by gcon the concave envelope of g, i.e. the smallest concave function above g,
we deduce with (3.61) that

v(t, x) ≥ gcon(x), ∀(t, x) ∈ [0, T )× R. (3.62)
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Now, using the fact that gcon ≥ g, Jensen’s inequality and the martingale property
of Xt,x

s for α ∈ A, we get:

v(t, x) ≤ sup
α∈A

E[gcon(Xt,x
T )]

≤ sup
α∈A

gcon
(
E[Xt,x

T ]
)

= gcon(x).

By combining with (3.62), we deduce that

v(t, x) = gcon(x), ∀(t, x) ∈ [0, T )× R. (3.63)

We then get a contradiction whenever the function gcon is not C2, for example if g(x) =
max(x− κ, 0) = gcon(x).

Remark 3.7.7 We shall see in the next chapter by means of the theory of viscosity
solutions that although the inequality (3.60) cannot be interpreted in the classical sense,
the relation (3.63) remains valid. In particular, we see that the value function v is discon-
tinuous in T once g �= gcon. Actually, the Hamiltonian for this singular control problem
(3.57) is H(M) = supa∈R

[12a2M ]. Thus, H(M) < ∞ if and only if −M ≥ 0, and in this
case H(M) = 0. We shall prove in the next chapter that v is a viscosity solution to the
HJB variational inequality

min
[
− ∂v

∂t
,−∂2v

∂x2

]
= 0.

3.8 Bibliographical remarks

The principle of optimality of the dynamic programming principle was initiated by Bell-
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Fleming and Soner [FSo93], or Yong and Zhou [YZ00].
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the lecture notes of St-Flour by El Karoui [Elk81].

The example of the investment-consumption problem on a random time horizon was
developed in Blanchet-Scalliet et al. [BElJM08]. The example of singular stochastic con-
trol problem is inspired by the superreplication problem in the uncertain volatility model,
and it will be developed in the next chapter.

We formulated stochastic control problems in a standard form, where the goal is to
optimize a functional in an expectation form. Recently, motivated by the superrepli-
cation problem under gamma constraints, Soner and Touzi [ST00], [ST02] developed
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other formulations of control problems, called stochastic target problems, and proved
the corresponding dynamic programming principle.

The dynamic programming approach provides a characterization of the value function
and the optimal control when this value function is smooth enough. The general existence
problem of an optimal control is not considered here. We refer to the works by Kushner
[Ku75] and El Karoui, Huu Nguyen, and Jeanblanc-Picqué [ElkNJ87] for results in this
direction.



4

The viscosity solutions approach to stochastic control

problems

4.1 Introduction

As outlined in the previous chapter, the dynamic programming method is a powerful tool
to study stochastic control problems by means of the Hamilton-Jacobi-Bellman equation.
However, in the classical approach, the method is used only when it is assumed a priori
that the value function is smooth enough. This is not necessarily true even in very simple
cases.

To circumvent this difficulty, Crandall and Lions introduced in the 1980s the notion of
viscosity solutions for first-order equations. This theory was then generalized to second-
order equations. The viscosity solutions approach provides very powerful means to study
in great generality stochastic control problems and gives a rigorous formulation of the
HJB equation for functions that are only assumed to be locally bounded. By combi-
ning these results with comparison principles for viscosity solutions, we characterize the
value function as the unique viscosity solution of the associated dynamic programming
equation, and this can then be used to obtain further results.

This chapter is an introduction to the notion of viscosity solutions and to the essential
tools to study stochastic control problems. There is a large literature on the theory of
viscosity solutions and we will refer for instance to Crandall, Ishii and Lions [CIL92] for a
seminal reference on this topic. In Section 4.2, we define the notion of viscosity solutions
and give some basic properties. We show, in Section 4.3, how to derive rigorously and in
great generality, from the dynamic programming principle, the Hamilton-Jacobi-Bellman
equation for the value function in the viscosity sense. We state comparison principles
and uniqueness results for viscosity solutions in Section 4.4. Finally, Sections 4.5 and 4.6
show how to use the viscosity solutions approach to solve two stochastic control problems
arising in finance.

4.2 Definition of viscosity solutions

We consider the following nonlinear second-order partial differential equations:

F (x,w(x), Dw(x), D2w(x)) = 0, x ∈ O, (4.1)

H. Pham, Continuous-time Stochastic Control and Optimization with Financial
Applications, Stochastic Modelling and Applied Probability 61,
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in which O is an open subset of R
N and F is a continuous function of O×R×R

N ×SN

taking values in R. The function F is assumed to satisfy the ellipticity condition: for all
x ∈ O, r ∈ R, p ∈ R

N , M, M̂ ∈ SN ,

M ≤ M̂ =⇒ F (x, r, p,M) ≥ F (x, r, p, M̂). (4.2)

For time-dependent problems, a point in R
N must be understood as a time variable t

and a space variable x in R
n (N = n + 1). Furthermore, O must be an open subset of

the form [0, T ) × On in which On is an open subset of R
n and F (t, x, r, q, p, M) must

satisfy the following parabolicity condition: for all t ∈ [0, T ), x ∈ On, r ∈ R, q, q̂ ∈ R,
p ∈ R

n, M ∈ Sn,

q ≤ q̂ =⇒ F (t, x, r, q, p, M) ≥ F (t, x, r, q̂, p,M). (4.3)

This last condition means that we are dealing with forward PDE, i.e. (4.1) holds for
time t < T , and the terminal condition is for t = T . This is in accordance with control
problem in finite horizon and HJB equation formulated in the previous chapter, and
corresponding to

F (t, x, q, p, M) = −q − sup
a∈A

[
b(x, a).p +

1
2
tr (σσ′(x, a)M) + f(t, x, a)

]
, (4.4)

while the case of HJB equations for infinite horizon problem corresponds to

F (x, r, p,M) = βr − sup
a∈A

[
b(x, a).p +

1
2
tr (σσ′(x, a)M) + f(x, a)

]
. (4.5)

The ellipticity condition (4.2) is obviously satisfied since the matrix σσ′ is positive defi-
nite.

The conditions (4.2)-(4.3) and the notion of viscosity solutions are motivated by the
following arguments: let us assume that v is smooth, and is a classical supersolution to
(4.1), i.e. relation (4.1) holds with ≥ in the whole domain O. Let ϕ a smooth function
on O = [0, T )×On, and (t̄, x̄) ∈ [0, T )×On be a minimum point of v − ϕ. In this case,
the first- and second-order optimality conditions imply

∂(w − ϕ)
∂t

(t̄, x̄) ≥ 0 (= 0 if t̄ > 0)

Dxw(t̄, x̄) = Dxϕ(t̄, x̄) and D2
xw(t̄, x̄) ≥ D2

xϕ(t̄, x̄).

From the conditions (4.2) and (4.3), we deduce that

F (t̄, x̄, w(t̄, x̄),
∂ϕ

∂t
(t̄, x̄), Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄))

≥ F (t̄, x̄, w(t̄, x̄),
∂w

∂t
(t̄, x̄), Dxw(t̄, x̄), D2

xw(t̄, x̄)) ≥ 0,

Similarly, if v is a classical subsolution to (4.1), i.e. relation (4.1) holds with ≤ in the
whole domain O, then for all smooth functions ϕ on O, and (t̄, x̄) ∈ O = [0, T ) × On

such that (t̄, x̄) is a maximum point of v − ϕ, we have
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F (t̄, x̄, w(t̄, x̄),
∂ϕ

∂t
(t̄, x̄), Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄)) ≤ 0.

The above arguments lead to the following notion of viscosity solutions. We first
introduce some additional notations. Given a locally bounded function w from O to R

(i.e. for all x in O, there exists a compact neighborhood Vx of x such that w is bounded on
Vx), we define its upper-semicontinuous envelope w∗ and lower-semicontinuous envelope
w∗ on Ō by

w∗(x) = lim sup
x′→x

w(x′), w∗(x) = lim inf
x′→x

w(x′).

Recall that w∗ (resp. w∗) is the smallest (resp. largest) upper-semicontinuous function
(u.s.c.) above (resp. lower-semicontinuous function (l.s.c.) below) w on O. Note that a
locally bounded function w on O is lower-semicontinuous (resp. upper-semicontinuous)
if and only if w = w∗ (resp. w∗) on O, and it is continuous if (and only if) w = w∗ = w∗

on O.

Definition 4.2.1 Let w : O → R be locally bounded.
(i) w is a (discontinuous) viscosity subsolution of (4.1) on O if

F (x̄, w∗(x̄), Dϕ(x̄), D2ϕ(x̄)) ≤ 0,

for all x̄ ∈ O and for all ϕ ∈ C2(O) such that x̄ is a maximum point of w∗ − ϕ.
(ii) w is a (discontinuous) viscosity supersolution of (4.1) on O if

F (x̄, w∗(x̄), Dϕ(x̄), D2ϕ(x̄)) ≥ 0,

for all x̄ ∈ O and for all ϕ ∈ C2(O) such that x̄ is a minimum point of w∗ − ϕ.
(iii) We say that w is a (discontinuous) viscosity solution of (4.1) on O if it is both a
subsolution and supersolution of (4.1).

Remark 4.2.1 1. The above definition is unchanged if the maximum or minimum point
x̄ is local and/or strict.
2. Without loss of generality we can also assume in the above definition that ϕ(x̄) =
w∗(x̄) (resp. ϕ(x̄) = w∗(x̄)). Indeed, it suffices otherwise to consider the smooth function
ψ(x) = ϕ(x) + w∗(x̄) − ϕ(x̄) (resp. ψ(x) = ϕ(x) + w∗(x̄) − ϕ(x̄)). Then x̄ is a local
maximum (resp. minimum) of w∗ − ψ (resp. w∗ − ψ) and ψ(x̄) = w∗(x̄) (resp. w∗(x̄)).

Remark 4.2.2 v is a viscosity subsolution (resp. supersolution) of (4.1) if and only if
v∗ (resp v∗) is a u.s.c. viscosity subsolution (resp. l.s.c. viscosity supersolution) of (4.1).

Remark 4.2.3 In the general discontinuous viscosity solutions approach, there is no
need to prove a priori the continuity of the value function v, since we work with the
l.s.c. and u.s.c. envelopes of the value function. The continuity will actually follow from
a strong comparison principle stated in Section 4.4, which, under suitable conditions,
implies that v∗ ≥ v∗, and so v∗ = v∗ = v is continuous inside its domain, see also
Remark 4.4.8.
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4.3 From dynamic programming to viscosity solutions of HJB

equations

We return to the framework of stochastic control problems for diffusions formulated in
Section 3.2 of Chapter 3. The chief goal of this section is to characterize the value function
as a viscosity solution to the associated HJB equation. We also determine the relevant
terminal condition. As in the smooth case, the proofs rely crucially on the dynamic
programming principle, and there are some modifications for handling with viscosity
solutions and eventual singularity of the HJB equation, see Remark 2 in Section 3.4.2.
Recall the Hamiltonian for our stochastic control problems:

H(t, x, p, M) = sup
a∈A

[
b(x, a).p +

1
2
tr (σ(x, a)σ′(x, a)M) + f(t, x, a)

]
. (4.6)

In the infinite horizon case, f (hence also H) does not depend on t. We present a unifying
result for taking into account the possible singularity of the Hamiltonian H when the
control space A is unbounded. We then introduce

dom(H) = {(t, x, p, M) ∈ [0, T )× R
n × R

n × Sn : H(t, x, p, M) <∞} ,

and make the following hypothesis:

H is continuous on int(dom(H))

and there exists G : [0, T )× R
n × R

n × Sn continuous such that

(t, x, p, M) ∈ dom(H) ⇐⇒ G(t, x, p, M) ≥ 0. (4.7)

Evidently, in the case of infinite horizon problems, the function H (hence also G) does
not depend on t.

4.3.1 Viscosity properties inside the domain

The smoothness condition of the value function can be relaxed in the theory of viscos-
ity solutions and we shall prove that the value function satisfies the HJB variational
inequality (3.34) in the viscosity sense. We separate the proof of viscosity supersolution
and subsolution properties, which are different. The supersolution property follows from
the first part (3.18) of the dynamic programming principle. The subsolution property is
more delicate and should take into account the possible singular part of the Hamiltonian.
The derivation is obtained from the second part (3.19) of the DPP and a contraposition
argument.

Viscosity supersolution property

Proposition 4.3.1 (1) Finite horizon: Suppose the value function v is locally bounded
on [0, T ) × R

n, that the function f has quadratic growth in the sense of (3.8), and that
f(., ., a) is continuous in (t, x) for all a ∈ A. Then v is a viscosity supersolution of the
HJB equation:

− ∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) = 0, (t, x) ∈ [0, T )× R
n. (4.8)
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(2) Infinite horizon: Suppose the value function v is locally bounded, that the function f

has quadratic growth in the sense of (3.13), and that f(., a) is continuous in x for all a ∈
A. Then for all β > 0 large enough, v is a viscosity supersolution of the HJB equation:

βv(x)−H(x,Dv(x), D2v(x)) = 0, x ∈ R
n. (4.9)

Proof. We show the result in the finite horizon case. Let (t̄, x̄) ∈ [0, T )× R
n and let ϕ

∈ C2([0, T )× R
n) be a test function such that

0 = (v∗ − ϕ)(t̄, x̄) = min
(t,x)∈[0,T )×Rn

(v∗ − ϕ)(t, x). (4.10)

By definition of v∗(t̄, x̄), there exists a sequence (tm, xm) in [0, T )× R
n such that

(tm, xm) → (t̄, x̄) and v(tm, xm) → v∗(t̄, x̄),

when m goes to infinity. By the continuity of ϕ and by (4.10) we also have that

γm := v(tm, xm)− ϕ(tm, xm) → 0,

when m goes to infinity.
Let a ∈ A and α the control identically equal to a. Then α is in A(tm, xm) = A

according to Remark 3.2.1. We denote by Xtm,xm
s the associated controlled process. Let

τm be the stopping time given by τm = inf{s ≥ tm : |Xtm,xm
s − xm| ≥ η} in which η >

0 is a fixed constant. Let (hm) be a strictly positive sequence such that

hm → 0 and
γm

hm
→ 0,

when m converges to infinity. We apply the first part of the dynamic programming
principle (3.18) for v(tm, xm) to θm := τm ∧ (tm + hm) and get

v(tm, xm) ≥ E

[∫ θm

tm

f(s,Xtm,xm
s , a)ds + v(θm, Xtm,xm

θm
)

]

.

Equation (4.10) implies that v ≥ v∗ ≥ ϕ, thus

ϕ(tm, xm) + γm ≥ E

[∫ θm

tm

f(s,Xtm,xm
s , a)ds + ϕ(θm, Xtm,xm

θm
)

]

.

Applying Itô’s formula to ϕ(s,Xtm,xm
s ) between tm and θm, we obtain

γm

hm
+ E

[
1

hm

∫ θm

tm

(

−∂ϕ

∂t
− Laϕ− f

)

(s,Xtm,xm
s , a)ds

]

≥ 0 (4.11)

after noting that the stochastic integral term cancels out by taking expectations since
the integrand is bounded. By a.s. continuity of the trajectory Xtm,xm

s , it follows that
for m sufficiently large (m ≥ N(ω)), θm(ω) = tm + hm a.s. Thus, by the mean value

theorem, the random variable inside the expectation in (4.11) converges a.s. to −∂ϕ

∂t
(t̄, x̄)
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− Laϕ(t̄, x̄) − f(t̄, x̄, a) when m converges to infinity. Moreover, this random variable is
bounded by a constant independent of m. We then obtain

−∂ϕ

∂t
(t̄, x̄)− Laϕ(t̄, x̄)− f(t̄, x̄, a) ≥ 0,

when m goes to infinity by the dominated convergence theorem. We conclude from the
arbitrariness of a ∈ A.

In the infinite horizon case, we assume that β > 0 is large enough so that constant
controls are in A(x), for all x in R

n (see Remark 3.2.2). We then use the same argument
as above. �

Viscosity subsolution property

Proposition 4.3.2 (1) Finite horizon: Assume that (4.7) is satisfied and that the value
function v is locally bounded on [0, T [×R

n. Then v is a viscosity subsolution of the
Hamilton-Jacobi-Bellman variational inequality:

min
{
− ∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) ,

G(t, x, Dxv(t, x), D2
xv(t, x))

}
= 0, (t, x) ∈ [0, T )× R

n. (4.12)

(2) Infinite horizon: Assume that (4.7) is satisfied and that the value function v is locally
bounded on R

n. Then v is a viscosity subsolution of

min
{
βv(x)−H(x,Dv(x), D2v(x)) ,

G(x,Dv(x), D2v(x))
}

= 0, x ∈ R
n. (4.13)

Proof. We show the result in the infinite horizon case. Let x̄ ∈ R
n and let ϕ ∈ C2(Rn)

be a test function such that

0 = (v∗ − ϕ)(x̄) = max
x∈Rn

(v∗ − ϕ)(x). (4.14)

We will show the result by contradiction. Assume on the contrary that

βϕ(x̄)−H(x̄,Dϕ(x̄), D2ϕ(x̄)) > 0,

and G(x̄,Dϕ(x̄), D2ϕ(x̄)) > 0.

Then by the continuity of the function G, and the continuity of H on the interior of its
domain, there exist η > 0 and ε > 0 such that

βϕ(y)−H(y,Dϕ(y), D2ϕ(y)) ≥ ε,

for all y ∈ B(x̄, η) = {y ∈ R
n : |x̄−y| < η}. By definition of v∗(x̄), there exists a sequence

(xm) taking values in B(x̄, η) such that

xm → x̄ and v(xm) → v∗(x̄),

when m goes to infinity. By continuity of ϕ and using (4.14), we also find that

γm := v(xm)− ϕ(xm) → 0,
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when m goes to infinity. Let (hm) be a strictly positive sequence such that

hm → 0 and
γm

hm
→ 0.

Then, according to the second part of the dynamic programming principle (3.19) and
using (4.14), there is an α̂m ∈ A(xm) such that

ϕ(xm) + γm −
εhm

2
≤ E

[∫ θm

0

e−βsf(Xxm
s , α̂m

s )ds + e−βθmϕ(Xxm

θm
)

]

,

in which we took θm := τm ∧ hm, τm = inf{s ≥ 0 : |Xxm
s − xm| ≥ η′} and 0 < η′ < η.

Since (xm) converges to x̄, we can always assume that B(xm, η′) ⊂ B(x̄, η), in such a way
that for 0 ≤ s < θm, Xxm

s ∈ B(x̄, η). Here Xxm
s corresponds to the diffusion controlled

by α̂m. By Itô’s formula applied to e−βsϕ(Xxm
s ) between s = 0 and s = θm, we get

0 ≥ γm

hm
− ε

2
+ E

[ 1
hm

∫ θm

0

L(Xxm
s , α̂m

s )ds
]

− E
[ ∫ θm

0

Dxϕ(Xxm
s )′σ(Xxm

s , α̂m
s )dWs

]
(4.15)

with

L(x, a) = βϕ(x)− Laϕ(x)− f(x, a).

We note that by condition (3.2) on σ, the integrand in the above stochastic integral is
bounded on [0, θm] by

|Dxϕ(Xxm
s )′σ(Xxm

s , α̂m
s )| ≤ Cη(1 + |σ(0, α̂m

s )|).

Using (3.3) on α̂m ∈ A(xm), we find that the expectation of the stochastic integral in
(4.15) is equal to zero.

Moreover, noting that for 0 ≤ s < θm

L(Xxm
s , α̂m

s ) ≥ βϕ(Xxm
s )−H(Xxm

s , Dϕ(Xxm
s ), D2ϕ(Xxm

s ))

≥ ε,

we find using (4.15) that

0 ≥ γm

hm
− ε

(
1
2
− 1

hm
E[θm]

)

. (4.16)

By Tchebyshev’s inequality and (3.5), we deduce that

P [τm ≤ hm] ≤ P

[

sup
s∈[0,hm]

|Xxm
s − xm| ≥ η

]

≤
E
∣
∣
∣sups∈[0,hm] |Xxm

s − xm|2
∣
∣
∣

η2
→ 0,

when hm goes to zero, i.e. when m goes to infinity. Moreover, since
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P [τm > hm] ≤ 1
hm

E[θm] ≤ 1,

this implies that 1
hm

E[θm] converges to 1 when hm goes to zero. We thus get the desired
contradiction by letting m go to infinity in (4.16). �

The viscosity solution property

By combining the two previous propositions, we obtain the main result of this section.

Theorem 4.3.1 Under the assumptions of Propositions 4.3.1 and 4.3.2, the value func-
tion v is a viscosity solution of the Hamilton-Jacobi-Bellman variational inequality:
(1) Finite horizon:

min
{
− ∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) ,

G(t, x, Dxv(t, x), D2
xv(t, x))

}
= 0, (t, x) ∈ [0, T )× R

n. (4.17)

(2) Infinite horizon:

min
{
βv(x)−H(x,Dv(x), D2v(x)) ,

G(x,Dv(x), D2v(x))
}

= 0, x ∈ R
n. (4.18)

Proof. The viscosity supersolution property of the value function in Proposition 4.3.1
of v means that, in the finite horizon case,

−∂ϕ

∂t
(t̄, x̄)−H(t̄, x̄, Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄)) ≥ 0,

for all (t̄, x̄) ∈ [0, T ) × R
n and ϕ ∈ C2([0, T ) × R

n) such that (t̄, x̄) is a minimum of
v∗ − ϕ. With condition (4.7), this implies that

G(t̄, x̄, Dxϕ(t̄, x̄), D2
xϕ(t̄, x̄)) ≥ 0,

and hence

min
{
− ∂ϕ

∂t
(t̄, x̄) + H(t̄, x̄, Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄)), G(t̄, x̄, Dxϕ(t̄, x̄), D2
xϕ(t̄, x̄))

}
≥ 0.

In other words, v is a viscosity supersolution of the variational inequality (4.17). The
final result follows from the viscosity subsolution property of Proposition 4.3.2. �

Remark 4.3.4 In the regular case, i.e. when the Hamiltonian H is finite on the whole
domain [0, T ]×R

n ×R
n ×Sn (this occurs typically when the control space is compact),

the condition (4.7) is satisfied with any choice of strictly positive continuous function G.
In this case, the HJB variational inequality is reduced to the regular HJB equation:

−∂v

∂t
(t, x)−H(t, x, Dxv(t, x), D2

xv(t, x)) = 0, (t, x) ∈ [0, T )× R
n,

which the value function satisfies in the viscosity sense. Hence, Theorem 4.3.1 states a
general viscosity property including both the regular and singular case. We shall see later
how to use this viscosity property for deriving further results, and to solve a stochastic
control problem in some examples.
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4.3.2 Terminal condition

In the finite horizon case, the parabolic PDE (4.17) should be completed with a termi-
nal condition, in order to fully characterize the value function of the stochastic control
problem. By the very definition of the value function, we have

v(T, x) = g(x), x ∈ R
d. (4.19)

However, due to the possible singularity of the Hamiltonian, the value function may be
discontinuous at T . In this case, (4.19) is not the relevant terminal condition associated to
the HJB variational inequality. We need actually to determine v(T−, x) := limt↗T v(t, x)
if it exists. This is achieved by the following result:

Theorem 4.3.2 Assume that f and g are lower-bounded or satisfy a linear growth con-
dition, and (4.7) holds.
(i) Suppose that g is lower-semicontinuous. Then v∗(T, .) is a viscosity supersolution of

min
[
v∗(T, x)− g(x) , G(T, x,Dxv∗(T, x), D2

xv∗(T, x))
]

= 0, on R
n. (4.20)

(ii) Suppose that g is upper-semicontinuous. Then v∗(T, .) is a viscosity subsolution of

min
[
v∗(T, x)− g(x) , G(T, x,Dxv∗(T, x), D2

xv∗(T, x))
]

= 0, on R
n. (4.21)

Remark 4.3.5 In usual cases, there is a comparison principle for the PDE arising in the
above theorem, meaning that a u.s.c. subsolution is not greater than a l.s.c. supersolution.
Therefore, under the conditions of Theorem 4.3.2, we have v∗(T, .) ≤ v∗(T, .) and so
v∗(T, .) = v∗(T, .). This means that v(T−, .) exists, equal to v∗(T, .) = v∗(T, .) and is a
viscosity solution to

min
[
v(T−, x)− g(x) , G(T, x,Dxv(T−, x), D2

xv(T−, x))
]

= 0, on R
n. (4.22)

Denote by ĝ the upper G-envelope of g, defined as the smallest function above g and
viscosity supersolution to

G(T, x,Dĝ(x), D2ĝ(x)) = 0, on R
n, (4.23)

when it exists and is finite. Such a function may be calculated in a number of examples,
see e.g. Section 4.6. Since v(T−, .) is a viscosity supersolution to (4.22), it is greater than
g and is a viscosity supersolution to the same PDE as ĝ. Hence, by definition of ĝ, we
have v(T−, ) ≥ ĝ. On the other hand, ĝ is a viscosity supersolution to the PDE (4.22),
and so by a comparison principle, the subsolution v(T−, ) of (4.22) is not greater than
ĝ. We have then determined explicitly the terminal data:

v(T−, x) = ĝ(x).

Recall that in the regular case, we may take for G a positive constant function, so that
obviously ĝ = g. Therefore, in this case, v is continuous in T and v(T−, x) = v(T, x) =
g(x). In the singular case, ĝ is in general different from g and so v is discontinuous in T .
The effect of the singularity is to lift up, via the G operator, the terminal function g to
ĝ.
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The rest of this section is devoted to the (technical) proof of Theorem 4.3.2, which
requires several lemmas. We start with the following result.

Lemma 4.3.1 Suppose that f and g are lower-bounded or satisfy a quadratic growth
condition, and g is lower-semicontinuous. Then,

v∗(T, x) ≥ g(x), ∀x ∈ R
n.

Proof. Take some arbitrary sequence (tm, xm) → (T, x) with tm < T and fix some
control α ∈ A(tm, xm). By definition of the value function, we have:

v(tm, xm) ≥ E

[∫ T

tm

f(s,Xtm,xm
s , α)ds + g(Xtm,xm

T )

]

.

Under the quadratic growth or lower-boundeness condition on f and g, we may apply
the dominated convergence theorem or Fatou’s lemma, and so

lim inf
m→∞

v(tm, xm) ≥ E
[
lim inf
m→∞

g(Xtm,xm

T )
]

≥ g(x),

by the lower-semicontinuity of g and the continuity of the flow Xt,x
T in (t, x). �

The supersolution property (4.20) for the terminal condition is then obtained with
the following result.

Lemma 4.3.2 Under (4.7), v∗(T, .) is a viscosity supersolution of

G(T, x,Dxv∗(T, x)(x), D2
xv∗(T, x)) = 0, on R

n.

Proof. Let x̄ ∈ R
n and ψ a smooth function on R

n s.t.

0 = (v∗(T, .)− ψ)(x̄) = min
Rn

(v∗(T, .)− ψ). (4.24)

By definition of v∗(T, .), there exists a sequence (sm, ym) converging to (T, x̄) with sm

< T and

lim
m→∞

v∗(sm, ym) = v∗(T, x̄). (4.25)

Consider the auxiliary test function:

ϕm(t, x) = ψ(x)− |x− x̄|4 +
T − t

(T − sm)2
,

and choose (tm, xm) ∈ [sm, T ]× B̄(x̄, 1) as a minimum of (v∗−ϕm) on [sm, T ]× B̄(x̄, 1).
Step 1. We claim that, for sufficiently large m, tm < T and xm converges to x̄, so

that (tm, xm) is a local minimizer of (v∗ − ϕm). Indeed, recalling v∗(T, x̄) = ψ(x̄) and
(4.25), we have for sufficiently large m

(v∗ − ϕm)(sm, ym) ≤ − 1
2(T − sm)

< 0. (4.26)
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On the other hand, for any x ∈ R
n, we have

(v∗ − ϕm)(T, x) = v∗(T, x)− ψ(x) + |x− x̄|4 ≥ v∗(T, x)− ψ(x) ≥ 0, (4.27)

by (4.24). The two inequalities (4.26)-(4.27) show that tm < T for large m. We can
suppose that xm converges, up to a subsequence, to some x0 ∈ B̄(x̄, 1). From (4.24),
since sm ≤ tm and (tm, xm) is a minimum of (v∗ − ψm), we have

0 ≤ (v∗(T, .)− ψ)(x0)− (v∗(T, .)− ψ)(x̄)

≤ lim inf
m→∞

[
(v∗ − ϕm)(tm, xm)− (v∗ − ϕm)(sm, ym)− |xm − x̄|4

]

≤ −|x0 − x̄|4,

which proves that x0 = x̄.

Step 2. Since (tm, xm) is a local minimizer of (v∗ − ϕm), the viscosity supersolution
property of v∗ holds at (tm, xm) with the test function ϕm, and so for every m

G(tm, xm, Dxϕm(tm, xm), D2
xϕm(tm, xm)) ≥ 0. (4.28)

Now, since Dxϕm(tm, xm) = Dψ(xm)−4(xm−x̄)|xm−x̄|2, D2
xϕm(tm, xm) = D2ψ(xm)−

4|xm− x̄|2In−4(xm−x)(xm− x̄)′, recalling that G is continuous, and (tm, xm) converges
to (T, x̄), we get from (4.28)

G(T, x̄,Dψ(x̄), D2ψ(x̄)) ≥ 0.

This is the required supersolution inequality. �

We finally turn to the subsolution property for the terminal condition. As for the
viscosity subsolution property inside the domain, the proof is based on a contraposition
argument and the second part (3.19) of the dynamic programming principle. We then
introduce for a given smooth function ϕ, the set in [0, T ]× R

n:

M(ϕ) =
{

(t, x) ∈ [0, T ]× R
n : G(t, x, Dxϕ(t, x), D2

xϕ(t, x)) > 0

and − ∂ϕ

∂t
(t, x)−H(t, x, Dxϕ(t, x), D2

xϕ(t, x)) > 0
}

.

The following lemma is a consequence of the second part (3.19) of the DPP.

Lemma 4.3.3 Let ϕ be a smooth function on [0, T ]× R
n, and suppose there exist t1 <

t2 ≤ T , x̄ ∈ R
n and η > 0 s.t.:

[t1, t2]× B̄(x̄, η) ∈ M(ϕ).

Then,

sup
∂p([t1,t2]×B̄(x̄,η))

(v − ϕ) = max
[t1,t2]×B̄(x̄,η)

(v∗ − ϕ),

where ∂p([t1, t2] × B(x̄, η)) is the forward parabolic boundary of [t1, t2] × B̄(x̄, η), i.e.
∂p([t1, t2]× B̄(x̄, η)) = [t1, t2]× ∂B̄(x̄, η) ∪ {t2} × B̄(x̄, η).
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Proof. By definition of M(ϕ) and H, we have for all a ∈ A

− ∂ϕ

∂t
(t, x)− Laϕ(t, x)− f(t, x, a) > 0, ∀(t, x) ∈ [t1, t2]× B̄(x̄, η). (4.29)

We argue by contradiction and suppose on the contrary that

max
[t1,t2]×B̄(x̄,η)

(v∗ − ϕ)− sup
∂p([t1,t2]×B̄(x̄,η))

(v − ϕ) := 2δ.

We can choose (t0, x0) ∈ (t1, t2)×B(x̄, η) s.t. (v−ϕ)(t0, x0) ≥ −δ + max
[t1,t2]×B̄(x̄,η)

(v∗−ϕ),

and so

(v − ϕ)(t0, x0) ≥ δ + sup
∂p([t1,t2]×B̄(x̄,η))

(v − ϕ). (4.30)

Fix now ε = δ/2, and apply the second part (3.19) of DPP to v(t0, x0): there exists α̂ε

∈ A(t0, x0) s.t.

v(t0, x0)− ε ≤ E

[∫ θ

t0

f(s,Xt0,x0
s , α̂ε

s)ds + v(θ,Xt0,x0
θ )

]

, (4.31)

where we choose

θ = inf
{
s ≥ t0 : (s,Xt0,x0

s ) /∈ [t1, t2]× B̄(x̄, η)
}
∧ T.

First, notice that by continuity of Xt0,x0 , we have (θ,Xt0,x0
θ ) ∈ ∂p([t1, t2] × B(x̄, η)).

Since from (4.30), we have v ≤ ϕ + (v − ϕ)(t0, x0) − δ on ∂p([t1, t2]× B(x̄, η)), we get
with (4.31)

−ε ≤ E

[∫ θ

t0

f(s,Xt0,x0
s , α̂ε

s)ds + ϕ(θ,Xt0,x0
θ )− ϕ(t0, x0)

]

− δ.

Applying Itô’s formula to ϕ(s,Xt0,x0
s ) between s = t0 and s = θ, we obtain

E

[∫ θ

t0

(

−∂ϕ

∂t
(s,Xt0,x0

s )− Lα̂ε
sϕ(s,Xt0,x0

s )− f(s,Xt0,x0
s , α̂ε

s)
)

ds

]

≤ ε− δ.

Since, by definition of θ, (s,Xt0,x0
s ) lies in [t1, t2]× B̄(x̄, η) for all t0 ≤ s ≤ θ, we get with

(4.29) the required contradiction: 0 ≤ ε− δ = −δ/2. �

Remark 4.3.6 The above lemma provides an immediate alternative proof to the vis-
cosity subsolution property of the value function inside the domain stated in Proposition
4.3.2. Indeed, let (t̄, x̄) ∈ [0, T )× R

n and ϕ a smooth test function s.t.

0 = (v∗ − ϕ)(t̄, x̄) = (strict) max
[0,T )×Rn

(v∗ − ϕ).

First, observe that by the continuity condition in (4.7), the setM(ϕ) is open. Since (t̄, x̄)
is a strict maximizer of (v∗ − ϕ), we then deduce by Lemma 4.3.3 that (t̄, x̄) /∈ M(ϕ).
By definition of M(ϕ), this means:
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min
{
− ∂ϕ

∂t
(t, x)−H(t̄, x̄, Dxϕ(t̄, x̄), D2

xϕ(t̄, x̄)) ,

G(t̄, x̄, Dxϕ(t̄, x̄), D2
xϕ(t̄, x̄))

}
≤ 0,

which is the required subsolution inequality.

We can finally prove the viscosity subsolution property for the terminal condition.

Lemma 4.3.4 Suppose that g is upper-semicontinuous and (4.7) holds. Then, v∗(T, .)
is a viscosity subsolution of

min
[
v∗(T, x)− g(x) , G(T, x,Dxv∗(T, x), D2

xv∗(T, x))
]

= 0, on R
n.

Proof. Let x̄ ∈ R
n and ψ a smooth function on R

n s.t.

0 = (v∗(T, .)− ψ)(x̄) = max
Rn

(v∗(T, .)− ψ). (4.32)

We have to show that whenever

v∗(T, x̄) > g(x̄), (4.33)

then

G(T, x̄,Dψ(x̄), D2ψ(x̄)) ≤ 0. (4.34)

So, suppose that (4.33) holds, and let us consider the auxiliary test function:

ϕm(t, x) = ψ(x) + |x− x̄|4 + m(T − t).

We argue by contradiction and suppose on the contrary that

G(T, x̄,Dψ(x̄), D2ψ(x̄)) > 0.

Since Dxϕm(t, x) = Dψ(x)−4(x− x̄)|x− x̄|2 → Dψ(x̄), D2
xϕm(t, x) = D2ψ(x)−4In|x−

x̄|2 − 4(x− x̄)(x− x̄)′ → D2ψ(x̄) when x tends to x̄, there exists, by continuity of G, s0

< T and η > 0 s.t. for all m

G(t, x, Dxϕm(t, x), D2
xϕm(t, x)) > 0, ∀(t, x) ∈ [s0, T ]× B̄(x̄, η). (4.35)

Under condition (4.7), the function H(t, x, Dxϕm(t, x), D2
xϕm(t, x)) is then finite on the

compact set [s0, T ]× B̄(x̄, η) and by continuity of H on int(dom(H)), there exists some
constant h0 (independent of m) s.t.

H(t, x, Dxϕm(t, x), D2
xϕm(t, x)) ≤ h0, ∀(t, x) ∈ [s0, T ]× B̄(x̄, η). (4.36)

Step 1. Since by definition v∗(T, .) ≥ v∗(T, .), we have from Lemma 4.3.1

v∗(T, .) ≥ g. (4.37)

Hence, for all x ∈ R
n,
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(v − ϕm)(T, x) = (g − ψ)(x)− |x− x̄|4 ≤ (v∗(T, .)− ψ)(x)− |x− x̄|4

≤ −|x− x̄|4 ≤ 0 (4.38)

by (4.32). This implies supB(x̄,η)(v − ϕm)(T, .) ≤ 0. We claim that

lim sup
m→∞

sup
B(x̄,η)

(v − ϕm)(T, .) < 0. (4.39)

On the contrary, there exists a subsequence of (ϕm), still denoted by (ϕm) s.t.

lim
m→∞

sup
B(x̄,η)

(v − ϕm)(T, .) = 0.

For each m, let (xk
m)k be a maximizing sequence of (v − ϕm)(T, .) on B(x̄, η), i.e.

lim
m→∞

lim
k→∞

(v − ϕm)(T, xk
m) = 0.

Now, from (4.38), we have (v − ϕm)(T, xk
m) ≤ −|xk

m − x̄|4, which combined with the
above equality shows that

lim
m→∞

lim
k→∞

xk
m = x̄.

Hence,

0 = lim
m→∞

lim
k→∞

(v − ϕm)(T, xk
m) = lim

m→∞
lim

k→∞
g(xk

m)− ψ(x̄)

≤ g(x̄)− ψ(x̄) < (v̄ − ψ)(x̄),

by the upper-semicontinuty of g and (4.33). This contradicts (v∗(T, .) − ψ)(x̄) = 0 in
(4.32).

Step 2. Take a sequence (sm) converging to T with s0 ≤ sm < T . Let us consider a
maximizing sequence (tm, xm) of v∗ − ϕm on [sm, T ]× ∂B̄(x̄, η). Then

lim sup
m→∞

sup
[sm,T ]×∂B̄(x̄,η)

(v∗ − ϕm) ≤ lim sup
m→∞

(v∗(tm, xm)− ψ(xm)) − η4.

Since tm converges to T and xm, up to a subsequence, converges to some x0 ∈ ∂B̄(x̄, η),
we have by definition of v̄

lim sup
m→∞

sup
[sm,T ]×∂B̄(x̄,η)

(v∗ − ϕm) ≤ (v∗(T, .)− ψ)(x0)− η4 ≤ −η4, (4.40)

by (4.32). Recall also from (4.32) that (v∗−ϕm)(T, x̄) = (v∗(T, .)−ψ)(x̄) = 0. Therefore,
with (4.39) and (4.40), we deduce that for m large enough

sup
[sm,T ]×∂B̄(x̄,η)

(v − ψm) < 0 = (v∗ − ϕm)(T, x̄) ≤ max
[sm,T ]×∂B(x̄,η)

(v∗ − ϕm).

In view of Lemma 4.3.3, this proves that for m large enough

[sm, T ]× B̄(x̄, η) is not a subset of M(ϕm). (4.41)
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Step 3. From (4.36), notice that for all (t, x) ∈ [sm, T ]× B̄(x̄, η), we have

−∂ϕm

∂t
(t, x)−H(t, x, Dxϕm(t, x), D2

xϕm(t, x)) ≥ m− h0 > 0

for m large enough. In view of (4.41) and by definition of M(ϕm), we then may find
some element (t, x) ∈ [sm, T ]× B̄(x̄, η) s.t.

G(t, x, Dxϕm(t, x), D2
xϕm(t, x)) ≤ 0.

This is in contradiction with (4.35). �

Proof of Theorem 4.3.2. Lemmas 4.3.1 and 4.3.2 prove the viscosity supersolution
property (i), while Lemma 4.3.4 proves the viscosity subsolution property (ii).

4.4 Comparison principles and uniqueness results

In general terms, we say that a strong comparison principle (for discontinuous solutions)
holds for the PDE (4.1) if the following statement is true:

If v is a u.s.c. viscosity subsolution of (4.1) onO and w is a l.s.c. viscosity supersolution
of (4.1) on O such that v ≤ w on ∂O, then v ≤ w on O.

Remark 4.4.7 In the case of an elliptic PDE (4.1) on the entire space O = R
n, the

conditions for v, w on the boundary ∂O are growth conditions at infinity on x, e.g.
polynomial growth condition in x. In the case of a parabolic PDE on O = [0, T ) × R

n,
the conditions for v, w on the boundary ∂O are terminal conditions at T , in addition to
the growth conditions at infinity in x.

Remark 4.4.8 As for classical comparison principles (for continuous solutions), the
strong comparison principle allows us to compare a subsolution and a supersolution on
the entire domain from the comparison on the boundary of the domain. In particular, it
proves the uniqueness of the viscosity solution of (4.1) from a condition on the boundary
given by v∗ = v∗ = g on ∂O. Indeed, if v and w are both viscosity solutions of (4.1) with
the same boundary condition, then we have by a strong comparison principle v∗ ≤ w∗
and w∗ ≤ v∗ on O. By construction we already have v∗ ≤ v∗ and w∗ ≤ w∗, hence this
implies the following equalities:

v∗ = v∗ = w∗ = w∗.

This proves the uniqueness of a viscosity solution v = w on O. Furthermore, we obtain
as a byproduct the continuity of v on O since v∗ = v∗.

Comparison principles for viscosity solutions of general nonlinear PDEs received a lot
of interest in the PDE literature, and we refer to Crandall, Ishii and P.L. Lions [CIL92]
or Barles [Ba95] for results in this direction. In this section, we mainly focus on the case
of HJB equations arising from stochastic control problems, and explain the important
techniques in the proofs of comparison principles. We first detail the classical arguments
in the case of smooth solutions, and then outline the key tools used for dealing with
(discontinuous) viscosity solutions.
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4.4.1 Classical comparison principle

We consider HJB equations in the form

− ∂w

∂t
+ βw −H(t, x, Dxw, D2

xw) = 0, on [0, T )× R
n, (4.42)

with a Hamiltonian

H(t, x, p, M) = sup
a∈A

[
b(x, a).p +

1
2
tr(σσ′(x)M) + f(t, x, a)

]
, (4.43)

for (t, x, p, M) ∈ [0, T ]× R
n × R

n × Sn, A a subset of R
m, and β ∈ R. We assume that

the coefficients b, σ satisfy a linear growth condition in x, uniformly in a ∈ A.

Theorem 4.4.3 Let U (resp. V ) ∈ C1,2([0, T )×R
n) ∩ C0([0, T ]×R

n) be a subsolution
(resp. supersolution) with polynomial growth condition to (4.42). If U(T, .) ≤ V (T, .) on
R

n, then U ≤ V on [0, T )× R
n.

Proof. Step 1. Let Ũ(t, x) = eλtU(x) and Ṽ (t, x) = eλtV (x). Then a straightforward
calculation shows that Ũ (resp. Ṽ ) is a subsolution (resp. supersolution) to

−∂w

∂t
+ (β + λ)w − H̃(t, x, Dxw, D2

xw) = 0, on [0, T )× R
n,

where H̃ has the same form as H with f replaced by f̃(t, x) = eλtf(t, x). Therefore,
by taking λ so that β + λ > 0, and possibly replacing (U, V ) by (Ũ , Ṽ ), we can assume
w.l.o.g. that β > 0.

Step 2: penalization and perturbation of supersolution. From the polynomial growth con-
dition on U , V , we may choose an integer p greater than 1 such that

sup
[0,T ]×Rn

|U(t, x)|+ |V (t, x)|
1 + |x|p < ∞,

and we consider the function φ(t, x) = e−λt(1+|x|2p) =: e−λtψ(x). From the linear growth
condition on b, σ, a direct calculation shows that there exists some positive constant c

s.t.

−∂φ

∂t
+ βφ− sup

a∈A

[
b(x, a).Dxφ +

1
2
tr(σσ′(x)D2

xφ)
]

= e−λt
{

(β + λ)ψ − sup
a∈A

[
b(x, a).Dxψ +

1
2
tr(σσ′(x)D2

xψ)
]}

≥ e−λt(β + λ− c)ψ ≥ 0,

by taking λ ≥ c− β. This implies that for all ε > 0, the function Vε = V + εφ is, as V ,
a supersolution to (4.42). Furthermore, from the growth conditions on U, V, φ, we have
for all ε > 0,

lim
|x|→∞

sup
[0,T ]

(U − Vε)(t, x) = −∞. (4.44)
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Step 3. We finally argue by contradiction to show that U −Vε ≤ 0 on [0, T ]×R
n for all ε

> 0, which gives the required result by sending ε to zero. On the contrary, by continuity
of U − Vε, and from (4.44), there would exist ε > 0, (t̄, x̄) ∈ [0, T ]× R

n such that

sup
[0,T ]×Rn

(U − Vε) = (U − Vε)(t̄, x̄) > 0. (4.45)

Since (U − Vε)(T, .) ≤ (U − V )(T, .) ≤ 0 on R
n, we have t̄ < T . Thus, the first and

second-order optimality conditions of (4.45) imply

∂(U − Vε)
∂t

(t̄, x̄) ≤ 0 (= 0 if t̄ > 0) (4.46)

Dx(U − Vε)(t̄, x̄) = 0 and D2
x(U − Vε)(t̄, x̄) ≤ 0. (4.47)

By writing that U (resp. Vε) is a subsolution (resp. supersolution) to (4.42), and recalling
that H is nondecreasing in its last argument, we then deduce that

β(U − Vε)(t̄, x̄)

≤ ∂(U − Vε)
∂t

(t̄, x̄) + H(t̄, x̄, DxU(t̄, x̄), D2
xU(t̄, x̄))−H(t̄, x̄, DxVε(t̄, x̄), D2

xVε(t̄, x̄))

≤ 0,

and this contradicts (4.45). �

4.4.2 Strong comparison principle

In this section, we remove the regularity conditions on U, V in Theorem 4.4.3, by assum-
ing only that U (resp. V ) is upper-semicontinuous (resp. lower-semicontinuous). The first-
and second-order optimality conditions (4.46)-(4.47) cannot be used anymore, and we
need other arguments. A key tool is the dedoubling variable technique that we illustrate
first in the case of Hamilton-Jacobi equations:

− ∂w

∂t
+ βw −H(t, x, Dxw) = 0, on [0, T )× R

n, (4.48)

with a Hamiltonian H(t, x, p) = supa∈A[b(x, a).p + f(t, x, a)] arising typically in deter-
ministic optimal control. We assume that b satisfies a uniform Lipschitz condition in x,
and f is uniformly continuous in (t, x), uniformly in a. The consequence on H is the
crucial inequality

|H(t, x, p)−H(s, y, p)| ≤ μ(|t− s|+ (1 + |p|)|x− y|), (4.49)

for all (t, s, x, y, p) ∈ [0, T ]2 × (Rn)2 × R
n, in which μ(z) converges to zero when z goes

to zero.

Theorem 4.4.4 Let U (resp. V ) be a u.s.c. viscosity subsolution (resp. l.s.c. viscosity
supersolution) with polynomial growth condition to (4.48). If U(T, .) ≤ V (T, .) on R

n,
then U ≤ V on [0, T )× R

n.
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Proof. 1. By proceeding as in Steps 1 and 2 of Theorem 4.4.3, we may assume w.l.o.g.
that β > 0, and the supremum of the u.s.c. function U − V on [0, T ] × R

n is attained
(up to a penalization) on [0, T ] × O for some open bounded set O of R

n. We suppose
that U(T, .) ≤ V (T, .) on R

n, and let us prove that U ≤ V on [0, T ]× R
n. We argue by

contradiction, which yields:

M := sup
[0,T ]×Rn

(U − V ) = max
[0,T )×O

(U − V ) > 0. (4.50)

We now use the dedoubling variable technique by considering for any ε > 0, the
functions

Φε(t, s, x, y) = U(t, x)− V (s, y)− φε(t, s, x, y),

φε(t, s, x, y) =
1
ε

[
|t− s|2 + |x− y|2].

The u.s.c. function Φε attains its maximum, denoted by Mε, on the compact set [0, T ]2×
Ō2 at (tε, sε, xε, yε). Let us check that

Mε → M, and φε(tε, sε, xε, yε) → 0, (4.51)

as ε goes to zero. For this, we write that M ≤ Mε = Φε(tε, sε, xε, yε) for all ε > 0, i.e.

M ≤ Mε = U(tε, xε)− V (sε, yε)− φε(tε, sε, xε, yε) (4.52)

≤ U(tε, xε)− V (sε, yε). (4.53)

Now, the bounded sequence (tε, sε, xε, yε)ε converges, up to a subsequence, to some
(t̄, s̄, x̄, ȳ) ∈ [0, T ]2×Ō2. Moreover, since the sequence (U(tε, xε)−V (sε, yε))ε is bounded,
we see from (4.52) that the sequence (φε(tε, sε, xε, yε))ε is also bounded, which implies:
t̄ = s̄, x̄ = ȳ. By sending ε to zero into (4.53), we get M ≤ (U − V )(t̄, x̄) ≤ M , and so
M = (U − V )(t̄, x̄) with (t̄, x̄) ∈ [0, T ) × O by (4.50). By sending again ε to zero into
(4.52)-(4.53), we obtain (4.51).

2. Since (tε, sε, xε, yε)ε converges to (t̄, t̄, x̄, x̄) with (t̄, x̄) ∈ [0, T )×O, we may assume that
for ε small enough, (tε, sε, xε, yε) lies in [0, T )2×O2. Hence, by definition of (tε, sε, xε, yε),

(tε, xε) is a local maximum of (t, x) → U(t, x)− φε(t, sε, x, yε) on [0, T )× R
n,

(sε, yε) is a local minimum of (s, y) → V (s, y) + φε(tε, s, xε, y) on [0, T )× R
n.

We can then write the viscosity subsolution property of U applied to the test function
(t, x) → φε(t, sε, x, yε) at the point (tε, xε), which gives

−∂φε

∂t
(tε, sε, xε, yε) + βU(tε, xε)−H(tε, xε, Dxφε(tε, sε, xε, yε)) ≤ 0,

and so

− 2
ε
(tε − sε) + βU(tε, xε)−H

(
tε, xε,

2
ε
(xε − yε)

)
≤ 0. (4.54)

Similarly, by writing the viscosity supersolution property of V applied to the test function
(s, y) → −φε(tε, s, xε, y) at the point (sε, yε), we have
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− 2
ε
(tε − sε) + βV (sε, yε)−H

(
sε, yε,

2
ε
(xε − yε)

)
≥ 0. (4.55)

By substracting the two inequalities (4.54)-(4.55), and from condition (4.49), we obtain

β
[
U(tε, xε)− V (sε, yε)

]
≤ H

(
tε, xε,

2
ε
(xε − yε)

)
−H

(
sε, yε,

2
ε
(xε − yε)

)

≤ μ
(
|tε − sε|+ |xε − yε|+

2
ε
|xε − yε|2

)
.

By sending ε to zero into this last inequality, and using (4.51), we conclude that βM ≤
0, a contradiction with (4.50). �

We turn back to the case of second-order HJB equations (4.42). Let us try to adapt
the arguments as in the first-order case of HJ equations (4.48). By keeping the same
notations as in the proof of Theorem 4.4.4, the viscosity subsolution (resp. supersolution)
property of U (resp. V ) yields

−2
ε
(tε − sε) + βU(tε, xε)−H

(
tε, xε,

2
ε
(xε − yε),

2
ε

)
≤ 0

−2
ε
(tε − sε) + βV (sε, yε)−H

(
sε, xε,

2
ε
(xε − yε),−

2
ε

)
≥ 0.

However, in contrast with the first-order PDE case, by substracting the two above in-
equalities, we cannot get rid of the second-order term 2/ε appearing in the Hamiltonian.
We need some additional tools in the proof.

First, we give an equivalent definition of viscosity solutions in terms of superjets and
subjets. Notice that if U is u.s.c., ϕ ∈ C1,2([0, T ) × R

n), and (t̄, x̄) ∈ [0, T ) × R
n is a

maximum point of U − ϕ, then a second-order Taylor expansion of ϕ yields

U(t, x) ≤ U(t̄, x̄) + ϕ(t, x)− ϕ(t̄, x̄)

= U(t̄, x̄) +
∂ϕ

∂t
(t̄, x̄)(t− t̄) + Dxϕ(t̄, x̄).(x− x̄)

+
1
2
D2

xϕ(t̄, x̄)(x− x̄).(x− x̄) + o(|t− t̄|+ |x− x̄|2). (4.56)

This naturally leads to the notion of a second-order superjet of a u.s.c. function U at a
point (t̄, x̄) ∈ [0, T )×R

n, defined as the set P2,+U(t̄, x̄) of elements (q̄, p̄, M̄) ∈ R×R
n×Sn

satisfying

U(t, x) ≤ U(t̄, x̄) + q̄(t− t̄) + p̄.(x− x̄) +
1
2
M̄(x− x̄).(x− x̄) + o(|t− t̄|+ |x− x̄|2).

Similarly, we define the second-order subjet P2,−V (t̄, x̄) of a l.s.c. function V at a point
(t̄, x̄) ∈ [0, T )× R

n, as the set of elements (q̄, p̄, M̄) ∈ R× R
n × Sn satisfying

V (t, x) ≥ V (t̄, x̄) + q̄(t− t̄) + p̄.(x− x̄) +
1
2
M̄(x− x̄).(x− x̄) + o(|t− t̄|+ |x− x̄|2).

The inequality (4.56) shows that for a given point (t, x) ∈ [0, T )×R
n, if ϕ ∈ C1,2([0, T )×

R
n) is such that (t, x) is a maximum of U − ϕ, then

(q, p, M) =
(∂ϕ

∂t
(t, x), Dxϕ(t, x), D2

xϕ(t, x)
)
∈ P2,+U(t, x). (4.57)
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Actually, the converse property holds true: for any (q, p, M) ∈ P2,+U(t, x), there exists
ϕ ∈ C1,2([0, T )×R

n) satisfying (4.57). We refer to Lemma 4.1 in [FSo93] for an example
of such a construction of ϕ. Similarly, we have the following characterization of subjets:
given (t, x) ∈ [0, T ) × R

n, an element (q, p, M) ∈ P2,−V (t, x) if and only if there exists
ϕ ∈ C1,2([0, T )× R

n) satisfying

(q, p, M) =
(∂ϕ

∂t
(t, x), Dxϕ(t, x), D2

xϕ(t, x)
)
∈ P2,−V (t, x),

such that (t, x) ∈ [0, T ) × R
n is a minimum of V − ϕ. For technical reasons related to

Ishii’s lemma, see below, we also need to consider the limiting superjets and subjets.
More precisely, we define P̄2,+U(t, x) as the set of elements (q, p, M) ∈ R×R

n ×Sn for
which there exists a sequence (tε, xε, qε, pε, Mε)ε in [0, T ) × R

n × P2,+U(tε, xε) satisfy-
ing (tε, xε, U(tε, xε), qε, pε, Mε) → (t, x, U(t, x), q, p, M). The set P̄2,−V (t, x) is defined
similarly.

We can now state the alternative definition of viscosity solutions for parabolic second-
order PDEs:

F (t, x, w,
∂w

∂t
, Dxw, D2

xw) = 0, on [0, T )× R
n, (4.58)

where F (t, x, r, q, p, M) is continuous, and satisfies the parabolicity and ellipticity con-
ditions (4.2)-(4.3).

Lemma 4.4.5 A u.s.c. (resp. l.s.c.) function w on [0, T )×R
n is a viscosity subsolution

(resp. supersolution) of (4.58) on [0, T ) × R
n if and only if for all (t, x) ∈ [0, T ) × R

n,
and all (q, p, M) ∈ P̄2,+w(t, x) (resp. P̄2,−w(t, x)),

F (t, x, w(t, x), q, p, M) ≤ (resp. ≥) 0.

The key tool in the comparison proof for second-order equations in the theory of
viscosity solutions is an analysis lemma due to Ishii. We state this lemma without proof,
and refer the reader to Theorem 8.3 in the user’s guide [CIL92].

Lemma 4.4.6 (Ishii’s lemma)
Let U (resp. V ) be a u.s.c. (resp. l.s.c.) function on [0, T )×R

n, φ ∈ C1,1,2,2([0, T )2×R
n×

R
n), and (t̄, s̄, x̄, ȳ) ∈ [0, T )2×R

n×R
n a local maximum of U(t, x)−V (t, y)−φ(t, s, x, y).

Then, for all η > 0, there exist M , N ∈ Sn satisfying

(∂φ

∂t
(t̄, s̄, x̄, ȳ), Dxφ(t̄, s̄, x̄, ȳ), M

)
∈ P̄2,+U(t̄, x̄),

(
− ∂φ

∂s
(t̄, s̄, x̄, ȳ),−Dyφ(t̄, s̄, x̄, ȳ), N

)
∈ P̄2,−V (s̄, ȳ),

and
(

M 0
0 −N

)

≤ D2
x,yφ(t̄, s̄, x̄, ȳ) + η

(
D2

x,yφ(t̄, s̄, x̄, ȳ)
)2

. (4.59)
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Remark 4.4.9 We shall use Ishii’s lemma with φ(t, s, x, y) = 1
2ε [|t−s|2+|x−y|2]. Then,

(
∂φ

∂t
(t̄, s̄, x̄, ȳ) = −∂φ

∂s
(t̄, s̄, x̄, ȳ) = (t̄− s̄)/ε, Dxφ(t̄, s̄, x̄, ȳ) = −Dyφ(t̄, s̄, x̄, ȳ) = (x̄− ȳ)/ε,

D2
x,yφ(t̄, s̄, x̄, ȳ) =

1
ε

(
In −In

−In In

)

,

and
(
D2

x,yφ(t̄, s̄, x̄, ȳ)
)2 = 2

ε2 D2
x,yφ(t̄, s̄, x̄, ȳ). Furthermore, by choosing η = ε in (4.59),

we obtain
(

M 0
0 −N

)

≤ 3
ε

(
In −In

−In In

)

. (4.60)

This implies that for any n× d matrices C, D,

tr
(
CC ′M −DD′N

)
≤ 3

ε
|C −D|2. (4.61)

Indeed, by noting that the matrix Σ =
(

CC ′ CD′

DC ′ DD′

)

lies in S2n, we get from the in-

equality (4.60)

tr
(
CC ′M −DD′N

)
= tr

(
Σ
(M 0

0 −N

))

≤ 3
ε
tr
(
Σ
( In −In

−In In

))
=

3
ε
tr
(
(C −D)(C −D)′

)
.

We can finally prove a comparison result for the HJB equation (4.42) with a Hamilto-
nian given by (4.43). In this Hamiltonian H, we assume that the coefficients b, σ satisfy
a uniform Lipschitz condition in x, and f is uniformly continuous in (t, x), uniformly in
a ∈ A.

Theorem 4.4.5 Let U (resp. V ) be a u.s.c. viscosity subsolution (resp. l.s.c. viscosity
supersolution) with polynomial growth condition to (4.42), such that U(T, .) ≤ V (T, .) on
R

n. Then U ≤ V on [0, T )× R
n.

Proof. We proceed similarly as in part 1 of Theorem 4.4.4. We assume w.l.o.g. that β >

0 in (4.42), and we argue by contradiction by assuming that M := sup[0,T ]×Rn(U − V )
> 0. We consider a bounded sequence (tε, sε, xε, yε)ε that maximizes for all ε > 0, the
function Φε on [0, T ]2 × R

n × R
n with

Φε(t, s, x, y) = U(t, x)− V (s, y)− φε(t, s, x, y), φε(t, s, x, y) =
1
2ε

[|t− s|2 + |x− y|2].

As in (4.51), we have

Mε = Φε(tε, sε, xε, yε) → M, and φε(tε, sε, xε, yε) → 0, (4.62)

as ε goes to zero. In view of Ishii’s lemma 4.4.6 and Remark 4.4.9, there exist M,N ∈
Sn satisfying (4.61) and
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(1
ε
(tε − sε),

1
ε
(xε − yε), M) ∈ P̄2,+U(tε, xε),

(1
ε
(tε − sε),

1
ε
(xε − yε), N) ∈ P̄2,−V (sε, yε).

From the viscosity subsolution and supersolution characterization of U and V in terms
of superjets and subjets, we then have

−1
ε
(tε − sε) + βU(tε, xε)−H

(
tε, xε,

1
ε
(xε − yε), M

)
≤ 0,

−1
ε
(tε − sε) + βV (sε, yε)−H

(
sε, yε,

1
ε
(xε − yε), N

)
≥ 0.

By substracting the above two inequalities, applying inequality (4.61) to C = σ(xε, a),
D = σ(yε, a), and recalling the uniform Lipschitz conditions on b, σ together with the
uniform continuity of f , we get

β
[
U(tε, xε)− V (sε, yε)

]
≤ H

(
tε, xε,

1
ε
(xε − yε), M

)
−H

(
sε, yε,

1
ε
(xε − yε), N

)

≤ μ
(
|tε − sε|+ |xε − yε|+

2
ε
|xε − yε|2

)
,

where μ(z) converges to zero as z goes to zero. By sending ε to zero in this last inequality,
and using (4.62), we conclude that βM ≤ 0, a contradiction. �

In this section, we stated comparison principles for regular HJB equations of type
(4.42). For HJB variational inequalities in the form (4.17), one can also prove comparison
results under suitable conditions on the function G. There are no general results, and
the proof should be adapted depending on the form of the function G. We shall give in
Theorem 5.3.3 an example of such comparison results for variational inequalities.

4.5 An irreversible investment model

4.5.1 Problem

We consider a firm producing some output (electricity, oil, etc.). The firm can increase
its production capacity Xt by transferring capital from another production activity. The
controlled dynamics of the production capacity evolves according to

dXt = Xt(−δdt + σdWt) + ltdt.

δ ≥ 0 is the depreciation rate, σ > 0 is the volatility related to random fluctuations of
the capacity, ltdt is the number of capital units purchased by the company at a cost
λltdt, λ > 0 is interpreted as a factor of conversion from one production activity to
another. The control lt is nonnegative, unbounded valued in R+, and it is suitable to set
Lt =

∫ t

0
lsds: more generally, we consider as control any càd-làg adapted process (Lt)t≥0,

nondecreasing with L0− = 0, and we write L ∈ A: Lt represents the cumulated amount
of capital up to time t. Given x ≥ 0 and L ∈ A, we denote by Xx the solution to

dXt = Xt(−δdt + σdWt) + dLt, X0− = x. (4.63)
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The profit function of the firm is a continuous function Π from R+ into R, concave,
nondecreasing, C1 on (0,∞), with Π(0) = 0, and satisfying the usual Inada conditions
in 0:

Π ′(0+) := lim
x↓0

Π ′(x) = ∞ and Π ′(∞) := lim
x→∞

Π ′(x) = 0. (4.64)

We introduce the Fenchel-Legendre transform of Π, which is finite on R+:

Π̃(y) := sup
x≥0

[Π(x)− xy] < ∞, ∀y > 0. (4.65)

The objective of the firm is defined by

v(x) = sup
L ∈ A

E
[ ∫ ∞

0

e−βt (Π(Xx
t )dt − λdLt)

]
, x ≥ 0. (4.66)

The Hamiltonian of this singular stochastic control problem is

H(x, p,M) =
{
−δxp + 1

2σ2x2M + Π(x) if λ− p ≥ 0
∞ if λ− p < 0.

The associated HJB variational inequality is then written as

min [βv − Lv −Π , λ− v′] = 0, (4.67)

with

Lv = −δxv′ +
1
2
σ2x2v′′.

4.5.2 Regularity and construction of the value function

We state some useful properties on the value function.

Lemma 4.5.7 (a) v is finite on R+, and satisfies for all μ ∈ [0, λ]:

0 ≤ v(x) ≤ Π̃((β + δ)μ)
β

+ μx, x ≥ 0. (4.68)

(b) v is concave and continuous on (0,∞).

Proof. (a) By considering the null control L = 0, we clearly see that v ≥ 0. Let us
consider for μ ∈ [0, λ] the positive function

ϕ(x) = μx +
Π̃((β + δ)μ)

β
.

Then ϕ′ ≤ λ, and we have for all x ≥ 0,

βϕ− Lϕ−Π(x) = Π̃((β + δ)μ) + (β + δ)μx−Π(x) ≥ 0,

by definition of Π̃ in (4.65). Given L ∈ A, we apply Itô’s formula to e−βtϕ(Xx
t ) between

0 and τn where τn is the bounded stopping time: τn = inf{t ≥ 0 : Xx
t ≥ n} ∧ n, n ∈ N.
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By taking the expectation, and since the stopped stochastic integral is a martingale, we
have

E
[
e−βτnϕ(Xx

τn
)
]

= ϕ(x) + E
[ ∫ τn

0

e−βt (−βϕ + Lϕ) (Xx
t )dt

]
(4.69)

+ E
[ ∫ τn

0

e−βtϕ′(Xx
t )dLc

t

]
+ E

[ ∑

0≤t≤τn

e−βt
[
ϕ(Xx

t )− ϕ(Xx
t−)
]]

,

where Lc is the continuous part of L. Since ϕ′ ≤ λ and Xx
t − Xx

t− = Lt − Lt− , the
mean-value theorem implies

ϕ(Xx
t )− ϕ(Xx

t−) ≤ λ(Lt − Lt−).

By using again the inequality ϕ′ ≤ λ in the integrals in dLc in (4.69), and recalling that
−βϕ + Lϕ ≤ −Π, we obtain:

E
[
e−βτnϕ(Xx

τn
)
]
≤ ϕ(x) − E

[ ∫ τn

0

e−βtΠ(Xx
t )dt

]

+ E
[ ∫ τn

0

e−βtλdLc
t

]
+ E

[ ∑

0≤t≤τn

e−βtλ(Lt − Lt−)
]

= ϕ(x) − E
[ ∫ τn

0

e−βtΠ(Xx
t )dt

]
+ E

[ ∫ τn

0

e−βtλdLt

]
,

and so

E
[ ∫ τn

0

e−βt (Π(Xx
t )dt− λdLt)

]
+ E

[
e−βτnϕ(Xx

τn
)
]
≤ ϕ(x).

Since ϕ ≥ 0, we thus derive:

ϕ(x) ≥ E
[ ∫ τn

0

e−βtΠ(Xx
t )dt

]
− E

[ ∫ ∞

0

e−βtλdLt

]
.

We can apply Fatou’s lemma, and send n to infinity to get:

E
[ ∫ ∞

0

e−βt (Π(Xx
t )dt− λdLt)

]
≤ ϕ(x),

and finally v(x) ≤ ϕ(x) since L was arbitrary.

(b) The proof of the concavity of v is standard: it is derived (as in Section 3.6.1)
by considering convex combinations of initial states and controls, and by relying on the
linearity of the dynamics of X, and the concavity of Π. The continuity of v on R+ is then
a consequence of the general continuity property of a concave function on the interior of
its domain. �

Since v is concave on (0,∞), it admits a right-derivative v′+(x) and a left-derivative
v′−(x) at any point x > 0, with v′+(x) ≤ v′−(x).

Lemma 4.5.8

v′−(x) ≤ λ, x > 0. (4.70)
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Proof. For any x > 0, 0 < l < x, L ∈ A, let us consider the control L̃ defined by L̃0−

= 0, and L̃t = Lt + l, for t ≥ 0. Denote by X̃ the controlled diffusion with L̃ and initial
condition X̃0− = x− l. Then, X̃x−l

t = Xx
t for all t ≥ 0, and we have

v(x− l) ≥ E
[ ∫ ∞

0

e−βt
(
Π(X̃x−l

t )dt− λdL̃t

) ]

= E
[ ∫ ∞

0

e−βt (Π(Xx
t )dt− λdLt)

]
− λl.

Since L is arbitrary, this yields

v(x− l) ≥ −λl + v(x), x > 0.

We obtain the required result by dividing by l, and sending l to zero. �

Lemma 4.5.9 There exists xb ∈ [0,∞] such that

NT :=
{
x > 0 : v′

−(x) < λ
}

= (xb,∞), (4.71)

Furthermore, v is differentiable on (0, xb), and

v′(x) = λ, on B = (0, xb). (4.72)

Proof. We set xb = inf{x ≥ 0 : v′+(x) < λ}. Then, λ ≤ v′+(x) ≤ v′−(x), for all x <

xb. By combining with (4.70), this proves (4.72). Finally, the concavity of v shows the
relation (4.71). �

We know from the general results of Section 4.3 (see Theorem 4.3.1) that the value
function v is a viscosity solution to the HJB variational inequality (4.67). By exploiting
the concavity of v for this unidimensional problem, we can show that the value function
is actually a smooth C2 solution.

Theorem 4.5.6 The value function v is a classical solution C2 on (0,∞) to

min {βv − Lv −Π(x) , −v′(x) + λ} = 0, x > 0.

Proof. Step 1. We first prove that v is C1 on (0,∞). Since v is concave, its left and
right derivatives v′−(x) and v′+(x) exist for all x > 0 with v′+(x) ≤ v′−(x). We argue by
contradiction by assuming that v′+(x0) < v′−(x0) for some x0 > 0. Let us then fix μ ∈
(v′+(x0), v′−(x0)), and consider the smooth test function

ϕε(x) = v(x0) + μ(x− x0)−
1
2ε

(x− x0)2,

with ε > 0. Then x0 is a local maximum of (v − ϕε) with ϕε(x0) = v(x0). Since ϕ′
ε(x0)

= μ < λ by (4.70), and ϕ′′
ε (x0) = −1/ε, the subsolution property of v implies that

βv(x0) + δx0μ +
1
2ε

σ2x2
0 −Π(x0) ≤ 0. (4.73)

By choosing ε sufficiently small, we get the required contradiction, which shows that
v′
+(x0) = v′−(x0).
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Step 2. From Lemma 4.5.9, v is C2 on (0, xb), and satisfies v′(x) = λ, x ∈ (0, xb). By
Step 1, we have: NT = (xb,∞) = {x > 0 : v′(x) < λ}. Let us check that v is a viscosity
solution to

βv − Lv −Π = 0, on (xb,∞). (4.74)

Let x0 ∈ (xb,∞) and ϕ a function C2 on (xb,∞) such that x0 is a local maximum of
v−ϕ, with (v−ϕ)(x0) = 0. Since ϕ′(x0) = v′(x0) < λ, the viscosity subsolution property
of v to (4.67) yields

βϕ(x0)− Lϕ(x0)−Π(x0) ≤ 0.

This shows that v is a viscosity subsolution to (4.74) on (xb,∞). The proof of the viscosity
supersolution property to (4.74) is similar. Let us consider for arbitrary x1 ≤ x2 in
(xb,∞), the Dirichlet problem

βV − LV −Π(x) = 0, on (x1, x2) (4.75)

V (x1) = v(x1), V (x2) = v(x2). (4.76)

Classical results provide the existence and uniqueness of a smooth C2 solution V to
(4.75)-(4.76). In particular, this smooth function V is a viscosity solution to (4.74) on
(x1, x2). From comparison results for viscosity solutions (see the previous section) for
linear PDEs in bounded domain, we deduce that v = V on (x1, x2). Since x1 and x2 are
arbitrary in (xb,∞), this proves that v is C2 on (xb,∞), and satisfies the PDE (4.74) in
a classical sense.

Step 3. It remains to prove the C2 condition on xb in the case where 0 < xb < ∞.
Let x ∈ (0, xb). Since v is C2 on (0, xb), the viscosity supersolution property of v applied
to the point x and the test function ϕ = v implies that v satisfies in a classical sense

βv(x)− Lv(x)−Π(x) ≥ 0, 0 < x < xb.

Since the derivative of v is constant, equal to λ on (0, xb), we have

βv(x) + δxλ−Π(x) ≥ 0, 0 < x < xb,

and so

βv(xb) + δxbλ−Π(xb) ≥ 0. (4.77)

On the other hand, from the C1 condition of v at xb, we obtain by sending x to xb in
(4.74)

βv(xb) + δxbλ−Π(xb) =
1
2
σ2x2

bv
′′(x+

b ). (4.78)

From the concavity of v, the right-hand term of (4.78) is nonpositive, which, together
with (4.77), implies that v′′(x+

b ) = 0. This proves that v is C2 at xb with v′′(xb) = 0. �

We can now give an explicit form for the value function. Let us consider the ordinary
differential equation (ODE) arising in the HJB equation:
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βv − Lv −Π = 0. (4.79)

We recall that the general solution to (4.79) (with Π = 0) is given by

V̂ (x) = Axm + Bxn,

where

m =
δ

σ2
+

1
2
−

√(
δ

σ2
+

1
2

)2

+
2β

σ2
< 0

n =
δ

σ2
+

1
2

+

√(
δ

σ2
+

1
2

)2

+
2β

σ2
> 1.

Moreover, the ODE (4.79) admits a particular solution given by

V̂0(x) = E
[ ∫ ∞

0

e−βtΠ(X̂x
t )
]

=
2

σ2(n−m)

[
xn

∫ ∞

x

s−n−1Π(s)ds + xm

∫ x

0

s−m−1Π(s)ds
]
, x > 0,

where X̂x is the solution to (4.63) with L = 0. We easily check (exercise left to the
reader) that under the Inada condition (4.64):

V̂ ′
0(0+) = ∞ and V̂ ′

0(∞) = 0 .

Lemma 4.5.10 The boundary xb lies in (0,∞).

Proof. We first check that xb > 0. On the contrary, the region B is empty, and we would
get from Lemma 4.5.9 and Theorem 4.5.6

βv − Lv −Π = 0, x > 0.

Thus, v should take the form

v(x) = Axm + Bxn + V̂0(x), x > 0.

Since m < 0 and |v(0+)| < ∞, this implies A = 0. Moreover, since n > 1, we have v′(0+)
= V̂ ′

0(0+) = ∞, which is in contradiction with the fact that v′(x) ≤ λ for all x > 0.
We immediately show that xb < ∞. Otherwise, v satisfies v′ = λ on (0,∞), which is

in contradiction with the growth condition (4.68). �

Theorem 4.5.7 The value function has the explicit form

v(x) =
{

λx + v(0+) x ≤ xb

Axm + V̂0(x) xb < x,
(4.80)

where the three parameters v(0+), A and xb are determined by the continuity, C1 and
C2 conditions of v at xb:

Axm
b + V̂0(xb) = λxb + v(0+), (4.81)

mAxm−1
b + V̂ ′

0(xb) = λ, (4.82)

m(m− 1)Axm−2
b + V̂ ′′

0 (xb) = 0. (4.83)
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Proof. We already know from Lemma 4.5.9 that on (0, xb), which is nonempty by Lemma
4.5.10, v has the structure described in (4.80). Moreover, on (xb,∞), we have v′ < λ by
Lemma 4.5.9. From Theorem 4.5.6, we then deduce that v satisfies βv − Lv − Π = 0,
and so is in the form:

v(x) = Axm + Bxn + V̂0(x), x > xb.

Since m < 0, n > 1, V̂ ′
0(x) converges to 0 when x goes to infinity, and 0 ≤ v′(x) ≤ λ, we

must have B = 0. Thus, v has the form described in (4.80). Finally, the three conditions
(4.81), (4.82) and (4.83), which follow from the C2 condition of v at xb, determine the
three constants A, xb and v(0+). �

4.5.3 Optimal strategy

We recall the Skorohod lemma proved for example in P.L. Lions and Snitzman [LS84].

Lemma 4.5.11 Given any initial state x ≥ 0 and any boundary xb ≥ 0, there exists a
unique adapted process X∗, and a nondecreasing process L∗, right-continuous, satisfying
the Skorohod problem S(x, xb):

dX∗
t = X∗

t (−δdt + σdWt) + dL∗
t , t ≥ 0, X∗

0− = x, (4.84)

X∗
t ∈ [xb,∞) a.s., t ≥ 0, (4.85)

∫ ∞

0

1X∗
u>xb

dL∗
u = 0. (4.86)

Moreover, if x ≥ xb, then L∗ is continuous. When x < xb, L∗
0 = xb − x, and X∗

0 = xb.

The solution X∗ to the above equations is a reflected diffusion on the boundary xb,
and the process L∗ is the local time of X∗ at xb. The condition (4.86) means that L∗

increases only when X∗ reaches the boundary xb. The β-potential of L∗ is finite, i.e.
E[
∫∞
0

e−βtdL∗
t ], see Chapter X in Revuz and Yor [ReY91], which implies that

E
[ ∫ ∞

0

e−βtX∗
t dt
]

< ∞. (4.87)

Theorem 4.5.8 Given x ≥ 0, let (X∗, L∗) be the solution to the Skorohod problem
S(x, xb). We then have

v(x) = E
[ ∫ ∞

0

e−βt (Π(X∗
t )dt− λdL∗

t )
]
.

Proof. (1) We first consider the case where x ≥ xb. Then the processes X∗ and L∗ are
continuous. From (4.85) and Theorem 4.5.6, we have

βv(X∗
t )− Lv(X∗

t )−Π(X∗
t ) = 0, a.s. t ≥ 0.

By applying Itô’s formula to e−βtv(X∗
t ) between 0 and T , we then obtain

E
[
e−βT v(X∗

T )
]

= v(x)− E
[ ∫ T

0

e−βtΠ(X∗
t )dt

]
+ E

[ ∫ T

0

e−βtv′(X∗
t )dL∗

t

]
. (4.88)
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(The stochastic integral appearing in Itô’s formula is vanishing in expectation by (4.87)).
Thus, from (4.86), we have

E
[ ∫ T

0

e−βtv′(X∗
t )dL∗

t

]
= E

[ ∫ T

0

e−βtv′(X∗
t )1X∗

t =xb
dL∗

t

]

= E
[ ∫ T

0

e−βtλdL∗
t

]
,

since v′(xb) = λ. By substituting into (4.88), we get

v(x) = E
[
e−βT v(X∗

T )
]

+ E
[ ∫ T

0

e−βtΠ(X∗
t )dt

]
− E

[ ∫ T

0

e−βtλdL∗
t

]
. (4.89)

From (4.87), we have limT→∞ E[e−βT X∗
T ] = 0, and so by the linear growth condition on

v

lim
T→∞

E[e−βT v(X∗
T )] = 0.

By sending T to infinity into (4.89), we get the required equality.

(2) When x < xb, and since L∗
0 = x− xb, we have

E
[ ∫ ∞

0

e−βt (Π(Xx
t )− λdL∗

t )
]

= E
[ ∫ ∞

0

e−βt (Π(Xxb
t )− λdL∗

t )
]
− λ(x− xb)

= v(xb)− λ(x− xb) = v(x),

by recalling that v′ = λ on (0, xb). �

In conclusion, Theorems 4.5.7 and 4.5.8 provide an explicit solution to this irreversible
investment problem. They validate the economic intuition that a firm should invest in
the augmentation of capital to maintain its production capacity above some determined
level.

4.6 Superreplication cost in uncertain volatility model

We consider the controlled diffusion

dXs = αsXsdWs, t ≤ s ≤ T,

valued in (0,∞) (for an initial condition x > 0), and where the control process α ∈ A
is valued in A = [a, ā], with 0 ≤ a ≤ ā ≤ ∞. To avoid trivial cases, we assume that ā >

0 and a �= ∞. In finance, α represents the uncertain volatility process of the stock price
X. Given a continuous function g with linear growth condition, representing the payoff
of an European option, we want to calculate its superreplication cost, which is given by

v(t, x) = sup
α∈A

E
[
g(Xt,x

T )
]
, (t, x) ∈ [0, T ]× (0,∞). (4.90)

Since the positive process {Xt,x
s , t ≤ s ≤ T} is a supermartingale for all α ∈ A, it is

easy to see that v inherits from g the linear growth condition, and is in particular locally
bounded.



90 4 The viscosity solutions approach to stochastic control problems

The Hamiltonian of this stochastic control problem is

H(x,M) = sup
a∈[a,ā]

[1
2
a2x2M

]
, (x,M) ∈ (0,∞)× R.

We shall then distinguish two cases according to the finiteness of the upper bound vola-
tility ā.

4.6.1 Bounded volatility

We suppose that

ā < ∞.

In this regular case, the Hamiltonian H is finite on the whole domain (0,∞)×R, and is
explicitly given by

H(x,M) =
1
2
â2(M)x2M,

with

â(M) =
{

ā if M ≥ 0
a if M < 0.

According to the general results of the previous sections, we have the following char-
acterization on the superreplication cost.

Theorem 4.6.9 Suppose ā < ∞. Then v is continuous on [0, T ] × (0,∞), and is the
unique viscosity solution with linear growth condition to the so-called Black-Scholes-
Barenblatt equation

− ∂v

∂t
− 1

2
â2

(
∂2v

∂x2

)

x2 ∂2v

∂x2
= 0, (t, x) ∈ [0, T )× (0,∞), (4.91)

satisfying the terminal condition

v(T, x) = g(x), x ∈ (0,∞). (4.92)

Proof. We know from Theorem 4.3.1 (and Remark 4.3.4) that v is a viscosity solution
to (4.91). Moreover, Theorem 4.3.2 and Remark 4.3.5 show that v is continuous on T

with v(T−, .) = v(T, .) = g. Finally, we obtain the uniqueness and continuity of v from
the strong comparison principle in Theorem 4.4.5. �

Remark 4.6.10 When a > 0, there is existence and uniqueness of a smooth solution to
the Black-Scholes-Barenblatt (4.91) together with the terminal condition (4.92), and so
v is this smooth solution. Indeed, in this case, after the change of variable x → ln x, we
have a uniform ellipticity condition on the second-order term of the PDE, and we may
apply classical results of Friedman [Fr75].
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Remark 4.6.11 When g is convex, the function

w(t, x) = E
[
g(X̂t,x

T )
]
, (t, x) ∈ [0, T ]× (0,∞),

where {X̂t,x
s , t ≤ s ≤ T} is the geometric Brownian motion, the solution to

dX̂s = āX̂sdWs, t ≤ s ≤ T, X̂t = x,

is also convex in x. Note that w is the Black-Scholes price of the option payoff g with
volatility ā. Moreover, w is continuous on [0, T ]× (0,∞) and is a classical solution to the
Black-Scholes equation

−∂w

∂t
− 1

2
ā2x2 ∂2w

∂x2
= 0, (t, x) ∈ [0, T )× (0,∞),

and satisfies the terminal condition w(T, x) = g(x). Since â

(
∂2w

∂x2

)

= ā, this implies

that w is also a solution to (4.91). By uniqueness, we conclude that w = v. Similarly,
when g is concave, the function v is equal to the Black-Scholes price of the option payoff
g with volatility a.

4.6.2 Unbounded volatility

In this section, we suppose that

ā = ∞.

In this singular case, the Hamiltonian is given by

H(x,M) =
{

1
2a2x2M if −M ≥ 0
∞ if −M < 0.

According to Theorem 4.3.1, the function v is then a viscosity solution to

min
[
− ∂v

∂t
− 1

2
a2x2 ∂2v

∂x2
, −∂2v

∂x2

]
= 0, (t, x) ∈ [0, T )× (0,∞). (4.93)

Moreover, from Theoerem 4.3.2, the terminal condition is determined by the equation
(in the viscosity sense)

min
[
v(T−, .)− g , −D2

xv(T−, .)
]

= 0 on (0,∞). (4.94)

In view of this terminal condition (see also Remark 4.3.5), we introduce the upper concave
envelope of g, denoted by ĝ, which is the smallest concave function above g. We can then
explicitly characterize the superreplication cost v.

Theorem 4.6.10 Suppose ā = ∞. Then v = w on [0, T )× (0,∞) where w is the Black-
Scholes price for the payoff function ĝ(x):

w(t, x) = E
[
ĝ
(
X̂t,x

T

)]
, ∀(t, x) ∈ [0, T ]× (0,∞), (4.95)

in a Black-Scholes model with lower volatility a, i.e. {X̂t,x
s , t ≤ s ≤ T} is the solution to

dX̂s = aX̂sdWs, t ≤ s ≤ T, X̂t = x.
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Proof. 1. We know from Theorem 4.3.2 that v∗(T, .) is a viscosity supersolution to
(4.94), i.e. v∗(T, .) ≥ g, and v∗(T, .) is a viscosity supersolution to −D2

xv∗(T, .) ≥ 0. In
the classical case, this last property means that v∗(T, .) is concave. This result is still true
with the notion of viscosity solution. To see this, let x0 < x1 be two arbitrary points in
(0,∞). Since v∗(T, .) is lower-bounded on [x0, x1], we may assume, by adding eventually
a constant to v∗(T, .) (which does not change its viscosity supersolution property), that
v∗(T, .) ≥ 0 on [x0, x1]. We thus clearly see that v∗(T, .) is a viscosity supersolution to
ε2u−D2u = 0 on (x0, x1) for all ε > 0. Let us consider the equation

εu−D2u = 0 on (x0, x1),

with the boundary conditions

u(x0) = v∗(T, x0), u(x1) = v∗(T, x1).

The solution to this linear Dirichlet problem is smooth on [x0, x1], and given by

uε(x) =
v∗(T, x0)

[
eε(x1−x) − 1

]
+ v∗(T, x1)

[
eε(x−x0) − 1

]

eε(x1−x0) − 1
.

From the comparison principle for this Dirichlet problem, we deduce that v∗(T, x) ≥
uε(x) for all x ∈ [x0, x1]. By sending ε to zero, this yields

v∗(T, x)− v∗(T, x0)
x− x0

≥ v∗(T, x1)− v∗(T, x0)
x1 − x0

, ∀x ∈ (x0, x1),

which proves the concavity of v∗(T, .). By definition of ĝ, and since v∗(T, .) ≥ g, we obtain

v∗(T, .) ≥ ĝ, on (0,∞). (4.96)

2. We know from Theorem 4.3.2 that v∗(T, .) is a viscosity subsolution to (4.94). One
could invoke a comparison principle for (4.94) to deduce that v∗(T, .) ≤ ĝ, which is a vis-
cosity solution to this equation. We provide here an alternative direct argument. Denote
by Ab the subset of bounded controls in A. We then have v(t, x) ≥ supα∈Ab

E[g(Xt,x
T )].

Conversely, given an arbitrary α̂ ∈ A, we set for n ∈ N, αn := α̂1|α̂|≤n ∈ Ab, and we
denote by X̂t,x

s (resp. Xn
s ), t ≤ s ≤ T , the diffusion process controlled by α̂ (resp. αn).

i.e.

X̂t,x
s = x exp

(∫ s

t

α̂udWu −
1
2

∫ s

t

|α̂u|2du

)

,

Xn
s = x exp

(∫ s

t

αn
udWu −

1
2

∫ s

t

|αn
u|2du

)

.

Then Xn
T converges a.s. to X̂t,x

T when n goes to infinity, and by Fatou’s lemma, we get

sup
α∈Ab

E[g(Xt,x
T )] ≥ lim inf

n→+∞
E[g(Xn

T )] ≥ E[g(X̂t,x
T )].

Since α̂ ∈ A is arbitrary, we obtain the converse inequality, and so

v(t, x) = sup
α∈Ab

E[g(Xt,x
T )]. (4.97)
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By noting that for any α ∈ Ab, the process Xt,x
s , t ≤ s ≤ T , is a martingale, Jensen’s

inequality yields

v(t, x) ≤ sup
α∈Ab

E[ĝ(Xt,x
T )]

≤ sup
α∈Ab

ĝ
(
E[Xt,x

T ]
)

= ĝ(x). (4.98)

This shows in particular that v∗(T, .) ≤ g, and together with (4.96) that

v∗(T, x) = v∗(T, x) = ĝ(x), x > 0. (4.99)

3. The Black-Scholes price w in (4.95) is a continuous function on [0, T ]× (0,∞), and is
a viscosity solution with linear growth condition to the Black-Scholes PDE

− ∂w

∂t
− 1

2
a2x2 ∂2w

∂x2
= 0, (t, x) ∈ [0, T )× (0,∞), (4.100)

together with the terminal condition

w(T, x) = ĝ(x), x ∈ (0,∞). (4.101)

From (4.93), we know that v is a viscosity supersolution to (4.100), and by (4.96): v∗(T, .)
≥ w(T, .). From the comparison principle for the linear PDE (4.100), we deduce that

v∗ ≥ w on [0, T ]× (0,∞). (4.102)

4. Since ĝ is concave and it is well-known that Black-Scholes price inherits concavity
from its payoff, we deduce that

−∂2w

∂x2
(t, x) ≥ 0 on [0, T )× (0,∞).

This characterization of concavity is obviously true when w is smooth, and is still valid
in the viscosity sense (exercise left to the reader). Together with the previous equality
(4.100), this proves that w is a viscosity solution to

min
[
− ∂w

∂t
− 1

2
a2x2 ∂2w

∂x2
, −∂2w

∂x2

]
= 0, (t, x) ∈ [0, T )× (0,∞).

We could invoke a comparison principle for the above variational inequality to conclude
that v = w on [0, T ) × (0,∞). Here, we provide a direct alternative argument. When a

= 0, we have w = ĝ ≥ v by (4.98), and so the required equality with (4.102). When a

> 0, the function w lies in C1,2([0, T )× (0,∞)). By applying Itô’s formula to w(s,Xt,x
s )

given an arbitrary α ∈ A (after localization for removing in expectation the stochastic
integral term), we obtain

E[ĝ(Xt,x
T )] = w(t, x) + E

[ ∫ T

t

∂w

∂t
(s,Xt,x

s ) + (αs)2(Xt,x
s )2

∂2w

∂x2
(s, , Xt,x

s ) ds
]
.

Since w is concave, and αs ≥ a, we deduce that
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E[g(Xt,x
T )] ≤ E[ĝ(Xt,x

T )]

≤ w(t, x) + E
[ ∫ T

t

∂w

∂t
(s,Xt,x

s ) + a2(Xt,x
s )2

∂2w

∂x2
(s, , Xt,x

s ) ds
]

= w(t, x),

since w is solution to (4.100). From the arbitrariness of α ∈ A, we conclude that v ≤ w,
and finally with (4.102) that v = w on [0, T )× (0,∞). �

Remark 4.6.12 The previous theorem shows that when a = 0, then v(t, .) = ĝ for all
t ∈ [0, T ). This also holds true for any a ≥ 0 when we further assume that g is convex.
Indeed, we already know from (4.98) that v ≤ ĝ. Moreover, if g is convex, then by (4.97)
and Jensen’s inequality, we have v(t, x) ≥ g(x) for all (t, x) ∈ [0, T ]×(0,∞). By concavity
of v(t, .) for t ∈ [0, T ), we conclude that v(t, x) ≥ ĝ(x), and so v(t, x) = ĝ(x) for all (t, x)
∈ [0, T )× (0,∞).
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5

Optimal switching and free boundary problems

5.1 Introduction

The theory of optimal stopping and its generalization as optimal switching is an impor-
tant and classical field of stochastic control, which knows a renewed increasing interest
due to its numerous and various applications in economy and finance, in particular for
real options. Actually, it provides a suitable modeling framework for the evaluation of
optimal investment decisions in capital for firms. Hence, it permits to capture the value
of managerial flexibility to adapt decisions in response to unexpected markets develop-
ments, which is a key element in the modern theory of real options.

In this chapter, we present the tools of optimal switching, revisited under the approach
of viscosity solutions, and we illustrate its applications through several examples related
to real options. We essentially focus on infinite horizon problems. Section 5.2 is devoted
to the optimal stopping problem, which appears classically in finance in the computation
of American option prices. We derive the corresponding free boundary problem in the
viscosity sense, and discuss the smooth-fit principle, i.e. the continuous differentiability
of the value function. We give examples of application to the problem of selling an asset
at an optimal date, and to the valuation of natural resources. In Section 5.3, we develop
the optimal switching problem, where the controller may intervene successively on the
system, whose coefficients may take different values, called regimes. This is an extension
of the optimal stopping problem, and we show how the dynamic programming principle
leads to a system of variational inequalities for the value functions that we characterize
in the viscosity sense. We also state a smooth fit property in this context, and give an
explicit solution in the two-regime case.

5.2 Optimal stopping

We consider a diffusion process on R
n driven by the SDE

dXt = b(Xt)dt + σ(Xt)dWt, (5.1)

where W is a d-dimensional standard Brownian motion on a probability space (Ω,F , P )
equipped with a filtration F = (Ft)t≥0 satisfying the usual conditions. The coefficients
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b and σ satisfy the usual Lipschitz conditions ensuring the existence and uniqueness of
a solution given an initial condition: we denote by {Xx

t , t ≥ 0} the solution to (5.1)
starting from x at time t = 0, and {Xt,x

s , s ≥ t} the solution to (5.1) starting from x at
t. Given two continuous functions f , g : R

n → R, satisfying a linear growth condition,
and a positive discount factor β > 0, we consider the infinite horizon optimal stopping
problem

v(x) = sup
τ∈T

E
[ ∫ τ

0

e−βtf(Xx
t )dt + e−βτg(Xx

τ )
]
, x ∈ R

n. (5.2)

Here T denotes the set of stopping times valued in [0,∞], and we use the convention
that e−βτ = 0 when τ = ∞. For simplicity (see also Remark 5.2.1), we assume that f

and g are Lipschitz. The finite horizon optimal stopping problem is formulated as

v(t, x) = sup
τ∈Tt,T

E
[ ∫ τ

0

e−β(s−t)f(Xt,x
s )ds + e−β(τ−t)g(Xt,x

τ )
]
, (t, x) ∈ [0, T ]× R

n,

where Tt,T denotes the set of stopping times valued in [0, T ].

5.2.1 Dynamic programming and viscosity property

The aim of this section is to relate the value function v in (5.2) to a PDE in variational
form

min
[
βv − Lv − f , v − g

]
= 0, (5.3)

in the viscosity sense. Here L is the second-order operator associated to the diffusion X:

Lv = b(x).Dxv +
1
2
tr(σσ′(x)D2

xv).

Formally, this variational inequality (5.3) means that the PDE: βv−Lv−f = 0 is satisfied
in the domain C = {x ∈ R

n : v(x) > g(x)} with the boundary v = g on the boundary of
C. Since this boundary is unknown, we also call this problem a free boundary problem.

We first prove the continuity of the value function.

Lemma 5.2.1 There exist positive constants β0, C such that for all β > β0, x, y ∈ R
n

∣
∣v(x)− v(y)

∣
∣ ≤ C|x− y|.

Proof. We recall from the estimation (1.19), that there exists some positive constant β0

(depending on the Lipschitz constants of b and σ) s.t. E[sup0≤u≤t |Xx
u−Xy

u |] ≤ eβ0t|x−y|.
For β > β0, we can prove similarly that E[supt≥0 e−βt|Xx

t −Xy
t |] ≤ |x− y|. Therefore,

from the Lipschitz conditions on f and g, we deduce that

∣
∣v(x)− v(y)

∣
∣ ≤ sup

τ∈T
E
[ ∫ τ

0

e−βt
∣
∣f(Xx

t )− f(Xy
t )
∣
∣dt + e−βτ

∣
∣g(Xx

τ )− g(Xy
τ )
∣
∣
]

≤ CE
[
∫ ∞

0

e−βt|Xx
t −Xy

t |dt
]
+ CE

[
sup
t≥0

e−βt|Xx
t −Xy

t |
]

≤ C|x− y|.

�
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In the sequel, we assume that β is large enough, e.g. β > β0, which ensures that v is
finite, satisfying a linear growth condition, and is continuous. As in the previous chapters,
we shall appeal to the dynamic programming principle, which takes the following form.

Dynamic programming.
Fix x ∈ R

n. For all stopping time θ ∈ T , we have

v(x) = sup
τ∈T

E
[
∫ τ∧θ

0

e−βtf(Xx
t )dt + e−βτg(Xx

τ )1τ<θ + e−βθv(Xx
θ )1θ≤τ

]
. (5.4)

This principle means formally that at any time θ, we may either decide to stop the
process and receive the gain, or decide to continue by expecting to get a better reward: we
then choose the best of these two possible decisions. A rigorous statement of this principle
can be found e.g. in [Elk81] or [Kry80]. We now investigate the analytic implications of
the dynamic programming principle.

Theorem 5.2.1 The value function v in (5.2) is the unique viscosity solution to (5.3)
on R

n satisfying a linear growth function.

Proof. Viscosity property. We first check the viscosity supersolution property. By defi-
nition of v, it is clear that v ≥ g (take τ = 0 in (5.2)). Moreover, for all θ ∈ T , we have
from (5.4) (take τ = θ)

v(x) ≥ E
[
∫ θ

0

e−βtf(Xx
t )dt + e−βθv(Xx

θ )
]
.

Therefore, for any test function ϕ ∈ C2(Rn) s.t. 0 = (v − ϕ)(x) = min(v − ϕ), and by
applying Itô’s formula to e−βtϕ(Xx

t ) between t = 0 and θ∧h, with h > 0, and θ the first
exit time of Xx outside some ball around x, we get

E
[ 1
h

∫ θ∧h

0

e−βt
(
βϕ− Lϕ− f

)
(Xx

t )dt
]
≥ 0.

By sending h to zero, and from the mean-value theorem, we obtain the other required
supersolution inequality:

(βϕ− Lϕ− f)(x) ≥ 0.

For the viscosity subsolution property, we take x̄ ∈ R
n and a test function ϕ ∈ C2(Rn)

s.t. 0 = (v − ϕ)(x̄) = max(v − ϕ), and we argue by contradiction by assuming that

(βϕ− Lϕ− f)(x̄) > 0 and (v − g)(x̄) > 0.

By continuity of v, Lϕ and f , we can find δ > 0, and a ball B(x̄, δ), s.t.

(βϕ− Lϕ− f)(X x̄
t ) ≥ δ and (v − g)(X x̄

t ) ≥ δ, 0 ≤ t ≤ θ, (5.5)

where θ is the first exit time of X x̄ outside B(x̄, δ). For any τ ∈ T , we now apply Itô’s
formula to e−βtϕ(Xx

t ) between 0 and θ ∧ τ :
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v(x̄) = ϕ(x̄) = E
[ ∫ θ∧τ

0

e−βt
(
βϕ− Lϕ)(Xx

t )dt + e−β(θ∧τ)ϕ(Xx
θ∧τ )

]

≥ E
[ ∫ θ∧τ

0

e−βtf(Xx
t )dt + e−βτg(Xx

τ )1τ<θ + e−βθv(Xx
θ )1θ≤τ

]

+ δE
[ ∫ θ∧τ

0

e−βtdt + e−βτ1τ<θ

]
, (5.6)

where we used the fact that ϕ ≥ v and (5.5). We now claim that there exists some
positive constant c0 > 0 s.t.

E
[ ∫ θ∧τ

0

e−βtdt + e−βτ1τ<θ

]
≥ c0, ∀τ ∈ T . (5.7)

For this, we construct a smooth function w s.t.

max
{

βw(x)− Lw(x)− 1 , w(x)− 1
}
≤ 0, ∀x ∈ B(x̄, δ) (5.8)

w(x) = 0, ∀x ∈ ∂B(x̄, δ) (5.9)

w(x̄) > 0. (5.10)

For instance, we can take the function w(x) = c0

(
1− |x−x̄|2

δ2

)
, with

0 < c0 ≤ min
{(

β +
2
δ

sup
x∈B(x̄,δ)

|bi(x)|+ 1
δ2

sup
x∈B(x̄,δ)

tr(σσ′(x))
)−1

, 1
}
.

Then, by applying Itô’s formula to e−βtw(X x̄
t ) between 0 and θ ∧ τ , we have

0 < c0 = w(x̄) = E
[ ∫ θ∧τ

0

e−βt(βw − Lw)(X x̄
t )dt + e−β(θ∧τ)w(X x̄

θ∧τ )
]

≤ E
[ ∫ θ∧τ

0

e−βtdt + e−βτ1τ<θ

]
,

from (5.8), (5.9) and (5.10). By plugging this last relation into (5.6), and taking the
supremum over τ ∈ T , we get a contradiction with (5.4).

Uniqueness property. This is a consequence of the following general comparison result:
let U (resp. V ) be a u.s.c. viscosity subsolution (resp. l.s.c. viscosity supersolution) of
(5.3), satisfying a linear growth condition. Then U ≤ V on R

n.
We explain how to adapt the arguments in Section 4.4, and sketch the proof. We argue
by contradiction by assuming that M := sup(U−V ) > 0. Up to a quadratic penalization
term, we may assume that U−V attains its maximum on R

n. Let us consider the bounded
sequence (xm, ym)m that attains the maximum of the functions

Φm(x, y) = U(x)− V (y)− φm(x, y), φm(x, y) = m|x− y|2, m ∈ N.

By the same arguments as in the proof of Theorem 4.4.4, we have

Mm = maxΦm(x, y) = Φm(xm, ym) → M, and φm(xm, ym) → 0. (5.11)

Moreover, from Ishii’s lemma, there exist M and N ∈ Sn s.t.
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(2m(xm − ym), M) ∈ P̄2,+U(xm), (2m(xm − ym), N) ∈ P̄2,−V (ym),

and

tr
(
σσ′(xm)M − σσ′(ym)N) ≤ 3m|σ(xm)− σ(ym)|2. (5.12)

From the viscosity subsolution (resp. supersolution) property of U (resp. V ) at xm (resp.
ym), we then have

min
[
βU(xm)− b(xm).2m(xm − ym)− 1

2
tr(σσ′(xm)M)− f(xm),

U(xm)− g(xm)
]
≤ 0, (5.13)

min
[
βV (ym)− b(ym).2m(xm − ym)− 1

2
tr(σσ′(ym)N)− f(ym),

V (ym)− g(ym)
]
≥ 0. (5.14)

If U(xm) − g(xm) > 0 for m large enough, then the first term of the l.h.s. of (5.13) is
nonpositive, and by substracting it with the nonnegative first term of the l.h.s. of (5.14),
we get

β
(
U(xm)− V (ym)

)
≤ 2m

(
b(xm)− b(ym)

)
.(xm − ym)

+
1
2
tr
(
σσ′(xm)M − σσ′(ym)N) + f(xm)− f(ym).

From the Lipschitz condition on b, σ, continuity of f , (5.11), and (5.12), we get the
contradiction by sending m to infinity: βM ≤ 0. Otherwise, up to a subsequence, U(xm)−
g(xm) ≤ 0, for all m, and since V (ym)− g(ym) ≥ 0 by (5.14), we get U(xm)− V (ym) ≤
g(xm) − g(ym). By sending m to infinity, and from the continuity of g, we also get the
required contradiction: M ≤ 0. �

Remark 5.2.1 Theorem 5.2.1 and continuity of the value function also hold true when
we remove the Lipschitz condition on f , g, by assuming only that these reward functions
are continuous and satisfy a linear growth condition. Actually, in this case, we only have
a priori the linear growth condition on v, but we can prove by similar arguments as
in Theorem 5.2.1 that v is a (discontinuous) viscosity solution to (5.3). Then, from the
(strong) comparison principle for (5.3), which holds under continuity and linear growth
properties of f , g, we conclude in addition to the uniqueness, that v is continuous.

5.2.2 Smooth-fit principle

In view of Theorem 5.2.1, we introduce the open set

C =
{
x ∈ R

n : v(x) > g(x)
}
,

and its complement set

S =
{
x ∈ R

n : v(x) = g(x)
}
.
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The set S is called the stopping (or exercise) region, since it corresponds to the state
values, where it is optimal to stop the process, and then receive the profit g. The com-
plement set C is called the continuation region, since it corresponds to the state values
where it is optimal to let the diffusion continue. A probabilistic interpretation of these
results will be given in the next section. The analytic interpretation of the continuation
region is justified by the following result.

Lemma 5.2.2 The value function v in (5.2) is a viscosity solution to

βv − Lv − f = 0 on C. (5.15)

Moreover, if the function σ is uniformly elliptic, i.e. there exists ε > 0 s.t. x′σσ′(x)x ≥
ε|x|2 for all x ∈ R

n, then v is C2 on C.

Proof. First, we notice that the supersolution property of v to (5.15) is immediate from
the viscosity property of v to (5.3). On the other hand, let x̄ ∈ C, and ϕ a C2 test function
s.t. x̄ is a maximum of v−ϕ with v(x̄) = ϕ(x̄). Now, by definition of C, we have v(x̄) >

g(x̄), so that from the viscosity subsolution property of v to (5.3), we have

βv(x̄)− Lϕ(x̄)− f(x̄) ≤ 0,

which implies the viscosity subsolution, and then the viscosity solution property of v to
(5.15).

Given an arbitrary bounded open domain O in C, let us consider the linear Dirichlet
boundary problem:

βw − Lw − f = 0 on O, w = v on ∂O. (5.16)

Under the uniform ellipticity condition on σ, classical results (see e.g. [Fr75]) provide
the existence and uniqueness of a smooth C2 solution w on O to (5.16). In particular,
this smooth solution w is a viscosity solution to (5.15) on O. From standard uniqueness
results on viscosity solutions (here for linear PDE on a bounded domain), we deduce
that v = w on O. From the arbitrariness of O ⊂ C, this proves that v is smooth on C,
and so satisfies (5.15) in a classical sense. �

The boundary ∂C (also called free boundary or exercise boundary) of the set C is
included in the stopping region D, and we have

v = g on ∂C.

The smooth-fit principle for optimal stopping problems states that the value function
v is smooth C1 through the free boundary, once the diffusion is uniformly elliptic, and
g is C1 on the free boundary. This general classical result is proved in [Sh78], [Ja93],
or [PeSh06]. We give here a simple proof based on viscosity solution arguments in the
one-dimensional case for the diffusion.

Proposition 5.2.1 Assume that X is one-dimensional, σ is uniformly elliptic, and g is
C1 on S. Then, v is C1 on ∂C.
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Proof. 1. We first check that v admits a left and right derivative v′−(x̄) and v′+(x̄) at any
point x̄ ∈ ∂C. Let x̄ ∈ ∂C, and suppose that x̄ lies in the right boundary of ∂C, i.e. there
exists ε > 0 s.t. (x̄− ε, x̄) ⊂ C. (The other possible case where x̄ lies in the left boundary
of C is dealt with similarly.) Recalling from Lemma 5.2.2, that v satisfies βv−Lv− f =
0 on C, we deduce that v = w on (x̄− ε, x̄), where w is the unique smooth C2 solution
on [x̄− δ, x̄] to βw −Lw − f = 0 with the boundary data: w(x̄− δ) = v(x̄− δ), w(x̄) =
v(x̄). This shows that v admits a left derivative at x̄ with v′−(x̄) = w′(x̄). For the right
derivative, we distinguish two cases: (i) If there exists δ > 0 s.t. (x̄, x̄+ δ) ⊂ S, then v =
g is C1 on (x̄, x̄+δ), and so admits a right derivative at x̄: v′+(x̄) = g′(x̄). (ii) Otherwise,
one can find a sequence (xn) in C, xn > x, converging to x̄. Since C is open, there would
exist δ′ > 0 s.t. (x, x+ δ′) ⊂ C. In this case, by same arguments as for the left derivative,
we deduce that v admits a right derivative at x̄.
2. Let x̄ ∈ ∂C. Since v(x̄) = g(x̄), and v ≥ g on R, we have

v(x)− v(x̄)
x− x̄

≤ g(x)− g(x̄)
x− x̄

, ∀x < x̄,

v(x)− v(x̄)
x− x̄

≥ g(x)− g(x̄)
x− x̄

, ∀x > x̄,

and so v′
−(x̄) ≤ g′(x̄) ≤ v′+(x̄). We argue by contradiction and suppose that v is not differ-

entiable at x̄. Then, in view of the above inequality, one can find some p ∈ (v′−(x̄), v′+(x̄)).
Consider, for ε > 0, the smooth C2 function:

ϕε(x) = v(x̄) + p(x− x̄) +
1
2ε

(x− x̄)2.

Then, we see that v dominates locally in a neighborhood of x̄ the function ϕε, i.e. x̄ is
a local minimum of v − ϕε. From the supersolution viscosity property of v to (5.3), this
yields

βv(x̄)− Lϕε(x̄)− f(x̄) ≥ 0,

which is written as

βv(x̄)− b(x̄)p− f(x̄)− 1
2ε

σ2(x̄) ≥ 0.

Sending ε to zero provides the required contradiction since σ2(x̄) > 0. We have then
proved that for x̄ ∈ ∂C, v′(x̄) = g′(x̄). �

5.2.3 Optimal strategy

We first discuss the probabilistic interpretation of the optimal stopping problem (5.2).
Let us define the process

Zt = e−βtv(Xt) +
∫ t

0

e−βsf(Xs)ds,

and the first exit time of the continuation region

τ∗ = inf
{
t ≥ 0 : v(Xt) = g(Xt)

}
.
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From the dynamic programming principle (which implies βv − Lv − f ≥ 0), we have

Zt ≥ E[Zθ|Ft], for any stopping time θ valued in [t,∞),

which means that Z is a supermartingale. Moreover, since (βv −Lv − f)(s,Xs) = 0 for
0 ≤ s < θ∗, the process Z is a martingale on [0, τ∗], and so

v(X0) = E
[
∫ τ∗

0

e−βtf(Xt)dt + e−βτ∗
g(Xτ∗)

]
,

which implies that τ∗ is an optimal stopping strategy. We refer to [Elk81] for a general
analysis of optimal stopping problems by probabilistic methods.

We shall now provide some results on the optimal stopping strategy. Let us introduce
the function

V̂ (x) = E
[
∫ ∞

0

e−βtf(Xx
t )dt

]
,

which corresponds to the value function of the total expected profit when we never stop
the process X. We give sufficient conditions ensuring that it is optimal to never stop the
process, i.e. v = V̂ .

Lemma 5.2.3 We have the following implications:

S = ∅ =⇒ V̂ ≥ g =⇒ v = V̂ .

Proof. Assume that S = ∅. Then v is a solution to the linear PDE

βv − Lv − f = 0 on R
n.

Since, by the Feynman-Kac formula, V̂ is also solution to the same linear PDE, and
satisfies a linear growth condition, we deduce by uniqueness that v = V̂ . However, we
know that v ≥ g, and so V̂ ≥ g. Assume now that V̂ ≥ g. Then, V̂ is a solution to the
same PDE variational inequality as v, i.e.

min
[
βV̂ − LV̂ − f , V̂ − g

]
= 0, on R

n.

By uniqueness, we conclude that v = V̂ . �

Remark 5.2.2 A trivial sufficient condition ensuring that V̂ ≥ g is: inf f ≥ β sup g.

We end this section by providing some partial information on the stopping region.

Lemma 5.2.4 Assume that g is C2 on some open set O of R
n on which S ⊂ O. Then

S ⊂ D :=
{
x ∈ O : βg(x)− Lg(x)− f(x) ≥ 0

}
.

Proof. Let x ∈ S. Since v(x) = g(x) and v ≥ g, this implies x is a local miminum of v−ϕ

with the smooth test function ϕ = g on O. From the viscosity supersolution property of
v to (5.3), this yields

βg(x)− Lg(x)− f(x) ≥ 0,

which proves the result. �

The set D may be usually explicitly computed, and we shall show in the one-
dimensional case how this can be used to determine the stopping regions.
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5.2.4 Methods of solution in the one-dimensional case

We now focus on the one-dimensional diffusion process X valued in (0,∞), and we assume
that the real-valued coefficients b and σ of X can be extended to Lipschitz continuous
functions on R+, and for all t ≥ 0,

Xx
t → X0

t = 0, a.s. as x goes to zero. (5.17)

The typical example is the geometric Brownian motion. The function f is continuous on
R+, satisfying a linear growth condition, and g is Lipschitz continuous functions on R+.
The state domain on which v satisfies the PDE variational inequality is then (0,∞), and
we shall need to specify a boundary condition for v(x) when x approaches 0 in order to
get a uniqueness result.

Lemma 5.2.5 We have v(0+) := limx↓0 v(x) = max
( f(0)

β , g(0)
)
.

Proof. By definition of v, we have

v(x) ≥ max(V̂ (x) , g(x)). (5.18)

By continuity and the linear growth condition on f , we deduce by (5.17) and the dom-
inated convergence theorem that V̂ (0+) = E[

∫∞
0

e−βtf(X0
t )dt] = f(0)

β . Together with

(5.18), we get lim infx↓0 v(x) ≥ max
( f(0)

β , g(0)
)
. To prove the converse inequality, let us

define f̃ = f − f(0), g̃ = g − f(0)/β, f̃+ = max(f̃ , 0), and g̃+ = max(g, 0). Then, we
have

v(x) =
f(0)
β

+ sup
τ∈T

E
[ ∫ τ

0

e−βtf̃(Xx
t )dt + e−βτ g̃(Xx

τ )
]

≤ f(0)
β

+ E
[
∫ ∞

0

e−βtf̃+(Xx
t )dt

]
+ E[sup

t≥0
e−βtg̃+(Xx

t )].

Similarly as for V̂ , we see that that E
[ ∫∞

0
e−βtf̃+(Xx

t )dt
]

goes to f̃(0)
β = 0 as x goes to

zero. From the Lipschitz conditions on b, σ on R+, and recalling that X0
t = 0, we easily

deduce by standard arguments that

E
[
sup
t≥0

e−βtXx
t

]
= E

[
sup
t≥0

e−βt|Xx
t −X0

t |
]
≤ x, ∀x ∈ R+. (5.19)

Moreover, by (5.19), and the Lipschitz property of g̃+, the function E[supt≥0 e−βtg̃+(Xx
t )]

goes to E[supt≥0 e−βtg̃+(0)] = g̃+(0) as x goes to zero. This proves that lim supx↓0 v(x)
≤ f(0)

β + g̃+(0) = max
( f(0)

β , g(0)
)
, which ends the proof. �

In the sequel, we shall assume that

V̂ (x0) < g(x0) for some x0 > 0, (5.20)

so that the stopping region

S =
{
x ∈ (0,∞) : v(x) = g(x)

}
,

is nonempty. We shall assume that S is included in some open set O of (0,∞) on which
g is C2, and we know from Lemma 5.2.4 that

S ⊂ D =
{
x ∈ O : βg(x)− Lg(x)− f(x) ≥ 0

}
.
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Lemma 5.2.6 Assume (5.20) holds.
(1) If D = [a,∞) for some a > 0, then S is of the form [x∗,∞) for some x∗ ∈ (0,∞).
(2) If g(0) ≥ f(0)

β and D = (0, a] for some a > 0, then S is of the form (0, x∗] for some
x∗ ∈ (0,∞).

Proof. (1) We set x∗ = inf S, and since S is nonempty and included in D, we know
that x∗ ∈ [a,∞). In order to prove that S = [x∗,∞), let us consider the function w

= g on [x∗,∞). Since [x∗,∞) ⊂ D, and by definition of D, we obtain that w satisfies
βw−Lw− f ≥ 0, and so min[βw−Lw− f, w− g] = 0 on (x̄,∞). Moreover, since w(x∗)
= g(x∗) = v(x∗), and w, v satisfy a linear growth condition, we deduce by uniqueness
that w = v on [x∗,∞). This proves that S = [x∗,∞).
2) We set x∗ = supS, and since S is nonempty and included in D, we know that x∗ ∈
(0, a]. Let us consider the function w = g on (0, x∗]. Since (0, x∗] ⊂ D, we obtain that w

satisfies βw − Lw − f ≥ 0, and so min[βw − Lw − f, w − g] = 0 on (0, x∗). Moreover,
since w(0+) = g(0) = v(0+) by Lemma 5.2.5 and the condition on g(0), and w(x∗) =
g(x∗) = v(x∗), we deduce by uniqueness that w = v on (0, x∗), and so S = (0, x∗]. �

5.2.5 Examples of applications

We consider a geometric Brownian motion (GBM) for X:

dXt = ρXtdt + γXtdWt,

where ρ and γ > 0 are constants, and we shall solve various examples of optimal stopping
problems arising from financial motivations.

Perpetual American Put options

We consider an American Put option of payoff on the underlying asset price X, which
can be exercised at any time, and whose price is given by:

v(x) = sup
τ∈T

E[e−βτ (K −Xx
τ )+].

Here β = ρ is the constant interest rate, and K > 0 is the strike. With the notations of
the previous section, we have f = 0, V̂ = 0, g(x) = (K − x)+. By convexity of g, and
the linearity of the GBM Xx in function of the initial condition x, we easily see that v

is convex. It is also clear that v(x) > 0 for all x > 0. We deduce that the exercise region
is of the form S = (0, x∗] for some x∗ ∈ (0, K]. Moreover, on the continuation region
(x∗,∞), v satisfies the ODE

ρv(x)− ρxv′(x)− 1
2
γ2x2v′′(x) = 0, x > x∗.

The general solution to the above ODE is of the form

v(x) = Axm + Bxn,

for some constants A and B, where m, n are the roots of the second-degree equation
1
2γ2m2 + (ρ− 1

2γ2)m− ρ = 0, and are given by



5.2 Optimal stopping 105

m = −2
ρ

γ2
, n = 1.

Since v is bounded, we should have B = 0 so that

v(x) = Axm, x > x∗.

By writing that v satisfies the smooth-fit condition at x∗, i.e. A(x∗)m = (K − x∗), and
Am(x∗)m−1 = −1, we determine the parameters A and x∗:

x∗ = K
m

m− 1
=

K

1 + γ2

2ρ

, A = − 1
m

(x∗)1−m.

We conclude that

v(x) =

{
K − x, x ≤ x∗ = K

1+ γ2
2ρ

,

−x∗

m

(
x
x∗

)m
, x > x∗,

and it is optimal to exercise the option whenever the asset price is below x∗.

When is it optimal to sell?

We consider an owner of an asset or firm with value process X. The owner may sell this
asset at any time, but has to pay a fixed fee K > 0. He is looking for the optimal time
to sell his asset, and his objective is then to solve the optimal stopping problem:

v(x) = sup
τ∈T

E
[
e−βτ (Xx

τ −K)
]
,

where β > 0 is a discount factor. With the notations of the previous section, we have V̂

= f = 0, g(x) = x−K, which is C2 on (0,∞), and the set D is equal to

D = {x ∈ (0,∞) : (β − ρ)x ≥ βK}.

We are then led to distinguish the following cases:

(i) β < ρ. It is then easy to see that v(x) = ∞ for all x > 0. Indeed, in this case, from
the explicit expression of the geometric Brownian motion, we have for any T > 0,

v(x) ≥ E
[
e−βT (Xx

T −K)] = xe(ρ−β)T E
[
eγWT − ρ2

2 T
]
−Ke−βT

= xe(ρ−β)T −Ke−βT ,

and by sending T to infinity, we get the announced result.

(ii) β = ρ. In this case, we have v(x) = x. Indeed, for any stopping time τ , for any n ∈
N, we have by the optional sampling theorem for martingales

E
[
e−β(τ∧n)(Xx

τ∧n −K)
]

= x−KE[e−β(τ∧n)] (5.21)

≤ x,

By sending n to infinity, and from Fatou’s lemma, we then get for any τ ∈ T
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E
[
e−βτ (Xx

τ −K)
]
≤ x,

and so v(x) ≤ x. Conversely, by taking τ = n, we have from (5.21): v(x) ≥ x−Ke−βn,
and so by sending n to infinity: v(x) ≥ x.

(iii) β > ρ. In this case, D = [a,∞) for a = βK/(β − ρ) > 0. Moreover, we obviously
have V̂ = 0 < g(x) = x−K for x > K. We deduce from Lemma 5.2.6 that S is of the
form S = [x∗,∞) for some x∗ ∈ (0,∞). Moreover, on the continuation region (0, x∗), v

satisfies the ODE

βv − ρxv′(x)− 1
2
γ2x2v′′(x) = 0, x < x∗,

whose general solution is of the form

v(x) = Axm + Bxn,

for some constants A and B, and m, n are the roots of the second-degree equation
1
2γ2m2 + (ρ− 1

2γ2)m− β = 0, and are given by

m =
1
2
− ρ

γ2
−

√
(1
2
− ρ

γ2
)2 +

2β

γ2
< 0 (5.22)

n =
1
2
− ρ

γ2
+

√
(1
2
− ρ

γ2
)2 +

2β

γ2
> 1. (5.23)

Since v(0+) = max(−K, 0) = 0, we should have A = 0. Finally, by writing the smooth-fit
condition at x∗, we determine the coefficients B and x∗ by

x∗ = K
n

n− 1
, B =

1
n

1
(x∗)n−1

.

We conclude that

v(x) =
{

x∗

n

(
x
x∗

)n
, x < x∗,

x−K, x ≥ x∗,

and it is optimal to sell the asset once it is above x∗.

Valuation of natural resources

We consider a firm producing some natural resource (oil, gas, etc.) with price process X.
The running profit of this production is given by a nondecreasing function f depending
on the price, and the firm may decide at any time to stop the production at a fixed
constant cost −K. The real options value of the firm is then given by the optimal
stopping problem:

v(x) = sup
τ∈T

E
[
∫ τ

0

e−βtf(Xx
t )dt + e−βτK

]
.

We assume that f satisfies a linear growth condition, and we notice that for β > ρ, there
exists some C > 0 s.t. E[

∫∞
0

e−βt|f(Xx
t )|dt] ≤ C(1 + x) for all x ∈ R+, so that v also
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satisfies a linear growth condition. With the notations of the previous section, the set D
is equal to

D =
{
x ∈ (0,∞) : f(x) ≤ βK

}
.

Since f is nondecreasing, we are led to consider the following three cases:

(i) f(∞) := limx↗∞ f(x) ≤ βK. In this case, D = (0,∞), which means that g = K is
solution to the variational PDE min[βg−Lg−f, g−g] = 0. Since v(0+) = max(f(0)/β,K)
= K = g, it follows by uniqueness that v = K, and the optimal strategy is to stop
immediately.

(ii) f(∞) > βK and f(0) = inf f(x) ≥ βK. In this case V̂ (x) = E[
∫∞
0

e−βtf(Xx
t )dt] ≥

K = g, and so by Lemma 5.2.3, v = V̂ , and it is optimal to never stop the production.

(iii) f(∞) > βK and f(0) < βK. In this case, D = (0, a) for some a > 0. Moreover, there
exists some x > 0 s.t. V̂ (x) < g(x) = K. Otherwise, we would have V̂ (x) ≥ K for all x >

0, and by sending x to zero, this would imply V̂ (0+) = f(0)/β ≥ K, a contradiction. By
Lemma 5.2.6, the stopping region is in the form S = (0, x∗] for some x∗ > 0. Moreover,
on the continuation region (x∗,∞), v satisfies the ODE

βv − ρxv′(x)− 1
2
γ2x2v′′(x)− f(x) = 0, x > x∗,

whose general solution is of the form

v(x) = Axm + Bxn + V̂ (x),

for some constants A and B, and m, n are given in (5.22)-(5.23). Since v satisfies a
linear growth condition, we should have B = 0. Finally, the coefficients A and x∗ are
determined by the smooth-fit condition at x∗:

K = A(x∗)m + V̂ (x∗), 0 = mA(x∗)m−1 + V̂ ′(x∗).

We conclude that

v(x) =
{

K, x ≤ x∗

Axm + V̂ (x), x > x∗,

and it is optimal to stop the production once the price is below x∗.

5.3 Optimal switching

In this section, we consider a diffusion X and a profit function, whose coefficients may
take different values, called regimes, depending on the value taken by an underlying con-
trol. The goal of the controller is to manage the different regimes in order to maximize an
expected total profit. Such problems appear in the real options literature. For example,
in the firm’s investment problem under uncertainty, a company (oil tanker, eletricity sta-
tion, etc.) manages several production activities operating in different modes or regimes
representing a number of different economic outlooks (e.g. state of economic growth, open
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or closed production activity). The process X is the price of input or output goods of
the firm and its dynamics may differ according to the regimes. The firm’s project yields
a running profit payoff that depends on the commodity price and on the regime choice.
The transition from one regime to another is realized sequentially at time decisions and
incurs costs. The problem is to find the strategy that maximizes the expected value of
profits resulting from the project.

5.3.1 Problem formulation

We formulate optimal switching problem on infinite horizon. We fix some filtered prob-
ability space (Ω,F , F = (Ft)t≥0, P ) satisfying the usual conditions. We first define a
set of possible regimes Im = {1, . . . ,m}. A switching control is a double sequence α =
(τn, ιn)n≥1, where (τn) is an increasing sequence of stopping times, τn ∈ T , τn → ∞,
representing the decision on “when to switch”, and ιn are Fτn-measurable valued in Im

representing the new value of the regime at time τn until time τn+1 or the decision on
“where to switch”. We denote by A the set of switching controls. Given an initial regime
value i ∈ Im, and a control α = (τn, ιn)n≥1 ∈ A, we define

Ii
t =

∑

n≥0

ιn1[τn,τn+1)(t), t ≥ 0, Ii
0− = i,

which is the piecewise constant process indicating the regime value at any time t. Here,
we set τ0 = 0 and ι0 = i. We notice that Ii is a càd-làg process, possibly with a jump
at time 0 if τ1 = 0 and so Ii

0 = ι1. Given an initial state-regime (x, i) ∈ R
d × Im, and a

switching control α ∈ A, the controlled process Xx,i is the solution to

dXt = b(Xt, I
i
t)dt + σ(Xt, I

i
t)dWt, t ≥ 0, X0 = x,

where W is a standard Brownian motion on (Ω,F , F = (Ft)t≥0, P ), and bi(.) := b(., i),
σi(.) := σ(., i), i ∈ Im, satisfy the Lipschitz condition.

The operational regimes are characterized by their running reward functions f :
R

d × Im → R, and we set fi(.) = f(., i), i ∈ Im, which are continuous and satisfy a
linear growth condition. For simplicity, we shall assume that fi is Lipschitz (see Remark
5.3.3). Switching from regime i to j incurs an instantaneous cost, denoted by gij , with
the convention gii = 0. The following triangular condition is reasonable:

gik < gij + gjk, j �= i, k, (5.24)

which means that it is less expensive to switch directly in one step from regime i to k

than in two steps via an intermediate regime j. Notice that a switching cost gij may be
negative, and condition (5.24) for i = k prevents an arbitrage by simply switching back
and forth, i.e.

gij + gji > 0, i �= j ∈ Im. (5.25)

Here, for simplicity, we assume that the switching costs gij are constants.
The expected total profit of running the system when the initial state is (x, i) and

using the impulse control α = (τn, ιn)n≥1 ∈ A is
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J(x, i, α) = E

[∫ ∞

0

e−βtf(Xx,i
t , Ii

t)dt−
∞∑

n=1

e−βτngιn−1,ιn

]

.

Here β > 0 is a positive discount factor, and we use the convention that e−βτn(ω) =
0 when τn(ω) = ∞. The objective is to maximize this expected total profit over A.
Accordingly, we define the value functions

v(x, i) = sup
α∈A

Ji(x, α), x ∈ R
d, i ∈ Im. (5.26)

We write Ji(x, α) = J(x, i, α) and vi(.) = v(., i). We shall see later that for β large
enough, the expectation defining Ji(x, α) is well-defined and the value function vi is
finite.

5.3.2 Dynamic programming and system of variational inequalities

We first state the finiteness and Lipschitz continuity of the value functions.

Lemma 5.3.7 There exists some positive constant ρ such that for β > ρ, the value
functions vi, i ∈ Im, are finite on R

d. In this case, the value functions vi, i ∈ Im, are
Lipschitz continuous:

|vi(x)− vi(y)| ≤ C|x− y|, ∀x, y ∈ R
d,

for some positive constant C.

Proof. First, we prove by induction that for all N ≥ 1, τ1 ≤ . . . ≤ τN , ι0 = i, ιn ∈ Im,
n = 1, . . . , N

−
N∑

n=1

e−βτngιn−1,ιn
≤ max

j∈Im

(−gij), a.s. (5.27)

Indeed, the above assertion is obviously true for N = 1. Suppose now it holds true
at step N . Then, at step N + 1, we distinguish two cases: If g

ιN ,ιN+1
≥ 0, then we

have −
∑N+1

n=1 e−βτngιn−1,ιn
≤ −

∑N
n=1 e−βτngιn−1,ιn

and we conclude by the induction
hypothesis at step N . If gιN ,ιN+1

< 0, then by (5.24), and since τN ≤ τN+1, we have

−e−βτN g
ιN−1,ιN

−e−βτN+1g
ιN ,ιN+1

≤ −e−βτN g
ιN−1,ιN+1

, and so −
∑N+1

n=1 e−βτng
ιn−1,ιn

≤
−
∑N

n=1 e−βτngι̃n−1,ι̃n
, with ι̃n = ιn for n = 1, . . . , N − 1, ι̃N = ιN+1. We then conclude

by the induction hypothesis at step N .
By definition, using the latter inequality and the growth condition on f , we have for

all i ∈ Im, x ∈ R
d, and α ∈ A

Ji(x, α) ≤ E
[ ∫ ∞

0

e−βt|f(Xx,i
t , Ii

t)|dt + max
j∈Im

(−gij)
]

≤ E
[ ∫ ∞

0

e−βtC(1 + |Xx,i
t |)dt + max

j∈Im

(−gij)
]
. (5.28)

Now, a standard estimate on the process (Xx,i
t )t≥0, based on Itô’s formula and Gronwall’s

lemma, yields
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E
[
|Xx,i

t |
]
≤ eρt(1 + |x|),

for some positive constant ρ (independent of t and x). Plugging the above inequality into
(5.28), and from the arbitrariness of α ∈ A, we get

|vi(x)| ≤ C

β
+ C(1 + |x|)

∫ ∞

0

e(ρ−β)tdt + max
j∈Im

(−gij).

We therefore have the finiteness of the value functions if β > ρ, in which case the value
functions satisfy the linear growth condition.

Moreover, by a standard estimate for the SDE applying Itô’s formula to |Xx,i
t −Xy,i

t |2
and using Gronwall’s lemma, we then obtain from the Lipschitz condition on b, σ, the
following inequality uniformly in α ∈ A:

E
∣
∣
∣X

x,i
t −Xy,i

t

∣
∣
∣ ≤ eρt|x− y|, ∀x, y ∈ R

d, t ≥ 0.

From the Lipschitz condition on f , we deduce

|vi(x)− vi(y)| ≤ sup
α∈A

E

[∫ ∞

0

e−βt
∣
∣
∣f(Xx,i

t , Ii
t)− f(Xy,i

t , Ii
t)
∣
∣
∣ dt

]

≤ C sup
α∈A

E

[∫ ∞

0

e−βt
∣
∣
∣X

x,i
t −Xy,i

t

∣
∣
∣ dt

]

≤ C

∫ ∞

0

e−βteρt|x− y|dt ≤ C|x− y|,

for β > ρ. This ends the proof. �

In the sequel, we shall assume that β is large enough, which ensures that vi is Lipschitz
continuous, and in order to derive a PDE characterization of vi, we shall appeal to the
dynamic programming principle, which takes the following form
Dynamic programming principle: For any (x, i) ∈ R

d × Im, we have

v(x, i) = sup
(τn,ιn)n∈A

E
[ ∫ θ

0

e−βtf(Xx,i
t , Ii

t)dt−
∑

τn≤θ

e−βτngιn−1,ιn

+ e−βθv(Xx,i
θ , Ii

θ)
]
, (5.29)

where θ is any stopping time, possibly depending on α ∈ A in (5.29).

The aim of this section is to relate via the dynamic programming principle the value
functions vi, i ∈ Im, to the system of variational inequalities

min
[
βvi − Livi − fi , vi −max

j �=i
(vj − gij)

]
= 0, x ∈ R

d, i ∈ Im, (5.30)

where Li is the generator of the diffusion X in regime i:

Liϕ = bi.Dxϕ +
1
2
tr(σiσ

′
i(x)D2

xϕ)

Theorem 5.3.2 For each i ∈ Im, the value function vi is a viscosity solution to (5.30).



5.3 Optimal switching 111

Proof. (1) We first prove the viscosity supersolution property. Fix i ∈ Im, and let x̄ ∈
R

d, ϕ ∈ C2(Rd) s.t. x̄ is a minimum of vi−ϕ with vi(x̄) = ϕ(x̄). By taking the immediate
switching control τ1 = 0, ι1 = j �= i, τn = ∞, n ≥ 2, and θ = 0 in the relation (5.29),
we obtain

vi(x̄) ≥ vj(x̄)− gij , ∀j �= i. (5.31)

On the other hand, by taking the no-switching control τn = ∞, n ≥ 1, i.e. Ii
t = i, t ≥ 0,

X x̄,i stays in regime i with diffusion coefficients bi and σi, and θ = τε ∧ h, with h > 0
and τε = inf{t ≥ 0 : X x̄,i

t /∈ Bε(x̄)}, ε > 0, we get from (5.29)

ϕ(x̄) = vi(x̄) ≥ E
[ ∫ θ

0

e−βtfi(X
x̄,i
t )dt + e−βθvi(X

x̄,i
θ )
]

≥ E
[ ∫ θ

0

e−βtfi(X
x̄,i
t )dt + e−βθϕ(X x̄,i

θ )
]

By applying Itô’s formula to e−βtϕ(X x̄,i
t ) between 0 and θ = τε ∧ h and plugging into

the last inequality, we obtain

1
h

E
[ ∫ τε∧h

0

e−βt (βϕ− Liϕ− fi) (X x̄,i
t )
]
≥ 0.

From the dominated convergence theorem and the mean-value theorem, this yields by
sending h to zero

(βϕ− Liϕ− fi)(x̄) ≥ 0.

By combining with (5.31), we obtain the required viscosity supersolution inequality.

(2) We next prove the viscosity subsolution property. Fix i ∈ Im, and consider any x̄

∈ R
d, ϕ ∈ C2(Rd) s.t. x̄ is a maximum of vi − ϕ with vi(x̄) = ϕ(x̄). We argue by

contradiction by assuming on the contrary that the subsolution inequality does not hold
so that by continuity of vi, vj , j �= i, ϕ and its derivatives, there exists some δ > 0 s.t.

(βϕ− Liϕ− fi)(x) ≥ δ, ∀x ∈ Bδ(x̄) = (x− δ, x + δ) (5.32)

vi(x) − max
j �=i

(vj − gij)(x) ≥ δ, ∀x ∈ Bδ(x̄). (5.33)

For any α = (τn, ιn)n≥1 ∈ A, consider the exit time τδ = inf{t ≥ 0 : X x̄,i
t /∈ Bδ(x̄)}. By

applying Itô’s formula to e−βtϕ(X x̄,i
t ) between 0 and θ = τ1∧ τδ, we have by noting that

before θ, X x̄,i stays in regime i and in the ball Bδ(x̄)

vi(x̄) = ϕ(x̄) = E
[ ∫ θ

0

e−βt(βϕ− Liϕ)(X x̄,i
t )dt + e−βθϕ(X x̄,i

θ )
]

≥ E
[ ∫ θ

0

e−βt(βϕ− Liϕ)(X x̄,i
t )dt + e−βθvi(X

x̄,i
θ )
]
. (5.34)

Now, since θ = τδ ∧ τ1, we have
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e−βθv(X x̄,i
θ , Ii

θ)−
∑

τn≤θ

e−βτngιn−1,ιn

= e−βτ1
(
v(X x̄,i

τ1
, ι1)− giι1

)
1τ1≤τδ

+ e−βτδvi(X x̄,i
τδ

)1τδ<τ1

≤ e−βτ1
(
vi(X x̄,i

τ1
)− δ

)
1τ1≤τδ

+ e−βτδvi(X x̄,i
τδ

)1τδ<τ1

= e−βθvi(X
x̄,i
θ )− δe−βτ11τ1≤τδ

,

where the inequality follows from (5.33). By plugging into (5.34) and using (5.32), we
get

vi(x̄) ≥ E
[ ∫ θ

0

e−βtfi(X
x̄,i
t )dt + e−βθv(X x̄,i

θ , Ii
θ)−

∑

τn≤θ

gιn−1,ιn

]

+ δ E
[ ∫ θ

0

e−βtdt + e−βτ11τ1≤τδ

]
. (5.35)

Now, by the same arguments as in (5.7), there exists some positive constant c0 > 0 s.t.

E
[ ∫ θ

0

e−βtdt + e−βτ11τ1≤τδ

]
≥ c0, ∀α ∈ A.

By plugging this last inequality (uniform in α) into (5.35), we then obtain

vi(x̄) ≥ sup
α∈A

E
[ ∫ θ

0

e−βtfi(X
x̄,i
t )dt + e−βθv(X x̄,i

θ , Ii
θ)−

∑

τn≤θ

gιn−1,ιn

]
+ δc0,

which is in contradiction with the dynamic programming principle (5.29). �

We complete the characterization of the value functions with the following comparison
principle for the system of variational inequalities (5.30).

Theorem 5.3.3 Let Ui (resp. Vi), i ∈ Im a family of u.s.c. viscosity subsolutions (resp.
l.s.c. viscosity supersolutions) to (5.30), and satisfying a linear growth condition. Then,
Ui ≤ Vi on R

d for all i ∈ Im.

Proof. Step 1. We first construct strict supersolutions to the system (5.30) with suitable
perturbations of Vi, i ∈ Im. For i ∈ Im, we set αi = min

j �=i
gji, and ψi(x) = C(1+ |x|2)+αi,

x ∈ R
d, where C is a positive constant to be determined later. From the linear growth

conditions on bi, σi and fi, there exist some positive constants ρ and C1 s.t. for all x ∈
R

d, i ∈ Im,

βψi(x)− Liψi(x)− fi(x) ≥ C(β − ρ)(1 + |x|2) + βαi − C1(1 + |x|2).

Thus, by choosing C > 0 s.t. C(β − ρ) + β min
i

αi − C1 ≥ 1, we see that

βψi(x)− Liψi(x)− fi(x) ≥ 1, ∀x ∈ R
d, i ∈ Im. (5.36)

We now define for all λ ∈ (0, 1), the u.s.c. functions on R
d by

V λ
i = (1− λ)Vi + λψi, i ∈ Im.
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We then see that for all λ ∈ (0, 1), i ∈ Im

V λ
i −max

j �=i
(V λ

j − gij) = (1− λ)Vi + λαi −max
j �=i

[(1− λ)(Vj − gij) + λαj − λgij ]

≥ (1− λ)[Vi −max
j �=i

(Vj − gij)] + λ
(
αi + min

j �=i
(gij − αj)

)

≥ λ min
i∈Im

(
αi + min

j �=i
(gij − αj)

)
:= λν. (5.37)

We now check that ν > 0, i.e. νi := αi + min
j �=i

(gij − αj) > 0, ∀i ∈ Im. Indeed, fix i ∈ Im,

and let k ∈ Im such that min
j �=i

(gij − αj) = gik − αk and set i such that αi = min
j �=i

gji =

gii. We then have

νi = gii + gik −min
j �=k

gjk > gik −min
j �=k

gjk ≥ 0,

by (5.24) and thus ν > 0. From (5.37) and (5.36), we then deduce that for all i ∈ Im, λ

∈ (0, 1), V λ
i is a supersolution to

min
{

βV λ
i − LiV

λ
i − fi, V

λ
i −max

j �=i
(V λ

j − gij)
}

≥ λδ, on R
d, (5.38)

where δ = ν ∧ 1 > 0.

Step 2. In order to prove the comparison principle, it suffices to show that for all λ ∈
(0, 1)

max
j∈Im

sup(Uj − V λ
j ) ≤ 0,

since the required result is obtained by letting λ to 0. We argue by contradiction and
suppose that there exists some λ ∈ (0, 1) and i ∈ Im s.t.

M := max
j∈Im

sup(Uj − V λ
j ) = sup(Ui − V λ

i ) > 0. (5.39)

From the linear growth condition on Ui, Vi, and the quadratic growth condition on ψi,
we observe that Ui(x) − V λ

i (x) goes to −∞ when x goes to infinity. Hence, the u.s.c.
function Ui − V λ

i attains its maximum M . Let us consider the family of u.s.c. functions

Φε(x, y) = Ui(x)− V λ
i (y)− φε(x, y), φε(x, y) =

1
2ε
|x− y|2, ε > 0,

and the bounded family (xε, yε) that attains the maximum of Φε. By standard arguments,
we have

Mε = max Φε = Φε(xε, yε) → M, and φε(xε, yε) → 0, (5.40)

as ε goes to zero. From Ishii’s lemma, we get the existence of Mε, Nε ∈ Sd s.t.

(xε − yε

ε
, Mε

)
∈ P̄2,+Ui(xε),

(xε − yε

ε
, Nε

)
∈ P̄2,−V λ

i (yε),

and

tr
(
σσ′(xε)Mε − σσ′(yε)Nε) ≤

3
ε
|σ(xε)− σ(yε)|2.



114 5 Optimal switching and free boundary problems

By writing the viscosity subsolution property (5.30) of Ui and the viscosity strict super-
solution property (5.38) of V λ

i , we have the following inequalities:

min
[
βUi(xε)−

1
ε
(xε − yε).bi(xε)−

1
2
tr(σiσ

′
i(xε)Mε)− fi(xε),

Ui(xε)−max
j �=i

(Uj − gij)(xε)
]
≤ 0 (5.41)

min
[
βV λ

i (yε)−
1
ε
(xε − yε).bi(yε)−

1
2
tr(σiσ

′
i(yε)Nε)− fi(yε),

V λ
i (yε)−max

j �=i
(V λ

j − gij)(yε)
]
≥ λδ. (5.42)

If Ui(xε)−maxj �=i(Uj−gij)(xε) ≤ 0 in (5.41), then, since V λ
i (yε)−maxj �=i(V λ

j −gij)(yε)
≥ λδ by (5.42), we obtain

Ui(xε)− V λ
i (yε) ≤ −λδ + max

j �=i
(Uj − gij)(xε)−max

j �=i
(V λ

j − gij)(yε)

≤ −λδ + max
j �=i

(Uj(xε)− V λ
j (yε)).

By sending ε to zero, and from (5.40), we get the contradiction M ≤ −λδ+M . Otherwise,
if Ui(xε)−maxj �=i(Uj − gij)(xε) > 0 in (5.41), then the first term of the l.h.s. of (5.41)
is nonpositive, and by substracting with the nonnegative first term of the l.h.s. of (5.42),
we conclude as in the proof of Theorem 5.2.1. �

Remark 5.3.3 As in the case of the optimal stopping problem, the continuity and the
unique characterization of the value functions vi to the system of variational inequalities
(5.30) also hold true when we remove the Lipschitz condition on fi, by assuming only that
they are continuous and satisfy a linear growth condition. Indeed, the viscosity property is
proved similarly by means of discontinuous viscosity solutions, and the strong comparison
principle in Theorem 5.3.3 (which only requires continuity and linear growth condition
on fi) implies, in addition to the uniqueness, the continuity of the value fuctions.

5.3.3 Switching regions

For any regime i ∈ Im, we introduce the closed set

Si =
{

x ∈ R
d : vi(x) = max

j �=i
(vj − gij)(x)

}

. (5.43)

Si is called the switching region since it corresponds to the region where it is optimal for
the controller to change the regime. The complement set Ci of Si in R

d is the so-called
continuation region:

Ci =
{

x ∈ R
d : vi(x) > max

j �=i
(vj − gij)(x)

}

,

where it is optimal to stay in regime i. Similarly as in Lemma 5.2.2 for optimal stopping
problem, we show that the value function vi is a viscosity solution to
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βvi − Livi − fi = 0 on Ci.

Moreover, if the function σi is uniformly elliptic, then vi is C2 on Ci.
Let us introduce the functions

V̂i(x) = E

[∫ ∞

0

e−βtfi(X̂
x,i
t )dt

]

, x ∈ R
d, i ∈ Im, (5.44)

where X̂x,i is the solution to the diffusion in regime i starting from x at time 0, i.e. the
solution to

dXt = bi(Xt)dt + σi(Xt)dWt, X0 = x.

V̂i corresponds to the expected profit Ji(x, α) where α is the strategy of never switching.
In particular, we obviously have vi ≥ V̂i.

Lemma 5.3.8 Let i ∈ Im. If Si = ∅, then vi = V̂i, and so

sup
x∈Rd

max
j �=i

(V̂j − V̂i − gij) ≤ 0. (5.45)

Proof. If Si = ∅, i.e. Ci = R
d, then vi is a viscosity solution to

βvi − Livi − fi = 0 on R
d.

Since V̂i is a viscosity solution to the same equation, and satisfies as well as vi a linear
growth condition, we deduce by uniqueness that vi = V̂i. Moreover, recalling that vi ≥
vj − gij , and vj ≥ V̂j , for all j �= i, we obtain (5.45). �

Remark 5.3.4 We shall use this lemma by contradiction: if relation (5.45) is violated,
i.e. there exist x0 ∈ R

d, j �= i, s.t. (V̂j − V̂i − gij)(x0) > 0, then Si is nonempty.

From the definition (5.43) of the switching regions, we have the elementary decom-
position property

Si = ∪j �=iSij , i ∈ Im, (5.46)

where

Sij =
{
x ∈ R

d : vi(x) = (vj − gij)(x)
}

is the switching region from regime i to regime j. Moreover, from the triangular condition
(5.24), when one switches from regime i to regime j, one does not switch immediately to
another regime, i.e. one stays for a while in the continuation region of regime j. In other
words,

Sij ⊂ Cj , j �= i ∈ Im.

The following useful lemma gives some partial information about the structure of the
switching regions.



116 5 Optimal switching and free boundary problems

Lemma 5.3.9 Let i �= j in Im, and assume that σj is uniformly elliptic. Then, we have

Sij ⊂ Qij := {x ∈ Cj : (Lj − Li)vj(x) + (fj − fi)(x)− βgij ≥ 0} .

Proof. Let x ∈ Sij . By setting ϕj = vj − gij , it follows that x is a minimum of vi − ϕj

with vi(x) = ϕj(x). Moreover, since x lies in the open set Cj where vj is smooth under
the condition that σj is uniformly elliptic , we have that ϕj is C2 in a neighborhood of
x. By the supersolution viscosity property of vi to the PDE (5.30), this yields

βϕj(x)− Liϕj(x)− fi(x) ≥ 0. (5.47)

Now recall that for x ∈ Cj , we have

βvj(x)− Ljvj(x)− fj(x) = 0,

so by substituting into (5.47), we obtain

(Lj − Li)vj(x) + (fj − fi)(x)− βgij ≥ 0,

which is the required result. �

5.3.4 The one-dimensional case

In this section, we consider the case where the state process X is real-valued. Similarly
as for optimal stopping problem, we prove the smooth-fit property, i.e. the continuous
differentiability of the value functions.

Proposition 5.3.2 Assume that X is one-dimensional and σi is uniformly elliptic, for
all i ∈ Im. Then, the value functions vi, i ∈ Im, are continuously differentiable on R.
Moreover, at x ∈ Sij, we have v′i(x) = v′j(x), i �= j ∈ Im.

Proof. We already know that vi is smooth C2 on the open set Ci for all i ∈ Im. We have
to prove the C1 property of vi at any point of the closed set Si. We denote for all j ∈
Im, j �= i, hj = vj − gij and we notice that hj is smooth C1 (actually even C2) on Cj .

1. We first check that vi admits a left and right derivative v′i,−(x0) and v′
i,+(x0) at any

point x0 in Si = ∪j �=iSij . We distinguish the two following cases:

• (a) x0 lies in the interior Int(Si) of Si. Then, we have two subcases:

� x0 ∈ Int(Sij) for some j �= i, i.e. there exists some δ > 0 s.t. [x0−δ, x0+δ] ⊂ Sij . By
definition of Sij , we then have vi = hj on [x0− δ, x0 + δ] ⊂ Cj , and so vi is differentiable
at x0 with v′i(x0) = h′

j(x0).

� There exists j �= k �= i in Im and δ > 0 s.t. [x0− δ, x0] ⊂ Sij and [x0, x0 + δ] ⊂ Sik.
We then have vi = hj on [x0 − δ, x0] ⊂ Cj and vi = hk on [x0, x0 + δ] ⊂ Ck. Thus, vi

admits a left and right derivative at x0 with v′i,−(x0) = h′
j(x0) and v′i,+(x0) = h′

k(x0).

• (b) x0 lies in the boundary ∂Si = Si \ Int(Si) of Si. We assume that x0 lies in the
left-boundary of Si, i.e. there exists δ > 0 s.t. [x0 − δ, x0) ⊂ Ci (the other case where x0

lies in the right-boundary is dealt with similarly). Recalling that on Ci, vi is solution to
βvi −Livi − fi = 0, we deduce that on [x0 − δ, x0), vi is equal to wi, the unique smooth
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C2 solution to the ODE βwi − Liwi − fi = 0 with the boundary conditions wi(x0 − δ)
= vi(x0 − δ), wi(x0) = vi(x0). Therefore, vi admits a left derivative at x0 with v′i,−(x0)
= w′

i(x0). In order to prove that vi admits a right derivative, we distinguish the two
subcases:

� There exists j �= i in Im and δ′ > 0 s.t. [x0, x0 + δ′] ⊂ Sij . Then, on [x0, x0 + δ′],
vi is equal to hj . Hence vi admits a right derivative at x0 with v′i,+(x0) = h′

j(x0).
� Otherwise, for all j �= i, we can find a sequence (xj

n) s.t. xj
n ≥ x0, xj

n /∈ Sij and xj
n

→ x0. By a diagonalization procedure, we then construct a sequence (xn) s.t. xn ≥ x0,
xn /∈ Sij for all j �= i, i.e. xn ∈ Ci, and xn → x0. Since Ci is open, there exists then δ′′

> 0 s.t. [x0, x0 + δ′′] ⊂ Ci. We deduce that on [x0, x0 + δ′′], vi is equal to ŵi the unique
smooth C2 solution to the o.d.e. βŵi − Liŵi − fi = 0 with the boundary conditions
ŵi(x0) = vi(x0), ŵi(x0 + δ′′) = vi(x0 + δ′′). In particular, vi admits a right derivative at
x0 with v′i,+(x0) = ŵ′

i(x0).

2. Consider now some point in Si eventually on its boundary. We recall from (5.46) that
there exists some j �= i s.t. x0 ∈ Sij : vi(x0) = hj(x0), and hj is smooth C1on x0 in Cj .
Since vj ≥ hj , we deduce that

vi(x)− vi(x0)
x− x0

≤ hj(x)− hj(x0)
x− x0

, ∀ x < x0

vi(x)− vi(x0)
x− x0

≥ hj(x)− hj(x0)
x− x0

, ∀ x > x0,

and so:

v′i,−(x0) ≤ h′
j(x0) ≤ v′i,+(x0).

We argue by contradiction and suppose that vi is not differentiable at x0. Then, in view
of the above inequality, one can find some p ∈ (v′i,−(x0), v′i,+(x0)). Consider, for ε > 0,
the smooth C2 function

ϕε(x) = vi(x0) + p(x− x0) +
1
2ε

(x− x0)2.

Then, we see that vi dominates locally in a neighborhood of x0 the function ϕε, i.e x0 is
a local minimum of vi −ϕε. From the supersolution viscosity property of vi to the PDE
(5.30), this yields

βϕε(x0)− Liϕε(x0)− fi(x0) ≥ 0,

which is written as

βvi(x0)− bi(x0)p− fi(x0)−
1
2ε

σ2
i (x0) ≥ 0.

Sending ε to zero provides the required contradiction since σ(x0) > 0. We have then
proved that for x0 ∈ Sij , v′i(x0) = h′

j(x0) = v′j(x0). �

We now focus on the case where X is valued in (0,∞), and we assume that the
real-valued coefficients bi and σi, i ∈ Im, of X can be extended to Lipschitz continuous
functions on R+, and x = 0 is an absorbing state in the sense that for all t ≥ 0, α ∈ A,
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X0,i
t = 0. The functions fi are continuous on R+, and satisfy a linear growth condition.

The state domain on which vi satisfy the PDE variational inequalities is then (0,∞), and
we shall need to specify a boundary condition for vi(x) when x approaches 0 in order to
get a uniqueness result.

Lemma 5.3.10 For all i ∈ Im, we have

vi(0+) = max
j∈Im

(fj(0)
β

− gij

)
.

Proof. By considering the particular strategy α = (τn, ιn) of immediately switching from
the initial state (x, i) to state (x, j), j ∈ Id, at cost gij and then doing nothing, i.e. τ1 =
0, ι1 = j, τn = ∞, ιn = j for all n ≥ 2, we have

vi(x) ≥ Ji(x, α) = E
[ ∫ ∞

0

e−βtfj(X̂
x,j
t )dt− gij

]
= V̂j(x)− gij ,

where X̂x,j denotes the controlled process in regime j starting from x at time 0. Since
X̂x,j

t goes to X̂0,j
t = 0 as x goes to zero, for all t ≥ 0, we deduce by continuity of fj , and

dominated convergence theorem that V̂j(0+) = fj(0)/β. From the arbitrariness of j ∈
Im, this implies lim infx↓0 vi(x) ≥ maxj(fj(0)/β − gij).

Conversely, let us define f̄i = fi − fi(0), i ∈ Im, and observe that for any x > 0, α ∈
A, we have

Ji(x, α) = E
[ ∞∑

n=1

∫ τn

τn−1

e−βtf(Xx,i
t , ιn−1)dt−

∞∑

n=1

e−βτngιn−1,ιn

]

= E
[ ∞∑

n=1

∫ τn

τn−1

e−βt
(
f̄(Xx,i

t , ιn−1) + fιn−1(0)
)
dt −

∞∑

n=1

e−βτngιn−1,ιn

]

= E
[ ∞∑

n=1

∫ τn

τn−1

e−βtf̄(Xx,i
t , ιn−1)dt +

fι0(0)
β

−
∞∑

n=1

e−βτn
(
gιn−1,ιn

+
fιn−1(0)− fιn(0)

β

)]

=
fi(0)

β
+ E

[ ∫ ∞

0

e−βtf̄(Xx,i
t , Ii

t)dt−
∞∑

n=1

e−βτn ḡιn−1,ιn

]
, (5.48)

where

ḡij = gij +
fi(0)− fj(0)

β
, (5.49)

also satisfy the triangular condition ḡik < ḡij + ḡjk, j �= i, k. As in (5.27) in Lemma 5.3.7,
we have for any α ∈ A,

−
∞∑

n=1

e−βτn ḡιn−1,ιn
≤ max

j∈Im

(−ḡij).

Define f̄∗
i (y) = supx>0[f̄i(x) − xy], i ∈ Im, and f̄∗(y) = maxi f̄∗

i (y), y > 0, and notice
from the linear growth conditions on f̄i that f̄∗

i (y) is finite for y > C large enough, with
f̄∗

i (∞) = fi(0) = 0, and so f̄∗(∞) = 0. From (5.48), we have for all y > C, α ∈ A,
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Ji(x, α) ≤ fi(0)
β

+ E
[ ∫ ∞

0

e−βt
(
yXx,i

t + f̄∗(y)
)
dt
]

+ max
j∈Im

(−ḡij). (5.50)

Now, from the Lipschitz condition on bi, σi on R+, and by standard arguments based
on Itô’s formula and Gronwall’s lemma, we have for i ∈ Im, α ∈ A, x > 0

E[Xx,i
t ] = E[|Xx,i

t −X0,i
t |] ≤ eρt|x− 0| = eρtx,

where ρ is a positive constant depending on the Lipschitz coefficients of bi, σi, i ∈ Im.
We deduce from (5.50) that for β > ρ,

vi(x) ≤ fi(0)
β

+
xy

β − ρ
+

f̄∗(y)
β

+ max
j∈Im

(−ḡij), ∀x > 0, y > C.

By sending x to zero, and then y to infinity, we conclude that

lim sup
x↓0

vi(x) ≤ fi(0)
β

+ max
j∈Im

(−ḡij) = max
j∈Im

(fj(0)
β

− gij

)
,

which ends the proof. �

Remark 5.3.5 From the relations (5.48), we may assume without loss of generality that
fi(0) = 0, for all i ∈ Im, by modifying switching costs as in (5.49), to take into account
the possibly different initial values of the profit functions.

5.3.5 Explicit solution in the two-regime case

In this section, we consider the case where the number of regimes is m = 2 for a one-
dimensional state process in (0,∞) as in the previous section. Without loss of generality
(see Remark 5.3.5), we shall assume that fi(0) = 0, i = 1, 2. We then know that the value
functions vi, i = 1, 2, are the unique continuous viscosity solutions with linear growth
condition on (0,∞), and boundary conditions vi(0+) = (−gij)+ := max(−gij , 0), j �= i,
to the system

min {βv1 − L1v1 − f1, v1 − (v2 − g12)} = 0 (5.51)

min {βv2 − L2v2 − f2, v2 − (v1 − g21)} = 0. (5.52)

Moreover, the switching regions are

Si = Sij = {x > 0 : vi(x) = vj(x)− gij} , i, j = 1, 2, i �= j.

We set

x∗
i = inf Si ∈ [0,∞], x̄∗

i = supSi ∈ [0,∞],

with the usual convention that inf ∅ = ∞.
We shall provide explicit solutions in the two following situations:

• Different diffusion regimes with identical profit functions
• Different profit functions with identical diffusion regimes

We also consider the cases for which both switching costs are positive, and for which one
of the two is negative, the other then being positive according to (5.25). This last case is
interesting in applications where a firm chooses between an open or closed activity, and
may regain a fraction of its opening costs when it decides to close.
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Different diffusion regimes with identical profit functions

We suppose that the running profit functions are identical in the form

f1(x) = f2(x) = xp, x > 0, for some 0 < p < 1.

The diffusion regimes correspond to two different geometric Brownian motions, i.e.

bi(x) = ρix, σi(x) = γix, for some constants ρi, γi > 0, i = 1, 2.

We assume that β > max(0, ρ1, ρ2), which ensures that the value functions vi are fi-
nite and satisfy a linear growth condition. In this case, a straightforward calculation
shows that the value functions V̂i in (5.44) corresponding to the problem without regime
switching are given by

V̂i(x) = Kix
p with Ki =

1
β − ρip + 1

2γ2
i p(1− p)

> 0, i = 1, 2.

Recall that V̂i is a particular solution to the second-order ODE

βw − Liw − fi = 0, (5.53)

whose general solution (without second member fi) is of the form

w(x) = Axm+
i + Bxm−

i ,

for some constants A, B, and where

m−
i = − ρi

γ2
i

+
1
2
−

√(

− ρi

γ2
i

+
1
2

)2

+
2β

γ2
i

< 0,

m+
i = − ρi

γ2
i

+
1
2

+

√(

− ρi

γ2
i

+
1
2

)2

+
2β

γ2
i

> 1.

We show that the structure of the switching regions depends actually only on the
sign of K2 −K1, and of the sign of the switching costs g12 and g21. More precisely, we
have the following explicit result.

Theorem 5.3.4 Let i, j = 1, 2, i �= j.
(1) If Ki = Kj, then

vi(x) = V̂i(x) + (−gij)+, x ∈ (0,∞),

Si =
{

∅ if gij > 0,

(0,∞) if gij ≤ 0.

It is always optimal to switch from regime i to j if the corresponding switching cost is
nonpositive, and never optimal to switch otherwise.
(2) If Kj > Ki, then we have the following situations depending on the switching costs:

(a) gij ≤ 0: We have Si = (0,∞), Sj = ∅, and

vi = V̂j − gij , vj = V̂j .
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(b) gij > 0:
• If gji ≥ 0, then Si = [x∗

i ,∞) with x∗
i ∈ (0,∞), Sj = ∅, and

vi(x) =

{
Axm+

i + V̂i(x), x < x∗
i ,

vj(x)− gij , x ≥ x∗
i ,

(5.54)

vj(x) = V̂j(x), x ∈ (0,∞), (5.55)

where the constants A and x∗
i are determined by the continuity and smooth-fit

conditions of vi at x∗
i , and explicitly given by

x∗
i =

(
m+

i

m+
i − p

gij

Kj −Ki

) 1
p

, (5.56)

A = (Kj −Ki)
p

m+
i

(x∗
i )

p−m+
i . (5.57)

When we are in regime i, it is optimal to switch to regime j whenever the state
process X exceeds the threshold x∗

i , while when we are in regime j, it is optimal
to never switch.

• If gji < 0, then Si = [x∗
i ,∞) with x∗

i ∈ (0,∞), Sj = (0, x̄∗
j ], and

vi(x) =

{
Axm+

i + V̂i(x), x < x∗
i ,

vj(x)− gij , x ≥ x∗
i ,

(5.58)

vj(x) =

{
vi(x)− gji, x ≤ x̄∗

j ,

Bxm−
j + V̂j(x), x > x̄∗

i ,
(5.59)

where the constants A, B and x̄∗
j < x∗

i are determined by the continuity and
smooth-fit conditions of vi and vj at x∗

i and x̄∗
j , and explicitly given by

x∗
j

=
[ −m−

j (gji + gij y
m+

i )

(Ki −Kj)(p−m−
j )(1− ym+

i −p)

] 1
p

,

x∗
i

=
x∗

j

y
,

B =
(Ki −Kj)(m+

i − p)x
p−m−

j
i + m+

i gij x
−m−

j
i

m+
i −m−

j

,

A = Bx
m−

j −m+
i

i − (Ki −Kj)xp−m+
i

i
− g

ij
x−m+

i
i

,

with y solution in
(
0,
(
−

g
ji

gij

) 1
m

+
i

)

to the equation

m+
i (p−m−

j )
(
1− ym+

i −p
)(

gij y
m−

j + gji

)

+ m−
j (m+

i − p)
(
1− ym−

j −p
)(

gij y
m+

i + gji

)
= 0.
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When we are in regime i, it is optimal to switch to regime j whenever the state
process X exceeds the threshold x∗

i , while when we are in regime j, it is optimal
to switch to regime i for values of the state process X under the threshold x̄∗

j .

Economic interpretation
In the particular case where γ1 = γ2, the condition K2 −K1 > 0 means that regime 2
provides a higher expected return ρ2 than ρ1 of regime 1 for the same volatility coefficient
γi. Moreover, if the switching cost g21 from regime 2 to regime 1 is nonnegative, it
is intuitively clear that it is in our best interest to always stay in regime 2, which is
formalized by the property that S2 = ∅. However, if one receives some gain compensation
to switch from regime 2 to regime 1, i.e., the corresponding cost g21 is negative, then
it is in our best interest to change regime for small values of the current state. This is
formalized by the property that S2 = (0, x̄∗

2]. On the other hand, in regime 1, our best
interest is to switch to regime 2, for all current values of the state if the corresponding
switching cost g12 is nonpositive, or from a certain threshold x∗

1 if the switching cost g12

is positive. A similar interpretation holds when ρ1 = ρ2, and K2 − K1 > 0, i.e., γ2 <

γ1. Theorem 5.3.4 extends these results for general coefficients ρi and γi, and shows that
the critical parameter value determining the form of the optimal strategy is given by the
sign of K2 −K1 and the switching costs. The different optimal strategy structures are
depicted in Figure I.

Proof of Theorem 5.3.4.

(1) If Ki = Kj , then V̂i = V̂j . We consider the smooth functions wi = V̂i + (−gij)+ for
i, j = 1, 2 and j �= i. Since V̂i are solution to (5.53), we see that wi satisfy

βwi − Lwi − fi = β(−gij)+ (5.60)

wi − (wj − gij) = gij + (−gij)+ − (−gji)+. (5.61)

Notice that the l.h.s. of (5.60) and (5.61) are both nonnegative by (5.25). Moreover, if
gij > 0, then the l.h.s. of (5.60) is zero, and if gij ≤ 0, then gji > 0 and the l.h.s. of
(5.61) is zero. Therefore, wi, i = 1, 2 is solution to the system

min {βwi − Liwi − fi, wi − (wj − gij)} = 0.

Since V̂i(0+) = 0, we have wi(0+) = (−gij)+ = vi(0+) by Lemma 5.3.10. Moreover, wi

satisfy like V̂i a linear growth condition. Therefore, by uniqueness to the system (5.51)-
(5.52), we deduce that vi = wi. As observed above, if gij ≤ 0, then the l.h.s. of (5.61) is
zero, and so Si = (0,∞). Finally, if gij > 0, then the l.h.s. of (5.61) is positive, and so
Si = ∅.
(2) We now suppose w.l.o.g. that K2 > K1.
(a) Consider first the case where g12 ≤ 0, and so g21 > 0. We set w1 = V̂2 − g12 and w2

= V̂2. Then, by construction, we have w1 = w2 − g12 on (0,∞), and by definition of V̂1

and V̂2

βw1(x)− L1w1(x)− f1(x) =
K2 −K1

K1
xp − βg12 > 0, ∀ x > 0.

On the other hand, we also have βw2 − L2w2 − f2 = 0 on (0,∞), and w2 > w1 − g21

since g12 + g21 > 0. Hence, w1 and w2 are smooth (hence viscosity) solutions to the
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Fig. I.1.a: f1 = f2 , K1 = K2 , g12 > 0, g21 > 0 Fig. I.1.b: f1 = f2 , K1 = K2 , g12 > 0, g21 ≤ 0

Fig. I.2.a: f1 = f2 , K2 > K1 , g12 ≤ 0 Fig. I.2.bi: f1 = f2 , K2 > K1 , g12 > 0, g21 ≥ 0

Fig. I.2.bii: f1 = f2 , K2 > K1 , g12 > 0, g21 < 0

Fig. I
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system (5.51)-(5.52), with linear growth conditions and boundary conditions w1(0+)
= V1(0+) − g12 = (−g12)+ = v1(0+), w2(0+) = V̂2(0+) = 0 = (−g21)+ = v2(0+). By
uniqueness, we deduce that v1 = w1, v2 = w2, and thus S1 = (0,∞), S2 = ∅.
(b) Consider now the case where g12 > 0. From (5.25), we have v1(0+) = 0 > (−g21)+−g12

= v2(0+) − g12. Therefore, by continuity of the value functions on (0,∞), we get x∗
1 >

0. We claim that x∗
1

< ∞. Otherwise, S1 = ∅, and by Lemma 5.3.8, v1 should be equal
to V̂1 . Since v1 ≥ v2 − g12 ≥ V̂2 − g12 , this would imply (V̂2 − V̂1)(x) = (K2 −K1)xp ≤
g12 for all x > 0, an obvious contradiction. By definition of x∗

1
, we have (0, x∗

1) ⊂ C1. We
shall actually prove the equality (0, x∗

1
) = C1, i.e. S1 = [x∗

1
,∞). On the other hand, the

form of S2 will depend on the sign of g21 .
• Case: g21 ≥ 0.
We shall prove that C2 = (0,∞), i.e. S2 = ∅. To this end, let us consider the function

w1(x) =

{
Axm+

1 + V̂1(x), 0 < x < x1

V̂2(x)− g12 , x ≥ x1 ,

where the positive constants A and x1 satisfy

Axm+
1

1
+ V̂1(x1) = V̂2(x1)− g12 (5.62)

Am+
1 xm+

1 −1
1

+ V̂ ′
1
(x1) = V̂ ′

2
(x1), (5.63)

and are explicitly determined by

(K2 −K1)xp
1

=
m+

1

m+
1 − p

g12 (5.64)

A = (K2 −K1)
p

m+
1

xp−m+
1

1
. (5.65)

Notice that by construction, w1 is C2 on (0, x1) ∪ (x1 ,∞), and C1 on x1 .
� Let us now show that w1 is a viscosity solution to

min
{

βw1 − L1w1 − f1, w1 − (V̂2 − g12)
}

= 0, on (0,∞). (5.66)

We first check that

w1(x) ≥ V̂2(x)− g12 , ∀ 0 < x < x1 , (5.67)

i.e.

G(x) := Axm+
1 + V̂1(x)− V̂2(x) + g12 ≥ 0, ∀ 0 < x < x1 .

Since A > 0, 0 < p < 1 < m+
1 , K2 −K1 > 0, a direct derivation shows that the second

derivative of G is positive, i.e. G is strictly convex. By (5.63), we have G′(x1) = 0 and
so G′ is negative, i.e. G is strictly decreasing on (0, x1). Now, by (5.62), we have G(x1)
= 0 and thus G is positive on (0, x1), which proves (5.67).

By definition of w1 on (0, x1), we have in the classical sense

βw1 − L1w1 − f1 = 0, on (0, x1). (5.68)
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We now check that

βw1 − L1w1 − f1 ≥ 0, on (x1 ,∞), (5.69)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition of
w1 on (x1 ,∞), and K1, we have for all x > x1 ,

βw1(x)− L1w1(x)− f1(x) =
K2 −K1

K1
xp − βg12 , ∀x > x1 ,

so that (5.69) is satisfied iff K2−K1
K1

xp
1
− βg12 ≥ 0 or equivalently by (5.64):

m+
1

m+
1 − p

≥ βK1 =
β

β − ρ1p + 1
2γ2

1p(1− p)
(5.70)

Now, since p < 1 < m+
1 , and by definition of m+

1 , we have

1
2
γ2
1m+

1 (p− 1) <
1
2
γ2
1m+

1 (m+
1 − 1) = β − ρ1m

+
1 ,

which proves (5.70) and thus (5.69).
From relations (5.67), (5.68) and (5.69), we see that the viscosity solution property

of w1 to (5.66) is satisfied at any point x ∈ (0, x1) ∪ (x1,∞). It remains to check the
viscosity property of w1 to (5.66) at x1, and this will follow from the smooth-fit condition
of w1 at x1. Indeed, since w1(x1) = V̂2(x1) − g12, the viscosity subsolution property is
trivial. For the viscosity supersolution property, take some smooth C2 function ϕ s.t. x1

is a local minimum of w1−ϕ. Since w1 is C2 on (0, x1)∪ (x1 ,∞), and C1 on x1 , we have
w′

1(x1) = ϕ′(x1) and ϕ′′(x1) ≤ w′′
1 (x−

1 ). By sending x ↗ x1 into (5.68), we obtain

βw1(x1)− Lϕ(x1)− f1(x1) ≥ 0,

which is the required supersolution inequality. The the required assertion (5.66) is then
proved.

� On the other hand, we check that

V̂2(x) > w1(x)− g21 , ∀x > 0, (5.71)

which amounts to showing

H(x) := Axm+
1 + V̂1(x)− V̂2(x)− g21 < 0, ∀ 0 < x < x1 .

Since A > 0, 0 < p < 1 < m+
1 , K2 −K1 > 0, a direct derivation shows that the second

derivative of H is positive, i.e. H is strictly convex. By (5.63), we have H ′(x1) = 0 and
so H ′ is negative, i.e. H is strictly decreasing on (0, x1). Now, we have H(0) = −g21 ≤ 0
and thus H is negative on (0, x1), which proves (5.71). Recalling that V̂2 is a solution to
βV̂2 − L2V̂2 − f2 = 0 on (0,∞), we deduce obviously from (5.71) that V̂2 is a classical,
hence a viscosity solution to

min
{

βV̂2 − L2V̂2 − f2, V̂2 − (w1 − g21)
}

= 0, on (0,∞). (5.72)
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� Since w1(0
+) = 0 = (−g12)+, V̂2(0

+) = 0 = (−g21)+, and w1 , V̂2 satisfy a linear
growth condition, we deduce from (5.66), (5.72), and uniqueness to the PDE system
(5.51)-(5.52), that

v1 = w1 , v2 = V̂2 , on (0,∞).

This proves x∗
1

= x1 , S1 = [x1 ,∞) and S2 = ∅.
• Case: g21 < 0.
We shall prove that S2 = (0, x̄∗

2]. To this end, let us consider the functions

w1(x) =

{
Axm+

1 + V̂1(x), x < x
1

w2(x)− g12 , x ≥ x
1

w2(x) =

{
w1(x)− g21 , x ≤ x̄2

Bxm−
2 + V̂2(x), x > x̄2 ,

where the positive constants A, B, x
1

> x̄2 , solutions to

Axm+
1

1
+ V̂1(x1

) = w2(x1
)− g12 = Bxm−

2
1

+ V̂2(x1
)− g12 (5.73)

Am+
1 xm+

1 −1
1

+ V̂ ′
1
(x

1
) = w′

2
(x

1
) = Bm−

2 xm−
2 −1

1
+ V̂ ′

2
(x

1
) (5.74)

Ax̄m+
1

2
+ V̂1(x̄2)− g21 = w1(x̄2)− g21 = Bx̄m−

2
2

+ V̂2(x̄2) (5.75)

Am+
1 x̄m+

1 −1
2

+ V̂ ′
1
(x̄2) = w′

1
(x̄2) = Bm−

2 x̄m−
2 −1

2
+ V̂ ′

2
(x̄2), (5.76)

exist and are explicitly determined after some calculations by

x2 =
[ −m−

2 (g21 + g12y
m+

1 )

(K1 −K2)(p−m−
2 )(1− ym+

1 −p)

] 1
p

(5.77)

x
1

=
x2

y
(5.78)

B =
(K1 −K2)(m+

1 − p)xp−m−
2

1
+ m+

1 g12x
−m2
1

m+
1 −m−

2

(5.79)

A = Bxm−
2 −m+

1
1

− (K1 −K2)xp−m+
1

1
− g12x

−m+
1

1
, (5.80)

with y solution in
(
0,
(
− g21

g12

) 1
m

+
1

)
to the equation

m+
1 (p−m−

2 )
(
1− ym+

1 −p
)(

g12y
m−

2 + g21

)

+ m−
2 (m+

1 − p)
(
1− ym−

2 −p
)(

g12y
m+

1 + g21

)
= 0. (5.81)

Using (5.25), we have y <
(
− g21

g12

) 1
m

+
1 < 1. As such, 0 < x̄2 < x1. Furthermore, by

using (5.78) and the equation (5.81) satisfied by y, we may easily check that A and B

are positive constants.
Notice that by construction, w1 (resp. w2) is C2 on (0, x

1
) ∪ (x

1
,∞) (resp. (0, x̄2) ∪

(x̄2 ,∞)) and C1 at x
1

(resp. x̄2).
� Let us now show that wi, i = 1, 2, are viscosity solutions to the system:
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min {βwi − Liwi − fi, wi − (wj − gij)} = 0, on (0,∞), i, j = 1, 2, j �= i. (5.82)

Since the proof is similar for both wi, i = 1, 2, we only prove the result for w1. We first
check that

w1 ≥ w2 − g12 , ∀ 0 < x < x
1
. (5.83)

From the definition of w1 and w2 and using the fact that g12+g21 > 0, it is straightforward
to see that

w1 ≥ w2 − g12 , ∀ 0 < x ≤ x2 . (5.84)

Now, we need to prove that

G(x) := Axm+
1 + V̂1(x)−Bxm−

2 − V̂2(x) + g12 ≥ 0, ∀ x2 < x < x
1
. (5.85)

We have G(x̄2) = g12 + g21 > 0 and G(x
1
) = 0. Suppose that there exists some x0 ∈

(x̄2 , x1
) such that G(x0) = 0. We then deduce that there exists x3 ∈ (x̄0 , x1

) such that
G′(x3) = 0. As such, the equation G′(x) = 0 admits at least three solutions in [x̄2 , x1

]:
{
x̄2 , x3 , x1

}
. However, a straightforward study of the function G shows that G′ can take

the value zero at most at two points in (0,∞). This leads to a contradiction, proving
therefore (5.85).

By definition of w1, we have in the classical sense

βw1 − L1w1 − f = 0, on (0, x
1
). (5.86)

We now check that

βw1 − L1w1 − f ≥ 0, on (x
1
,∞) (5.87)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition of
w1 on (x1 ,∞), and K1, we have for all x > x

1
,

H(x) := βw1(x)− L1w1(x)− f(x) =
K2 −K1

K1
xp + m−

2 LBxm−
2 − βg12 , (5.88)

where L = 1
2 (γ2

2 − γ2
1)(m−

2 − 1) + ρ2 − ρ1.
We distinguish two cases:
- First, if L ≥ 0, the function H would be non-decreasing on (0,∞) with lim

x→0+
H(x) =

−∞ and lim
x→∞

H(x) = ∞. As such, it suffices to show that H(x1) ≥ 0. From (5.73)-(5.74),
we have

H(x1) = (K2 −K1)
[
m+

1 −m−
2

K1
− (m+

1 − p)m−
2 L

]

− βg12 + m+
1 m−

2 g12L.

Using relations (5.70), (5.73), (5.74), (5.78) and the definition of m+
1 and m−

2 , we then
obtain

H(x1) =
m+

1 (m+
1 −m−

2 )
K1(m+

1 − p)
− β ≥ m+

1

K1(m+
1 − p)

− β ≥ 0.
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- Second, if L < 0, it suffices to show that

K2 −K1

K1
xp − βg12 ≥ 0, ∀ x > x1,

which is rather straightforward from (5.70) and (5.78).
Relations (5.83), (5.86), and (5.87) show the viscosity property of w1 to (5.82) for i = 1,
at any point x ∈ (0, x1) ∪ (x1,∞). By the smooth-fit property of w1 at x1, we also get
the viscosity property of w1 at this point, and so the required assertion (5.82) is proved.

� Since w1(0
+) = 0 = (−g12)+, w2(0

+) = −g21 = (−g21)+, and w1 , V̂2 satisfy a linear
growth condition, we deduce from (5.82) and uniqueness to the PDE system (5.51)-(5.52),
that

v1 = w1 , v2 = w2 , on (0,∞).

This proves x∗
1

= x
1
, S1 = [x1 ,∞) and x̄∗

2 = x̄2, S2 = (0, x̄2]. �

Different profit functions with identical diffusion regimes

We suppose that the diffusion regimes are identical corresponding to a geometric Brow-
nian motion

bi(x) = ρx, σi(x) = γx, for some constants ρ, γ > 0, i = 1, 2,

and we denote by L = L1 = L2 the associated generator. We also set m+ = m+
1 = m+

2 ,
m− = m−

1 = m−
2 , and X̂x = X̂x,1 = X̂x,2. Notice that in this case, the set Qij , i, j =

1, 2, i �= j, introduced in Lemma 5.3.9, satisfies

Qij = {x ∈ Cj : (fj − fi)(x)− βgij ≥ 0}
⊂ Q̂ij := {x > 0 : (fj − fi)(x)− βgij ≥ 0} . (5.89)

Once we are given the profit functions fi, fj , the set Q̂ij can be explicitly computed.
Moreover, we prove in the next key lemma that the structure of Q̂ij , when it is connected,
determines the same structure for the switching region Si.

Lemma 5.3.11 Let i, j = 1, 2, i �= j and assume that

sup
x>0

(V̂j − V̂i)(x) > gij . (5.90)

(1) If there exists 0 < xij <∞ such that

Q̂ij = [xij ,∞), (5.91)

then 0 < x∗
i <∞ and

Si = [x∗
i ,∞).

(2) If gij ≤ 0 and there exists 0 < x̄ij <∞ such that

Q̂ij = (0, x̄ij ], (5.92)
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then 0 < x̄∗
i <∞ and

Si = (0, x̄∗
i ].

(3) If there exist 0 < xij < x̄ij < ∞ such that

Q̂ij = [xij , x̄ij ], (5.93)

then 0 < x∗
i < x̄∗

i <∞ and

Si = [x∗
i , x̄

∗
i ].

(4) If gij ≤ 0 and Q̂ij = (0,∞), then Si = (0,∞) and Sj = ∅.

Proof. First, we observe from Lemma 5.3.8 that under (5.90), the set Si is nonempty.
(1) Consider the case of condition (5.91). Since Si �= ∅ ⊂ Q̂ij by Lemma 5.3.9, this implies
x∗

i = inf Si ∈ [xij ,∞). By definition of x∗
i , we already know that (0, x∗

i ) ⊂ Ci. We prove
actually the equality, i.e. Si = [x∗

i ,∞) or vi(x) = vj(x)− gij for all x ≥ x∗
i . Consider the

function wi(x) = vj(x)− gij on [x∗
i ,∞), and let us check that wi is a viscosity solution

to

min {βwi − Lwi − fi , wi − (vj − gij)} = 0 on (x∗
i ,∞). (5.94)

For this, take some point x̄ > x∗
i and some smooth test function ϕ s.t. x̄ is a local

minimum of wi − ϕ. Then, x̄ is a local minimum of vj − (ϕ + gij), and by the viscosity
solution property of vj to its Bellman PDE, we have

βvj(x̄)− Lϕ(x̄)− fj(x̄) ≥ 0.

Now, since x∗
i ≥ xij , we have x̄ > xij and so by (5.91), x̄ ∈ Q̂ij . Hence,

(fj − fi)(x̄)− βgij ≥ 0.

By adding the two previous inequalities, we obtain

βwi(x̄)− Lϕ(x̄)− fi(x̄) ≥ 0,

which proves the supersolution property of wi to

βwi − Lwi − fi ≥ 0, on (x∗
i ,∞),

and therefore the viscosity solution property of wi to (5.94). Since wi(x∗
i ) = vi(x∗

i ) (=
vj(x∗

i ) − gij), and wi satisfies a linear growth condition, we deduce from uniqueness to
the PDE (5.94) that wi is equal to vi. In particular, we have vi(x) = vj(x)− gij for x ≥
x∗

i , which shows that Si = [x∗
i ,∞).

(2) The case of condition (5.92) is dealt with the same arguments as above: we first
observe that 0 < x̄∗

i = supSi ≤ x̄ij . Then, we show that the function wi(x) = vj(x)−gij

is a viscosity solution to

min {βwi − Lwi − fi , wi − (vj − gij)} = 0 on (0, x̄∗
i ).
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Then, under the condition that gij ≤ 0, we see that gji > 0 by (5.25), and so vi(0+)
= −gij = (−gji)+ − gij = vj(0+) − gij = wi(0+). We also have vi(x̄∗

i ) = wi(x̄∗
i ). By

uniqueness, we conclude that vi = wi on (0, x̄∗
i ], and so Si = (0, x̄∗

i ].

(3) By Lemma 5.3.9 and (5.89), the condition (5.93) implies 0 < xij ≤ x∗
i ≤ x̄∗

i ≤ x̄ij

<∞. We claim that x∗
i < x̄∗

i . Otherwise, Si = {x̄∗
i } and vi would satisfy βvi −Lvi − fi

= 0 on (0, x̄∗
i ) ∪ (x̄∗

i ,∞). By continuity and the smooth-fit condition of vi at x̄∗
i , this

implies that vi satisfies actually

βvi − Lvi − fi = 0, x ∈ (0,∞),

and so by uniqueness, vi is equal to V̂i. Recalling that vi ≤ vj − gij ≤ V̂j − gij , this is in
contradiction with (5.90). By the same arguments as in Cases 1 or 2, we prove that Si

= [x∗
i , x̄

∗
i ]. It suffices to consider the function wi(x) = vj(x)− gij , and to check that it is

a viscosity solution to

min {βwi − Lwi − fi , wi − (vj − gij)} = 0 on (x∗
i , x̄

∗
i ).

Since wi(x∗
i ) = vi(x∗

i ), wi(x̄∗
i ) = vi(x̄∗

i ), we conclude by uniqueness that vi = wi on
[x∗

i , x̄
∗
i ], and so Si = [x∗

i , x̄
∗
i ].

(4) Suppose that gij ≤ 0 and Q̂ij = (0,∞). We shall prove that Si = (0,∞) and Sj = ∅.
To this end, we consider the smooth functions wi = V̂j−gij and wj = V̂j . Then, recalling
the ODE satisfied by V̂j , and inequality (5.25), we get

βwj − Lwj − fj = 0, wj − (wi − gji) = gij + gji ≥ 0.

Therefore wj is a smooth (and so a viscosity) solution to

min
[
βwj − Lwj − fj , wj − (wi − gji)

]
= 0 on (0,∞).

On the other hand, by definition of Q̂ij , which is supposed equal to (0,∞), we have

βwi(x)− Lwi(x)− fi(x) = βV̂j(x)− LV̂j(x)− fj(x) + fj(x)− fi(x)− βgij

= fj(x)− fi(x)− βgij ≥ 0, ∀x > 0.

Moreover, by construction we have wi = wj − gij . Therefore wi is a smooth (and so a
viscosity) solution to

min
[
βwi − Lwi − fi, wi − (wj − gij)

]
= 0 on (0,∞).

Notice also that gji > 0 by (5.25) and since gij ≤ 0. Hence, wi(0+) = −gij = (−gij)+ =
vi(0+), wj(0+) = 0 = (−gji)+ = vj(0+). By uniqueness, we conclude that vi = wi, vj =
wj , which proves that Si = (0,∞), Sj = ∅. �

We shall now provide explicit solutions to the switching problem under general as-
sumptions on the running profit functions, which include several interesting cases for
applications:
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(HF) There exists x̂ ∈ R+ s.t the function F := f2 − f1

is decreasing on (0, x̂), increasing on [x̂,∞),

and F (∞) := lim
x→∞

F (x) > 0, g12 > 0.

Under (HF), there exists some x̄ ∈ R+ (x̄ > x̂ if x̂ > 0 and x̄ = 0 if x̂ = 0) from which
F is positive: F (x) > 0 for x > x̄. Economically speaking, condition (HF) means that
the profit in regime 2 is “better” than profit in regime 1 from a certain level x̄, and the
improvement then becomes better and better. Moreover, since profit in regime 2 is better
than the one in regime 1, it is natural to assume that the corresponding switching cost
g12 from regime 1 to 2 should be positive. However, we shall consider both cases where
g21 is positive and nonpositive. Notice that F (x̂) < 0 if x̂ > 0, F (x̂) = 0 if x̂ = 0, and
we do not assume necessarily F (∞) = ∞.

Example 5.3.1 A typical example of different running profit functions satisfying (HF)
is given by

fi(x) = kix
pi , i = 1, 2, with 0 < p1 < p2 < 1, k1 ∈ R+, k2 > 0. (5.95)

In this case, x̂ =
(

k1p1
k2p2

) 1
p2−p1 , and limx→∞ F (x) = ∞.

Another example of profit functions of interest in applications is the case where
the profit function in regime 1 is f1 = 0, and the other f2 is increasing. In this case,
assumption (HF) is satisfied with x̂ = 0.

The next proposition states the form of the switching regions in regimes 1 and 2,
depending on the parameter values.

Proposition 5.3.3 Assume that (HF) holds.
(1) Structure in regime 1:

• (i) If βg12 ≥ F (∞), then x∗
1

= ∞, i.e.

S1 = ∅.

• (ii) If βg12 < F (∞), then x∗
1
∈ (0,∞) and

S1 = [x∗
1
,∞).

(2) Structure in regime 2:

• Positive switching cost:
(i) If βg21 ≥ −F (x̂), then

S2 = ∅.

(ii) If 0 < βg21 < −F (x̂), then 0 < x∗
2

< x̄∗
2

< x∗
1
, and

S2 = [x∗
2
, x̄∗

2
].
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• Nonpositive switching cost:
(iii) If g21 ≤ 0 and −F (∞) < βg21 < −F (x̂), then 0 = x∗

2
< x̄∗

2
< x∗

1
, and

S2 = (0, x̄∗
2
].

(iv) If βg21 ≤ −F (∞), then

S2 = (0,∞).

Proof. (1) From Lemma 5.3.9, we have

Q̂12 = {x > 0 : F (x) ≥ βg12} . (5.96)

Since g12 > 0, and fi(0) = 0, we have F (0) = 0 < βg12 . Under (HF), we then distinguish
the following two cases:
(i) If βg12 ≥ F (∞), then Q̂12 = ∅, and so by Lemma 5.3.9 and (5.89), S1 = ∅.
(ii) If βg12 < F (∞), then there exists x̂12 ∈ (0,∞) such that

Q̂12 = [x
12

,∞). (5.97)

Moreover, since

(V̂2 − V̂1)(x) = E
[ ∫ ∞

0

e−βtF (X̂x
t )dt

]
, ∀x > 0,

we obtain by the dominated convergence theorem

lim
x→∞

(V̂2 − V̂1)(x) = E
[ ∫ ∞

0

e−βtF (∞)dt
]

=
F (∞)

β
> g12 .

Hence, conditions (5.90)-(5.91) with i = 1, j = 2, are satisfied, and we obtain the first
assertion by Lemma 5.3.11 1).

(2) From Lemma 5.3.9, we have

Q̂21 = {x > 0 : −F (x) ≥ βg21} . (5.98)

Under (HF), we distinguish the following cases:

� (i1) If βg21 > −F (x̂), then Q̂21 = ∅, and so S2 = ∅.
� (i2) If βg21 = −F (x̂), then either x̂ = 0 and so S2 = Q̂21 = ∅, or x̂ > 0, and so Q̂21 =
{x̂}, S2 ⊂ {x̂}. In this last case, v2 satisfies βv2 − Lv2 − f2 = 0 on (0, x̂) ∪ (x̂,∞). By
continuity and smooth-fit condition of v2 at x̂, this implies that v2 satisfies actually

βv2 − Lv2 − f2 = 0, x ∈ (0,∞),

and so by uniqueness, v2 = V̂2. Since v2 ≥ v1−g21 ≥ V̂1−g21, this would imply (V̂2−V̂1)(x)
≥ g21 for all x > 0, and so by sending x to infinity, we get a contradiction: F (∞) ≥ βg21

= −F (x̂).

� If βg21 < −F (x̂), we need to distinguish three subcases depending on g21 :
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• If g21 > 0, then there exist 0 < x
21

< x̂ < x̄21 <∞ such that

Q̂21 = [x
21

, x̄21 ]. (5.99)

We then conclude with Lemma 5.3.11 2) for i = 2, j = 1.
• If g21 ≤ 0 with βg21 > −F (∞), then there exists x̄21 < ∞ s.t.

Q̂21 = (0, x̄21 ].

Moreover, we clearly have supx>0(V̂1 − V̂2)(x) > (V̂1 − V̂2)(0) = 0 ≥ g21 . Hence,
conditions (5.90) and (5.92) with i = 2, j = 1 are satisfied, and we deduce from
Lemma 5.3.11 (1) that S2 = (0, x̄∗

2] with 0 < x̄∗
2 < ∞.

• If βg21 ≤ −F (∞), then Q̂21 = (0,∞), and we deduce from Lemma 5.3.11 3) for i =
2, j = 1, that S2 = (0,∞).

Finally, in the two above subcases when S2 = [x∗
2
, x̄∗

2
] or (0, x̄∗

2
], we notice that x̄∗

2
< x∗

1

since S2 ⊂ C1 = (0,∞) \ S1, which is equal, from 1), either to (0,∞) when x∗
1

= ∞ or
to (0, x∗

1
). �

Economic interpretation.
The previous proposition shows that, under (HF), the switching region in regime 1 has
two forms depending on the size of its corresponding positive switching cost: If g12 is
larger than the “maximum net” profit F (∞) that one can expect by changing regime
(case (1) (i), which may occur only if F (∞) < ∞), then one has no interest in switching
regime, and one always stay in regime 1, i.e. C1 = (0,∞). However, if this switching cost
is smaller than F (∞) (case (1) (ii), which always holds true when F (∞) = ∞ ), then
there is some positive threshold from which it is optimal to change regime.

The structure of the switching region in regime 2 exhibits several different forms
depending on the sign and size of its corresponding switching cost g21 with respect to
the values −F (∞) < 0 and −F (x̂) ≥ 0. If g21 is nonnegative and larger than −F (x̂) (case
(2) (i)), then one has no interest in switching regime, and one always stays in regime
2, i.e. C2 = (0,∞). If g21 is positive, but not too large (case (2) (ii)), then there exists
some bounded closed interval, which is not a neighborhood of zero, where it is optimal
to change regime. Finally, when the switching cost g21 is negative, it is optimal to switch
to regime 1 at least for small values of the state. Actually, if the negative cost g21 is
larger than −F (∞) (case 2) (iii), which always holds true for negative cost when F (∞)
= ∞), then the switching region is a bounded neighborhood of 0. Moreover, if the cost
is negative and large enough (case (2) (iv), which may occur only if F (∞) < ∞), then
it is optimal to change regime for every value of the state.

By combining the different cases for regimes 1 and 2, and observing that case 2) (iv)
is not compatible with case 1) (ii) by (5.25), we then have a priori seven different forms
for both switching regions. These forms reduce actually to three when F (∞) = ∞. The
various structures of the switching regions are depicted in Figure II.

Finally, we complete the results of Proposition 5.3.3 by providing the explicit solutions
for the value functions and the corresponding boundaries of the switching regions in the
seven different cases depending on the model parameter values.

Theorem 5.3.5 Assume that (HF) holds.
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Fig. II.1: βg12 < F (∞), βg21 ≥ −F (x̂) Fig. II.2: βg12 < F (∞), 0 < βg21 < −F (x̂)

Fig. II.3: βg12 < F (∞), g21 ≤ 0,−F (∞) < βg21<−F (x̂) Fig. II.4: βg12 ≥ F (∞), βg21 > −F (x̂)

Fig. II.5: βg12 ≥ F (∞), 0 < βg21 < −F (x̂) Fig. II.6: βg12 ≥F (∞), g21 ≤ 0, F (∞) < βg21<−F (x̂)

Fig. II.7: βg12 ≥ F (∞), g21 ≤ −F (∞)

Fig. II
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(1) If βg12 < F (∞) and βg21 ≥ −F (x̂), then

v1(x) =

{
Axm+

+ V̂1(x), x < x∗
1

v2(x)− g12 , x ≥ x∗
1

v2(x) = V̂2(x),

where the constants A and x∗
1

are determined by the continuity and smooth-fit conditions
of v1 at x∗

1
:

A(x∗
1
)m+

+ V̂1(x
∗
1
) = V̂2(x

∗
1
)− g12

Am+(x∗
1
)m+−1 + V̂ ′

1
(x∗

1
) = V̂ ′

2
(x∗

1
).

In regime 1, it is optimal to switch to regime 2 whenever the state process X exceeds the
threshold x∗

1
, while when we are in regime 2, it is optimal never to switch.

(2) If βg12 < F (∞) and 0 < βg21 < −F (x̂), then

v1(x) =

{
A1x

m+
+ V̂1(x), x < x∗

1

v2(x)− g12 , x ≥ x∗
1

(5.100)

v2(x) =

⎧
⎪⎨

⎪⎩

A2x
m+

+ V̂2(x), x < x∗
2

v1(x)− g21 , x∗
2
≤ x ≤ x̄∗

2

B2x
m−

+ V̂2(x), x > x̄∗
2
,

(5.101)

where the constants A1 and x∗
1

are determined by the continuity and smooth-fit conditions
of v1 at x∗

1
, and the constants A2, B2, x∗

2
, x̄∗

2
are determined by the continuity and

smooth-fit conditions of v2 at x∗
2

and x̄∗
2
:

A1(x∗
1
)m+

+ V̂1(x
∗
1
) = B2(x∗

1
)m−

+ V̂2(x
∗
1
)− g12 (5.102)

A1m
+(x∗

1
)m+−1 + V̂ ′

1
(x∗

1
) = B2m

−(x∗
1
)m−−1 + V̂ ′

2
(x∗

1
) (5.103)

A2(x∗
2
)m+

+ V̂2(x
∗
2
) = A1(x∗

2
)m+

+ V̂1(x
∗
2
)− g21 (5.104)

A2m
+(x∗

2
)m+−1 + V̂ ′

2
(x∗

2
) = A1m

+(x∗
2
)m+−1 + V̂ ′

1
(x∗

2
) (5.105)

A1(x̄∗
2
)m+

+ V̂1(x̄
∗
2
)− g21 = B2(x̄∗

2
)m−

+ V̂2(x̄
∗
2
) (5.106)

A1m
+(x̄∗

2
)m+−1 + V̂ ′

1
(x̄∗

2
) = B2m

−(x̄∗
2
)m−−1 + V̂ ′

2
(x̄∗

2
). (5.107)

In regime 1, it is optimal to switch to regime 2 whenever the state process X exceeds the
threshold x∗

1
, while when we are in regime 2, it is optimal to switch to regime 1 whenever

the state process lies between x∗
2

and x̄∗
2
.

(3) If βg12 < F (∞) and g21 ≤ 0 with −F (∞) < βg21 < −F (x̂), then

v1(x) =

{
Axm+

+ V̂1(x), x < x∗
1

v2(x)− g12 , x ≥ x∗
1

v2(x) =

{
v1(x)− g21 , 0 < x ≤ x̄∗

2

Bxm−
+ V̂2(x), x > x̄∗

2
,
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where the constants A and x∗
1

are determined by the continuity and smooth-fit conditions
of v1 at x∗

1
, and the constants B and x̄∗

2
are determined by the continuity and smooth-fit

conditions of v2 at x̄∗
2
:

A(x∗
1
)m+

+ V̂1(x
∗
1
) = B(x∗

1
)m−

+ V̂2(x
∗
1
)− g12

Am+(x∗
1
)m+−1 + V̂ ′

1
(x∗

1
) = Bm−(x∗

1
)m−−1 + V̂ ′

2
(x∗

1
)

A(x̄∗
2
)m+

+ V̂1(x̄
∗
2
)− g21 = B(x̄∗

2
)m−

+ V̂2(x̄
∗
2
)

Am+(x̄∗
2
)m+−1 + V̂ ′

1
(x̄∗

2
) = Bm−(x̄∗

2
)m−−1 + V̂ ′

2
(x̄∗

2
).

(4) If βg12 ≥ F (∞) and βg21 ≥ −F (x̂), then v1 = V̂1, v2 = V̂2. It is optimal never to
switch in both regimes 1 and 2.

(5) If βg12 ≥ F (∞) and 0 < βg21 < −F (x̂), then

v1(x) = V̂1(x)

v2(x) =

⎧
⎪⎨

⎪⎩

Axm+
+ V̂2(x), x < x∗

2

v1(x)− g21 , x∗
2
≤ x ≤ x̄∗

2

Bxm−
+ V̂2(x), x > x̄∗

2
,

where the constants A, B, x∗
2
, x̄∗

2
are determined by the continuity and smooth-fit condi-

tions of v2 at x∗
2

and x̄∗
2
:

A(x∗
2
)m+

+ V̂2(x
∗
2
) = V̂1(x

∗
2
)− g21

Am+(x∗
2
)m+−1 + V̂ ′

2
(x∗

2
) = V̂ ′

1
(x∗

2
)

V̂1(x̄
∗
2
)− g21 = B(x̄∗

2
)m−

+ V̂2(x̄
∗
2
)

V̂ ′
1
(x̄∗

2
) = Bm−(x̄∗

2
)m−−1 + V̂ ′

2
(x̄∗

2
).

In regime 1, it is optimal never to switch, while when we are in regime 2, it is optimal
to switch to regime 1 whenever the state process lies between x∗

2
and x̄∗

2
.

(6) If βg12 ≥ F (∞) and g21 ≤ 0 with −F (∞) < βg21 < −F (x̂), then

v1(x) = V̂1(x)

v2(x) =

{
v1(x)− g21 , 0 < x ≤ x̄∗

2

Bxm−
+ V̂2(x), x > x̄∗

2
,

where the constants B and x̄∗
2

are determined by the continuity and smooth-fit conditions
of v2 at x̄∗

2
:

V̂1(x̄
∗
2
)− g21 = B(x̄∗

2
)m−

+ V̂2(x̄
∗
2
)

V̂ ′
1
(x̄∗

2
) = Bm−(x̄∗

2
)m−−1 + V̂ ′

2
(x̄∗

2
).

In regime 1, it is optimal never to switch, while when we are in regime 2, it is optimal
to switch to regime 1 whenever the state process lies below x̄∗

2
.

(7) If βg12 ≥ F (∞) and βg21 ≤ −F (∞), then v1 = V̂1 and v2 = v1 − g12 . In regime 1, it
is optimal never to switch, while when we are in regime 2, it is always optimal to switch
to regime 1.



5.4 Bibliographical remarks 137

Proof. We prove the result only for case 2 since the other cases are dealt similarly and
are even simpler. Case 2 corresponds to the combination of cases 1 (ii) and 2 (ii) in
Proposition 5.3.3. We then have S1 = [x∗

1
,∞), which means that v1 = v2−g12 on [x∗

1
,∞)

and v1 is a solution to βv1−Lv1−f1 = 0 on (0, x∗
1
). Since 0 ≤ v1(0

+) <∞, v1 should have
the form expressed in (5.100). Moreover, S2 = [x∗

2
, x̄∗

2
], which means that v2 = v1 − g21

on [x∗
2
, x̄∗

2
], and v2 satisfies on C2 = (0, x∗

2
) ∪ (x̄∗

2
,∞): βv2−Lv2−f2 = 0. Recalling again

that 0 ≤ v2(0
+) <∞ and v2 satisfies a linear growth condition, we deduce that v2 has the

form expressed in (5.101). Finally, the constants A1, x∗
1
, which characterize completely

v1 , and the constants A2, B2, x∗
2
, x̄∗

2
, which characterize completely v2 , are determined

by the six relations (5.102), (5.103), (5.104), (5.105), (5.106) and (5.107) resulting from
the continuity and smooth-fit conditions of v1 at x∗

1
and v2 at x∗

2
and x̄∗

2
, and recalling

that x̄∗
2

< x∗
1
. �

5.4 Bibliographical remarks

The connection between optimal stopping problems and free boundary problems is clas-
sical (see e.g. the book by Bensoussan and Lions [BL82]), and is applied to American
options in Jaillet, Lamberton, Lapeyre [JLL90]. For an updated presentation, we refer to
the recent book by Peskir and Shiryaev [PeSh06]. The viscosity solutions approach for
optimal stopping was developed by Pham [Pha98] and Øksendal and Reikvam [OR98].
The explicit solution for the perpetual American options is already presented in McKean
[Mac65]. The example of the optimal selling of an asset is developed in the textbook by
Øksendal [Oks00], and the application to the valuation of natural resources is due to
Knudsen, Meister and Zervos [KMZ98]. We revisit their results by the viscosity solutions
method. Other explicit examples of optimal stopping problems in finance can be found
in Guo and Shepp [GS01].

Optimal switching problems and their connections with a system of variational in-
equalities were studied by Bensoussan and Lions [BL82], and [TY93]. The smooth-fit
property is proved in Pham [Pha07]. Applications to real options and firm’s invest-
ment under uncertainty were considered in Brekke and Oksendal [BO94], Duckworth
and Zervos [DZ01], and the solutions are obtained by a verification theorem approach.
The viscosity solutions approach for determining an explicit solution in the two-regime
case is due to Ly Vath and Pham [LP07], and generalizes the previous results. Some
extensions to the multi-regime case are studied in Pham, Ly Vath and Zhou [PLZ07].



6

Backward stochastic differential equations and

optimal control

6.1 Introduction

The theory of backward stochastic differential equations (BSDEs) was pioneered by Par-
doux and Peng [PaPe90]. It became now very popular, and is an important field of re-
search due to its connections with stochastic control, mathematical finance, and partial
differential equations. BSDEs provide a probabilistic representation of nonlinear PDEs,
which extends the famous Feynman-Kac formula for linear PDEs. As a consequence,
BSDEs can be used for designing numerical algorithms to nonlinear PDEs.

This chapter is an introduction to the theory of BSDEs and its applications to math-
ematical finance and stochastic optimization. In Section 6.2, we state general results
about existence and uniqueness of BSDEs, and useful comparison principles. Section 6.3
develops the connection between BSDEs and viscosity solutions to nonlinear PDEs. We
show in Section 6.4 how BSDEs may be used for solving stochastic optimal control. Sec-
tion 6.5 introduces the notion of reflected BSDEs, and shows how it is related to optimal
stopping problems. Finally, Section 6.6 gives some illustrative examples of applications
of BSDEs in finance.

6.2 General properties

6.2.1 Existence and uniqueness results

Let W = (Wt)0≤t≤T be a standard d-dimensional Brownian motion on a filtered proba-
bility space (Ω,F , F, P ) where F = (Ft)0≤t≤T is the natural filtration of W , and T is a
fixed finite horizon.

We denote by S
2(0, T ) the set of real-valued progressively measurable processes Y

such that

E
[

sup
0≤t≤T

|Yt|2
]

< ∞,

and by H
2(0, T )d the set of R

d-valued progressively measurable processes Z such that

E
[ ∫ T

0

|Zt|2dt
]

< ∞.
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We are given a pair (ξ, f), called the terminal condition and generator (or driver),
satisfying:

• (A) ξ ∈ L2(Ω,FT , P ; R)

• (B) f : Ω × [0, T ]× R× R
d → R s.t.:

- f(., t, y, z), written for simplicity f(t, y, z), is progressively measurable for all y, z

- f(t, 0, 0) ∈ H
2(0, T )

- f satisfies a uniform Lipschitz condition in (y, z), i.e. there exists a constant Cf

such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ Cf (|y1 − y2|+ |z1 − z2|) , ∀y1, y2, ∀z1, z2, dt⊗ dP a.e.

We consider the (unidimensional) backward stochastic differential equations (BSDE):

− dYt = f(t, Yt, Zt)dt− Zt.dWt, YT = ξ. (6.1)

Definition 6.2.1 A solution to the BSDE (6.1) is a pair (Y,Z) ∈ S
2(0, T )×H

2(0, T )d

satisfying

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Zs.dWs, 0 ≤ t ≤ T.

We prove an existence and uniqueness result for the above BSDE.

Theorem 6.2.1 Given a pair (ξ, f) satisfying (A) and (B), there exists a unique solution
(Y,Z) to the BSDE (6.1).

Proof. We give a proof based on a fixed point method. Let us consider the function Φ

on S
2(0, T )m × H

2(0, T )d, mapping (U, V ) ∈ S
2(0, T ) × H

2(0, T )d to (Y,Z) = Φ(U, V )
defined by

Yt = ξ +
∫ T

t

f(s, Us, Vs)ds−
∫ T

t

Zs.dWs. (6.2)

More precisely, the pair (Y,Z) is constructed as follows: we consider the martingale Mt

= E[ξ+
∫ T

0
f(s, Us, Vs)ds|Ft], which is square integrable under the assumptions on (ξ, f).

We may apply the Itô martingale representation theorem, which gives the existence and
uniqueness of Z ∈ H

2(0, T )d such that

Mt = M0 +
∫ t

0

Zs.dWs. (6.3)

We then define the process Y by

Yt = E
[
ξ +
∫ T

t

f(s, Us, Vs)ds
∣
∣
∣Ft

]
= Mt −

∫ t

0

f(s, Us, Vs)ds, 0 ≤ t ≤ T.

By using the representation (6.3) of M in the previous relation, and noting that YT =
ξ, we see that Y satisfies (6.2). Observe by Doob’s inequality that
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E
[

sup
0≤t≤T

∣
∣
∣

∫ T

t

Zs.dWs

∣
∣
∣
2]
≤ 4E

[ ∫ T

0

|Zs|2ds
]

< ∞.

Under the conditions on (ξ, f), we deduce that Y lies in S
2(0, T ). Hence, Φ is a well-

defined function from S
2(0, T )×H

2(0, T )d into itself. We then see that (Y,Z) is a solution
to the BSDE (6.1) if and only if it is a fixed point of Φ.

Let (U, V ), (U ′, V ′) ∈ S
2(0, T )×H

2(0, T )d and (Y,Z) = Φ(U, V ), (Y ′, Z ′) = Φ(U ′, V ′).
We set (Ū , V̄ ) = (U − U ′, V − V ′), (Ȳ , Z̄) = (Y − Y ′, Z − Z ′) and f̄t = f(t, Ut, Vt) −
f(t, U ′

t , V
′
t ). Take some β > 0 to be chosen later, and apply Itô’s formula to eβs|Ȳs|2

between s = 0 and s = T :

|Ȳ0|2 = −
∫ T

0

eβs
(
β|Ȳs|2 − 2Ȳs.f̄s

)
ds

−
∫ T

0

eβs|Z̄s|2ds− 2
∫ T

0

eβsȲ ′
s Z̄s.dWs. (6.4)

Observe that

E
[( ∫ T

0

e2βt|Yt|2|Zt|2dt
) 1

2
]
≤ eβT

2
E
[

sup
0≤t≤T

|Yt|2 +
∫ T

0

|Zt|2dt
]

< ∞,

which shows that the local martingale
∫ t

0
eβsȲ ′

s Z̄s.dWs is actually a uniformly integrable
martingale from the Burkholder-Davis-Gundy inequality. By taking the expectation in
(6.4), we get

E|Ȳ0|2 + E
[ ∫ T

0

eβs
(
β|Ȳs|2 + |Z̄s|2

)
ds
]

= 2E
[ ∫ T

0

eβsȲs.f̄sds
]

≤ 2CfE
[ ∫ T

0

eβs|Ȳs|(|Ūs|+ |V̄s|)ds
]

≤ 4C2
fE
[ ∫ T

0

eβs|Ȳs|2ds
]

+
1
2
E
[ ∫ T

0

eβs(|Ūs|2 + |V̄s|2)ds
]

Now, we choose β = 1 + 4C2
f , and obtain

E
[ ∫ T

0

eβs
(
|Ȳs|2 + |Z̄s|2

)
ds
]
≤ 1

2
E
[ ∫ T

0

eβs(|Ūs|2 + |V̄s|2)ds
]
.

This shows that Φ is a strict contraction on the Banach space S
2(0, T ) × H

2(0, T )d

endowed with the norm

‖(Y,Z)‖
β

=
(
E
[ ∫ T

0

eβs
(
|Ys|2 + |Zs|2

)
ds
]) 1

2
.

We conclude that Φ admits a unique fixed point, which is the solution to the BSDE (6.1).
�

6.2.2 Linear BSDE

We consider the particular case where the generator f is linear in y and z. The linear
BSDE is written in the form
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− dYt = (AtYt + Zt.Bt + Ct) dt− Zt.dWt, YT = ξ, (6.5)

where A, B are bounded progressively measurable processes valued in R and R
d, and C

is a process in H
2(0, T ). We can solve this BSDE explicitly.

Proposition 6.2.1 The unique solution (Y,Z) to the linear BSDE (6.5) is given by

ΓtYt = E
[
ΓT ξ +

∫ T

t

ΓsCsds
∣
∣
∣Ft

]
, (6.6)

where Γ is the adjoint (or dual) process, solution to the linear SDE

dΓt = Γt (Atdt + Bt.dWt) , Γ0 = 1.

Proof. By Itô’s formula to ΓtYt, we get

d(ΓtYt) = −ΓtCtdt + Γt(Zt + YtBt).dWt,

and so

ΓtYt +
∫ t

0

ΓsCsds = Y0 +
∫ t

0

Γs(Zs + YsBs).dWt. (6.7)

Since A and B are bounded, we see that E[supt |Γt|2] < ∞, and by denoting by b∞ the
upper-bound of B, we have

E
[( ∫ T

0

Γ 2
s |Zs + YsBs|2ds

) 1
2
]
≤ 1

2
E
[
sup

t
|Γt|2 + 2

∫ T

0

|Zt|2dt + 2b2
∞

∫ T

0

|Yt|2dt
]

< ∞.

From the Burkholder-Davis-Gundy inequality, this shows that the local martingale in
(6.7) is a uniformly integrable martingale. By taking the expectation, we obtain

ΓtYt +
∫ t

0

ΓsCsds = E
[
ΓT YT +

∫ T

0

ΓsCsds
∣
∣
∣Ft

]

= E
[
ΓT ξ +

∫ T

0

ΓsCsds
∣
∣
∣Ft

]
, (6.8)

which gives the expression (6.6) for Y . Finally, Z is given via the Itô martingale repre-
sentation (6.7) of the martingale in (6.8). �

6.2.3 Comparison principles

We state a very useful comparison principle for BSDEs.

Theorem 6.2.2 Let (ξ1, f1) and (ξ2, f2) be two pairs of terminal conditions and gen-
erators satisfying conditions (A) and (B), and let (Y 1, Z1), (Y 2, Z2) be the solutions to
their corresponding BSDEs. Suppose that:

• ξ1 ≤ ξ2 a.s.

• f1(t, Y 1
t , Z1

t ) ≤ f2(t, Y 1
t , Z1

t ) dt⊗ dP a.e.
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• f2(t, Y 1
t , Z1

t ) ∈ H
2(0, T ).

Then Y 1
t ≤ Y 2

t for all 0 ≤ t ≤ T , a.s.
Furthermore, if Y 2

0 ≤ Y 1
0 , then Y 1

t = Y 2
t , 0 ≤ t ≤ T . In particular, if P (ξ1 < ξ2) >

0 or f1(t, ., .) < f2(t, ., .) on a set of strictlly positive measure dt⊗ dP , then Y 1
0 < Y 2

0 .

Proof. To simplify the notation, we assume d = 1. We define Ȳ = Y 2−Y 1, Z̄ = Z2−Z1.
Then (Ȳ , Z̄) satisfies the linear BSDE

− dȲt =
(
Δy

t Ȳt + Δz
t Z̄t + f̄t

)
dt− Z̄tdWt, ȲT = ξ2 − ξ1. (6.9)

where

Δy
t =

f2(t, Y 2
t , Z2

t )− f2(t, Y 1
t , Z2

t )
Y 2

t − Y 1
t

1Y 2
t −Y 1

t �=0

Δz
t =

f2(t, Y 1
t , Z2

t )− f2(t, Y 1
t , Z1

t )
Z2

t − Z1
t

1Z2
t −Z1

t �=0

f̄t = f2(t, Y 1
t , Z1

t )− f1(t, Y 1
t , Z1

t ).

Since the generator f2 is uniformly Lipschitz in y and z, the processes Δy and Δz are
bounded. Moreover, f̄t is a process in H

2(0, T ). From 6.2.1, Ȳ is then given by

ΓtȲt = E
[
ΓT (ξ2 − ξ1) +

∫ T

t

Γsf̄sds
∣
∣
∣Ft

]
,

where the adjoint process Γ is strictly positive. We conclude from this expectation for-
mula for Y , and the positivity of ξ2 − ξ1 and f̄ . �

Remark 6.2.1 Notice that in the proof of Theorem 6.2.2, it is not necessary to sup-
pose regularity conditions on the generator f1. The uniform Lipschitz condition is only
required for f2.

Corollary 6.2.1 If the pair (ξ, f) satisfies ξ ≥ 0 a.s. and f(t, 0, 0) ≥ 0 dt ⊗ dP a.e.,
then Yt ≥ 0, 0 ≤ t ≤ T a.s. Moreover, if P [ξ > 0] > 0 or f(t, 0, 0) > 0 dt ⊗ dP a.e.,
then Y0 > 0.

Proof. This is an immediate consequence of the comparison theorem 6.2.2 with (ξ1, f1)
= (0, 0), whose solution is obviously (Y 1, Z1) = (0, 0). �

6.3 BSDE, PDE and nonlinear Feynman-Kac formulae

We recall the well-known result (see Section 1.3.3) that the solution to the linear parabolic
PDE

−∂v

∂t
− Lv − f(t, x) = 0, (t, x) ∈ [0, T )× R

n,

v(T, x) = g(x), x ∈ R
n,

has the probabilistic Feynman-Kac representation
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v(t, x) = E
[ ∫ T

t

f(s,Xt,x
s )ds + g(Xt,x

T )
]
, (6.10)

where {Xt,x
s , t ≤ s ≤ T} is the solution to the SDE

dXs = b(Xs)ds + σ(Xs)dWs, t ≤ s ≤ T, Xt = x,

and L is the second-order operator

Lv = b(x).Dxv +
1
2
tr(σ(x)σ′(x)D2

xxv).

In the previous chapter, we derived a generalization of this linear Feynman-Kac for-
mula for nonlinear PDEs in the form

− ∂v

∂t
− sup

a∈A

[
Lav + f(t, x, a)

]
= 0, (t, x) ∈ [0, T )× R

n, (6.11)

v(T, x) = g(x), x ∈ R
n, (6.12)

where, for any a ∈ A, subset of R
m,

Lav = b(x, a).Dxv +
1
2
tr(σ(x, a)σ′(x, a)D2

xxv).

The solution (in the viscosity sense) to (6.11)-(6.12) may be represented by means of a
stochastic control problem as

v(t, x) = sup
α∈A

E
[ ∫ T

t

f(s,Xt,x
s , αs)ds + g(Xt,x

T )
]
,

where A is the set of progressively measurable processes α valued in A, and for α ∈ A,
{Xt,x

s , t ≤ s ≤ T} is the controlled diffusion

dXs = b(Xs, αs)ds + σ(Xs, αs)dWs, t ≤ s ≤ T, Xt = x.

In this chapter, we study another extension of Feynman-Kac formula for semilinear
PDE in the form

− ∂v

∂t
− Lv − f(t, x, v, σ′Dxv) = 0, (t, x) ∈ [0, T )× R

n, (6.13)

v(T, x) = g(x), x ∈ R
n. (6.14)

We shall represent the solution to this PDE by means of the BSDE

− dYs = f(s,Xs, Ys, Zs)ds− Zs.dWs, t ≤ s ≤ T, YT = g(XT ), (6.15)

and the forward SDE valued in R
n:

dXs = b(Xs)ds + σ(Xs)dWs. (6.16)

The functions b and σ satisfy a Lipschitz condition on R
n; f is a continuous function

on [0, T ]×R
n ×R×R

d satisfying a linear growth condition in (x, y, z), and a Lipschitz
condition in (y, z), uniformly in (t, x). The continuous function g satisfies a linear growth
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condition. Hence, by a standard estimate on the second moment of X, we see that the
terminal condition and the generator of the BSDE (6.15) satisfy the conditions (A) and
(B) stated in Section 6.2. By the Markov property of the diffusion X, and uniqueness of
a solution (Y,Z,K) to the BSDE (6.15), we notice that Yt = v(t,Xt), 0 ≤ t ≤ T , where

v(t, x) := Y t,x
t (6.17)

is a deterministic function of (t, x) in [0, T ] × R
n, {Xt,x

s , t ≤ s ≤ T} is the solution to
(6.16) starting from x at t, and {(Y t,x

s , Zt,x
s ), t ≤ s ≤ T} is the solution to the BSDE

(6.15) with Xs = Xt,x
s , t ≤ s ≤ T . We call this framework a Markovian case for the

BSDE.
The next verification result for the PDE (6.13) is analogous to the verification theorem

for Hamilton-Jacobi-Bellman equations (6.11), and shows that a classical solution to the
semilinear PDE provides a solution to the BSDE.

Proposition 6.3.2 Let v ∈ C1,2([0, T ) × R
n) ∩ C0([0, T ] × R

n) be a classical solution
to (6.13)-(6.14), satisfying a linear growth condition and such that for some positive
constants C, q, |Dxv(t, x)| ≤ C(1+ |x|q) for all x ∈ R

n. Then, the pair (Y,Z) defined by

Yt = v(t,Xt), Zt = σ′(Xt)Dxv(t,Xt), 0 ≤ t ≤ T,

is the solution to the BSDE (6.15).

Proof. This is an immediate consequence of Itô’s formula applied to v(t,Xt), and noting
from the growth conditions on v, Dxv that (Y,Z) lie in S

2(0, T )×H
2(0, T )d. �

We now study the converse property by proving that the solution to the BSDE (6.15)
provides a solution to the PDE (6.13)-(6.14).

Theorem 6.3.3 The function v(t, x) = Y t,x
t in (6.17) is a continuous function on

[0, T ]× R
n, and is a viscosity solution to (6.13)-(6.14).

Proof. 1) For (t1, x1), (t2, x2) ∈ [0, T ] × R
n, with t1 ≤ t2, we write Xi

s = Xti,xi
s , i =

1, 2, with the convention that X2
s = x2 if t1 ≤ s ≤ t2, and (Y i

s , Zi
s) = (Y ti,xi

s , Zti,xi
s ), i =

1, 2, which is then well-defined for t1 ≤ s ≤ T . By applying Itô’s formula to |Y 1
s − Y 2

s |2
between s = t ∈ [t1, T ] and s = T , we get

|Y 1
t − Y 2

t |2 = |g(X1
T )− g(X2

T )|2 −
∫ T

t

|Z1
s − Z2

s |2ds

+ 2
∫ T

t

(Y 1
s − Y 2

s ).(f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 2
s , Z2

s ))ds

− 2
∫ T

t

(Y 1
s − Y 2

s )′(Z1
s − Z2

s )dWs.

As in the proof of Theorem 6.2.1, the local martingale
∫ s

t
(Y 1

u − Y 2
u )′(Z1

u − Z2
u)dWu,

t ≤ s ≤ T , is actually uniformly integrable, and so by taking the expectation in the
above relation, we derive
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E
[
|Y 1

t − Y 2
t |2
]

+ E
[ ∫ T

t

|Z1
s − Z2

s |2ds
]

= E
[
|g(X1

T )− g(X2
T )|2
]

+ 2 E
[ ∫ T

t

(Y 1
s − Y 2

s ).(f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 2
s , Z2

s ))ds
]

≤ E
[
|g(X1

T )− g(X2
T )|2
]

+ 2 E
[ ∫ T

t

|Y 1
s − Y 2

s | |f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 1
s , Z1

s )|ds
]

+ 2CfE
[ ∫ T

t

|Y 1
s − Y 2

s |
(
|Y 1

s − Y 2
s |+ |Z1

s − Z2
s |
)
ds
]

≤ E
[
|g(X1

T )− g(X2
T )|2
]

+ E
[ ∫ T

t

|f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 1
s , Z1

s )|2ds
]

+ (1 + 4C2
f )E
[ ∫ T

t

|Y 1
s − Y 2

s |2ds +
1
2
E

∫ T

t

|Z1
s − Z2

s |2ds
]
,

where Cf is the uniform Lipschitz constant of f with respect to y and z. This yields

E
[
|Y 1

t − Y 2
t |2
]
≤ E

[
|g(X1

T )− g(X2
T )|2
]

+ E
[ ∫ T

t

|f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 1
s , Z1

s )|2ds
]

+ (1 + 4C2
f )E
[ ∫ T

t

|Y 1
s − Y 2

s |2ds
]

and so, by Gronwall’s lemma

E
[
|Y 1

t − Y 2
t |2
]
≤ C

{
E
[
|g(X1

T )− g(X2
T )|2
]

+ E
[ ∫ T

t

|f(s,X1
s , Y 1

s , Z1
s )− f(s,X2

s , Y 1
s , Z1

s )|2ds
]
}

.

This last inequality, combined with continuity of f and g in x, continuity of Xt,x in
(t, x), shows the mean-square continuity of {Y t,x

s , x ∈ R
n, 0 ≤ t ≤ s ≤ T}, and so the

continuity of (t, x) → v(t, x) = Y t,x
t . The terminal condition (6.14) is trivially satisfied.

2) We next show that v(t, x) = Y t,x
t is a viscosity solution to (6.13). We check the viscosity

subsolution property, the viscosity supersolution property is then proved similarly. Let
ϕ be a smooth test function and (t, x) ∈ [0, T )×R

n such that (t, x) is a local maximum
of v − ϕ with u(t, x) = ϕ(t, x). We argue by contradiction by assuming that

−∂ϕ

∂t
(t, x)− Lϕ(t, x)− f(t, x, v(t, x), (Dxϕ)′(t, x)σ(x)) > 0.

By continuity of f , ϕ and its derivatives, there exists h, ε > 0 such that for all t ≤ s ≤
t + h, |x− y| ≤ ε,

v(s, y) ≤ ϕ(s, y) (6.18)

−∂ϕ

∂t
(s, y)− Lϕ(s, y) − f(s, y, v(s, y), (Dxϕ)′(s, y)σ(y)) > 0. (6.19)
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Let τ = inf{s ≥ t : |Xt,x
s − x| ≥ ε} ∧ (t + h), and consider the pair

(Y 1
s , Z1

s ) = (Y t,x
s∧τ , 1[0,τ ](s)Zt,x

s ), t ≤ s ≤ t + h.

By construction, (Y 1
s , Z1

s ) solves the BSDE

−dY 1
s = 1[0,τ ](s)f(s,Xt,x

s , u(s,Xt,x
s ), Z1

s )ds− Z1
sdWs, t ≤ s ≤ t + h,

Y 1
t+h = u(τ, Xt,x

τ ).

On the other hand, the pair

(Y 2
s , Z2

s ) = (ϕ(s,Xt,x
s∧τ ), 1[0,τ ](s)Dxϕ(s,Xt,x

s )′σ(Xt,x
s )), t ≤ s ≤ t + h.

satisfies, by Itô’s formula, the BSDE

−dY 2
s = −1[0,τ ](s)(

∂ϕ

∂t
+ Lϕ)(s,Xt,x

s )− Z2
s dWs, t ≤ s ≤ t + h,

Y 1
t+h = ϕ(τ, Xt,x

τ ).

From the inequalities (6.18)-(6.19), and the strict comparison principle in Theorem 6.2.2,
we deduce Y 1

0 < Y 2
0 , i.e. u(t, x) < ϕ(t, x), a contradiction. �

6.4 Control and BSDE

In this section, we show how BSDEs may be used for dealing with stochastic control
problems.

6.4.1 Optimization of a family of BSDEs

Theorem 6.4.4 Let (ξ, f) and (ξα, fα), α ∈ A subset of progressively measurable pro-
cesses, be a family of the pair terminal condition-generator, and (Y,Z), (Y α, Zα) the
solutions to their associated BSDEs. Suppose that there exists α̂ ∈ A such that

f(t, Yt, Zt) = ess inf
α

fα(t, Yt, Zt) = f α̂(t, Yt, Zt), dt⊗ dP a.e.

ξ = ess inf
α

ξα = ξα̂.

Then,

Yt = ess inf
α

Y α
t = Y α̂

t , 0 ≤ t ≤ T, a.s.

Proof. From the comparison theorem 6.2.2, since ξ ≤ ξα and f(t, Yt, Zt) ≤ fα(t, Yt, Zt),
we have Yt ≤ Y α

t for all α, and so

Yt ≤ ess inf
α

Y α
t .

Moreover, if there exists α̂ such that ξ = ξα̂ and f(t, Yt, Zt) = f α̂(t, Yt, Zt), then (Y,Z)
and (Y α̂, Zα̂) are both solutions to the same BSDE with terminal condition-generator:
(ξα̂, f α̂). By uniqueness, we deduce that these solutions coincide, and so
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ess inf
α

Y α
t ≤ Y α̂

t = Yt ≤ ess inf
α

Y α
t ,

which ends the proof. �

By means of the above result, we show how the solution to a BSDE with concave
generator may be represented as the value function of a control problem.

Let f(t, y, z) be a generator, concave in (y, z) and (Y,Z) the solution to the BSDE
associated to the pair (ξ, f). We consider the Fenchel-Legendre transform of f

F (t, b, c) = sup
(y,z)∈R×Rd

[f(t, y, z)− yb− z.c] , (b, c) ∈ R× R
d. (6.20)

Since f is concave, we have the duality relation

f(t, y, z) = inf
(b,c)∈R×Rd

[F (t, b, c) + yb + z.c] , (y, z) ∈ R× R
d. (6.21)

We denote by A the set of bounded progressively measurable processes (β, γ), valued in
R× R

d such that

E
[ ∫ T

0

|F (t, βt, γt)|2dt
]

< ∞.

The boundedness condition on A means that for any (β, γ) ∈ A, there exists a constant
(dependent of (β, γ)) such that |βt| + |γt| ≤ C, dt ⊗ dP a.e. Let us consider the family
of linear generators

fβ,γ(t, y, z) = F (t, βt, γt) + yβt + z.γt, (β, γ) ∈ A.

Given (β, γ) ∈ A, we denote by (Y β,γ , Zβ,γ) the solution to the linear BSDE associated
to the pair (ξ, fβ,γ).

Theorem 6.4.5 Y is equal to the value function of the control problem

Yt = ess inf
β,γ∈A

Y β,γ
t , 0 ≤ t ≤ T, a.s. (6.22)

Y β,γ
t = EQγ

[ ∫ T

t

e
R s

t
βuduF (s, βs, γs)ds + e

R T
t

βuduξ
∣
∣
∣Ft

]
,

where Qγ is the probability measure with density process

dLt = Ltγt.dWt, L0 = 1.

Proof. (1) Observe from relation (6.21) that f(t, Yt, Zt) ≤ fβ,γ(t, Yt, Zt) for all (β, γ)
∈ A. Moreover, since F is convex with a linear growth condition, for each (t, ω, y, z),
the infimum in the relation (6.21) is attained at (b̂(t, y, z), ĉ(t, y, z)) belonging to the
subdifferential of −f , and so is bounded by the Lipschitz constant of f . By a measurable
selection theorem (see e.g. Appendix in Chapter III of Dellacherie and Meyer [DM75]),
since Y,Z are progressively measurable, we may find a pair of bounded progressively
measurable processes (β̂, γ̂) such that
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f(t, Yt, Zt) = f β̂,γ̂(t, Yt, Zt) = F (t, β̂t, γ̂t) + Ytβ̂t + Zt.γ̂t, 0 ≤ t ≤ T, a.s.

We then obtain the relation (6.22) by Theorem 6.4.4.

(2) Moreover, by Proposition 6.2.1, the solution Y β,γ to the linear BSDE associated to
the pair (ξ, fβ,γ) is explicitly written as

ΓtY
β,γ
t = E

[ ∫ T

t

ΓsF (s, βs, γs)ds + ΓT ξ
∣
∣
∣Ft

]
,

where Γ is the adjoint (dual) process given by the SDE:

dΓt = Γt (βtdt + γt.dWt) , Γ0 = 1.

We conclude by observing that Γt = e
R t
0 βuduLt, and using the Bayes formula. �

6.4.2 Stochastic maximum principle

In the previous chapter, we studied how to solve a stochastic control problem by the dy-
namic programming method. We present here an alternative approach, called Pontryagin
maximum principle, and based on optimality conditions for controls.

We consider the framework of a stochastic control problem on a finite horizon as
defined in Chapter 3: let X be a controlled diffusion on R

n governed by

dXs = b(Xs, αs)ds + σ(Xs, αs)dWs, (6.23)

where W is a d-dimensional standard Brownian motion, and α ∈ A, the control process,
is a progressively measurable valued in A. The gain functional to maximize is

J(α) = E
[ ∫ T

0

f(t,Xt, αt)dt + g(XT )
]
,

where f : [0, T ] × R
n × A → R is continuous in (t, x) for all a in A, g : R

n → R is a
concave C1 function, and f , g satisfy a quadratic growth condition in x.

We define the generalized Hamiltonian H : [0, T ]× R
n ×A× R

n × R
n×d → R by

H(t, x, a, y, z) = b(x, a).y + tr(σ′(x, a)z) + f(t, x, a), (6.24)

and we assume that H is differentiable in x with derivative denoted by DxH. We consider
for each α ∈ A, the BSDE, called the adjoint equation:

− dYt = DxH(t,Xt, αt, Yt, Zt)dt− ZtdWt, YT = Dxg(XT ). (6.25)

Theorem 6.4.6 Let α̂ ∈ A and X̂ the associated controlled diffusion. Suppose that there
exists a solution (Ŷ , Ẑ) to the associated BSDE (6.25) such that

H(t, X̂t, α̂t, Ŷt, Ẑt) = max
a∈A

H(t, X̂t, a, Ŷt, Ẑt), 0 ≤ t ≤ T, a.s. (6.26)

and

(x, a) → H(t, x, a, Ŷt, Ẑt) is a concave function, (6.27)

for all t ∈ [0, T ]. Then α̂ is an optimal control, i.e.

J(α̂) = sup
α∈A

J(α).
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Proof. For any α ∈ A, we write

J(α̂)− J(α) = E
[ ∫ T

0

f(t, X̂t, α̂t)− f(t,Xt, αt)dt + g(X̂T )− g(XT )
]
. (6.28)

By concavity of g and Itô’s formula, we have

E
[
g(X̂T )− g(XT )

]
≥ E

[
(X̂T −XT ).Dxg(X̂T )

]
= E

[
(X̂T −XT ).ŶT

]

= E
[ ∫ T

0

(X̂t −Xt).dŶt +
∫ T

0

Ŷt.(dX̂t − dXt) +
∫ T

0

tr
[
(σ(X̂t, α̂t)− σ(Xt, αt))′Ẑt

]
dt
]

= E
[ ∫ T

0

(X̂t −Xt).(−DxH(t, X̂t, α̂t, Ŷt, Ẑt))dt +
∫ T

0

Ŷt.(b(X̂t, α̂t)− b(Xt, αt))dt

+
∫ T

0

tr
[
(σ(X̂t, α̂t)− σ(Xt, αt))′Ẑt

]
dt
]
. (6.29)

Moreover, by definition of H, we have

E
[ ∫ T

0

f(t, X̂t, α̂t)− f(t,Xt, αt)dt
]

= E
[ ∫ T

0

H(t, X̂t, α̂t, Ŷt, Ẑt)−H(t,Xt, αt, Ŷt, Ẑt)dt

−
∫ T

0

(b(X̂t, α̂t)− b(Xt, αt)).Ŷt

−
∫ T

0

tr
[
(σ(X̂t, α̂t)− σ(Xt, αt))′Ẑt

]
dt
]
. (6.30)

By adding (6.29) and (6.30) into (6.28), we obtain

J(α̂)− J(α) ≥ E
[ ∫ T

0

H(t, X̂t, α̂t, Ŷt, Ẑt)−H(t,Xt, αt, Ŷt, Ẑt)dt

−
∫ T

0

(X̂t −Xt).DxH(t, X̂t, α̂t, Ŷt, Ẑt)dt
]
.

Under the conditions (6.26) and (6.27), the term between the bracket in the above relation
is nonpositive, which ends the proof. �

We shall illustrate in Section 6.6.2 how to use Theorem 6.4.6 for solving a control
problem in finance arising in mean-variance hedging.

We conclude this section by providing the connection between maximum principle and
dynamic programming. The value function of the stochastic control problem considered
above is defined by

v(t, x) = sup
α∈A

E
[ ∫ T

t

f(s,Xt,x
s , αs)ds + g(Xt,x

T )
]
, (6.31)

where {Xt,x
s , t ≤ s ≤ T} is the solution to (6.23) starting from x at t. Recall that the

associated Hamilton-Jacobi-Bellman equation is

− ∂v

∂t
− sup

a∈A

[
G(t, x, a, Dxv, D2

xv)
]

= 0, (6.32)
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where for (t, x, a, p, M) ∈ [0, T ]× R
n ×A× R

n × Sn,

G(t, x, a, p, M) = b(x, a).p +
1
2
tr(σσ′(x, a)M) + f(t, x, a). (6.33)

Theorem 6.4.7 Suppose that v ∈ C1,3([0, T )×R
n) ∩ C0([0, T ]×R

n), and there exists
an optimal control α̂ ∈ A to (6.31) with associated controlled diffusion X̂. Then

G(t, X̂t, α̂t, Dxv(t, X̂t), D2
xv(t, X̂t)) = max

a∈A
G(t, X̂t, a, Dxv(t, X̂t), D2

xv(t, X̂t)),(6.34)

and the pair

(Ŷt, Ẑt) = (Dxv(t, X̂t) , D2
xv(t, X̂t) σ(X̂t, α̂t)), (6.35)

is solution to the adjoint BSDE (6.25).

Proof. Since α̂ is an optimal control, we have

v(t, X̂t) = E
[ ∫ T

t

f(s, X̂s, α̂s)ds + g(X̂T )
∣
∣
∣Ft

]

= −
∫ t

0

f(s, X̂s, α̂s)ds + Mt, 0 ≤ t ≤ T, a.s. (6.36)

where M is the martingale Mt = E
[ ∫ T

0
f(s, X̂s, α̂s)ds + g(X̂T )

∣
∣
∣Ft

]
. By applying Itô’s

formula to v(t, X̂t), and identifying the terms in dt in relation (6.36), we get

− ∂v

∂t
(t, X̂t) − G(t, X̂t, α̂t, Dxv(t, X̂t), D2

xv(t, X̂t)) = 0. (6.37)

Since v is smooth, it satisfies the HJB equation (6.32), which yields (6.34).

From (6.32) and (6.37), we have

0 =
∂v

∂t
(t, X̂t) + G(t, X̂t, α̂t, Dxv(t, X̂t), D2

xv(t, X̂t))

≥ ∂v

∂t
(t, x) + G(t, x, α̂t, Dxv(t, x), D2

xv(t, x)), ∀x ∈ R
n.

Since v is C1,3, the optimality condition for the above relation implies

∂

∂x

(
∂v

∂t
(t, x) + G(t, x, α̂t, Dxv(t, x), D2

xv(t, x))
)∣
∣
∣
∣
x=X̂t

= 0.

By recalling the expressions (6.33) and (6.24) of G and H, the previous equality is written
as

∂2v

∂t∂x
(t, X̂t) + D2

xv(t, X̂t)b(X̂t, α̂t) +
1
2
tr(σσ′(X̂t, α̂t)D3

xv(t, X̂t))

+ DxH(t, X̂t, α̂t, Dxv(t, X̂t), D2
xv(t, X̂t) σ(X̂t, α̂t)) = 0. (6.38)

By applying Itô’s formula to Dxv(t, X̂t), and using (6.38), we then get
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−dDxv(t, X̂t) = −
[

∂2v

∂t∂x
(t, X̂t) + D2

xv(t, X̂t)b(X̂t, α̂t) +
1
2
tr(σσ′(X̂t, α̂t)D3

xv(t, X̂t))
]

dt

− D2
xv(t, X̂t) σ(X̂t, α̂t)dWt

= DxH(t, X̂t, α̂t, Dxv(t, X̂t), D2
xv(t, X̂t) σ(X̂t, α̂t)) dt

− D2
xv(t, X̂t) σ(X̂t, α̂t)dWt.

Moreover, since v(T, .) = g(.), we have

Dxv(T, X̂T ) = Dxg(X̂T ),

and this proves the result (6.35). �

6.5 Reflected BSDEs and optimal stopping problems

We consider a class of BSDEs where the solution Y is constrained to stay above a given
process, called obstacle. An increasing process is introduced for pushing the solution up-
wards, above the obstacle. This leads to the notion of reflected BSDE, which is formalized
as follows.

Let W = (Wt)0≤t≤T be a standard d-dimensional Brownian motion on a filtered
probability space (Ω,F , F, P ) where F = (Ft)0≤t≤T is the natural filtration of W , and
T is a fixed finite horizon. We are given a pair (ξ, f) satisfying conditions (A) and (B),
and in addition a continuous process (Lt)0≤t≤T , satisfying ξ ≥ LT and

(C) L ∈ S
2(0, T ), i.e. E[sup0≤t≤T |Lt|2] < ∞.

A solution to the reflected BSDE with terminal condition-generator (ξ, f) and obsta-
cle L is a triple (Y,Z,K) of progressively measurable processes valued in R × R

d × R+

such that Y ∈ S
2(0, T ), Z ∈ H

2(0, T )d, K is a continuous increasing process, K0 = 0,
and satisfying

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds + KT −Kt −
∫ T

t

Zs.dWs, 0 ≤ t ≤ T (6.39)

Yt ≥ Lt, 0 ≤ t ≤ T, (6.40)

∫ T

0

(Yt − Lt)dKt = 0. (6.41)

Remark 6.5.2 The condition (6.41) means that the push of the increasing process K is
minimal in the sense that it is active only when the constraint is saturated, i.e. when Yt

= Lt. There is another formulation of this minimality condition for defining a solution
to a reflected BSDE: we say that (Y,Z,K) is a minimal solution to the reflected BSDE,
if it satisfies (6.39)-(6.40), and for any other solution (Ỹ , Z̃, K̃) satisfying (6.39)-(6.40),
we have Yt ≤ Ỹt, 0 ≤ t ≤ T a.s. We shall discuss the equivalence of this formulation in
Remark 6.5.3.



6.5 Reflected BSDEs and optimal stopping problems 153

In the special case where the generator f does not depend on y, z, the notion of a
reflected BSDE is directly related to optimal stopping problems, as stated in the following
proposition.

Proposition 6.5.3 Suppose that f does not depend on y, z, and f ∈ H
2(0, T ). Then,

there exists a unique solution (Y,Z,K) to the reflected BSDE (6.39), (6.40) and (6.41),
and Y has the explicit optimal stopping time representation

Yt = ess sup
τ∈Tt,T

E
[ ∫ τ

t

f(s)ds + Lτ1τ<T + ξ1τ=T

∣
∣
∣Ft

]
, 0 ≤ t ≤ T. (6.42)

Proof. Let us consider the process Y defined by (6.42), and observe that Yt +
∫ t

0
f(s)ds

is the Snell envelope of the process

Ht =
∫ t

0

f(s)ds + Lt1t<T + ξ1t=T , 0 ≤ t ≤ T.

From the conditions (A), (B), and (C) on f , ξ and L, and since ξ ≥ LT , we notice
that the process H is continuous on [0, T ), with a positive jump at T , and satisfies
E[sup0≤t≤T |Ht|2] < ∞, in particular of class (DL). Hence, by Proposition 1.1.8, the
process Yt +

∫ t

0
f(s)ds is a continuous supermartingale dominating H, i.e. Yt ≥ Lt,

0 ≤ t ≤ T , and for any t ∈ [0, T ], the stopping time

τt = inf{s ≥ t : Yt = Lt} ∧ T,

is optimal, in the sense that

Yt +
∫ t

0

f(s)ds = E
[ ∫ τt

0

f(s)ds + Lτt1τt<T + ξ1τt=T

∣
∣
∣Ft

]
. (6.43)

On the other hand, by applying the Doob-Meyer decomposition to the continuous su-
permartingale St = Yt +

∫ t

0
f(s)ds of class (DL), we get the existence of a continuous

martingale M and an adapted continuous nondecreasing process K, K0 = 0 such that

Yt +
∫ t

0

f(s)ds = Mt −Kt, 0 ≤ t ≤ T. (6.44)

By observing that Yτt = Lτt1τt<T + ξ1τt=T , and from the optional sampling theorem for
the martingale M : Mt = E[Mτt |Ft], we deduce

Yt +
∫ t

0

f(s)ds = E
[ ∫ τt

0

f(s)ds + Lτt1τt<T + ξ1τt=T + Kτt −Kt

∣
∣
∣Ft

]
.

By comparing with (6.43), it follows that E[Kτt − Kt|Ft] = 0, and so Kτt = Kt, or
equivalently by definition of τt

∫ T

0

(Yt − Lt)dKt = 0.

Moreover, since H lies in S
2(0, T ), we easily see that Y also lies in S

2(0, T ). Then, in
the decomposition (6.44), the martingale M is square-integrable, and KT is also square-
integrable. By the Itô representation theorem, there exists Z ∈ H

2(0, T ) such that
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Mt = M0 +
∫ t

0

Zs.dWs, 0 ≤ t ≤ T.

Plugging into (6.44), and recalling that YT = ξ, we deduce that (Y,Z,K) solves (6.39),
(6.40) and (6.41).

It remains to check uniqueness. Let (Y,Z,K) and (Ȳ , Z̄, K̄) be two solutions of
(6.39), (6.40) and (6.41), and define ΔY = Y − Ȳ , ΔZ = Z − Z̄, ΔK = K − K̄.
Then, (ΔY, ΔZ, ΔK) satisfies

ΔYt = −
∫ T

t

ΔZs.dWs + ΔKT −ΔKt, 0 ≤ t ≤ T.

Moreover, by (6.40)-(6.41), we have for all t ∈ [0, T ]

∫ T

t

ΔYsdΔKs =
∫ T

t

(Ys − Ls + Ls − Ȳs)(dKs − dK̄s)

= −
∫ T

t

(Ys − Ls)dK̄s −
∫ T

t

(Ȳs − Ls)dKs ≤ 0. (6.45)

By Itô’s formula to |ΔYt|2, we then obtain

|ΔYt|2 +
∫ T

t

|ΔZs|2ds = 2
∫ T

t

ΔYsdΔKs − 2
∫ T

t

ΔYsΔZs.dWs

≤ −2
∫ T

t

ΔYsΔZs.dWs. (6.46)

From the integrability conditions ΔY ∈ S
2(0, T ), ΔZ ∈ H

2(0, T )d, and the Burkholder-
Davis-Gundy inequality, we observe that the local martingale

∫ t

0
ΔYsΔZs.dWs is uni-

formly integrable, thus a martingale. By taking the expectation in (6.46), we conclude
that

E
[
|ΔYt|2 +

∫ T

t

|ΔZs|2ds
]
≤ 0, 0 ≤ t ≤ T,

which proves that Y = Ȳ , Z = Z̄, and K = K̄. �

In the sequel, we consider the general case where f may depend on y, z. We shall
prove the existence of a solution to the reflected BSDE, and in the Markovian case, we
relate this solution to a variational inequality extending the free boundary problem for
optimal stopping problems.

6.5.1 Existence and approximation via penalization

In this section, we prove the existence and uniqueness of a solution to the reflected BSDE
(6.39), (6.40) and (6.41), based on approximation via penalization. For each n ∈ N, we
consider the BSDE

Y n
t = ξ +

∫ T

t

f(s, Y n
s , Zn

s )ds + n

∫ T

t

(Y s
n − Ls)−ds−

∫ T

t

Zn
s .dWs. (6.47)
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Notice that the generator fn(t, y, z) = f(t, y, z)+n(y−Lt)− satisfies condition (B). From
Theorem 6.2.1, there exists for each n, a unique solution (Y n, Zn) to the BSDE (6.47).
We define

Kn
t = n

∫ t

0

(Y s
n − Ls)−ds, 0 ≤ t ≤ T,

which is a continuous nondecreasing process, and is square integrable. Formally, the
solution Y n is penalized (by the factor n) once it falls below the obstacle L. The rest of
this section is devoted to the convergence of the sequence (Y n, Zn, Kn)n to the solution
to the reflected BSDE.

We first state a priori uniform estimates on the sequence (Y n, Zn, Kn)n.

Lemma 6.5.1 There exists a constant C such that

E
[

sup
0≤t≤T

|Y n
t |2 +

∫ T

0

|Zn
t |2dt + |Kn

T |2
]
≤ C, ∀n ∈ N.

Proof. By applying Itô’s formula to |Y n
t |2, we get

E
[
|Y n

t |2 +
∫ T

t

|Zn
s |2ds

]
= E[|ξ|2] + 2E

[ ∫ T

t

f(s, Y n
s , Zn

s )Y s
n ds
]

+ 2E
[ ∫ T

t

Y n
s dKn

s

]
.

Now, by definition of Kn, we have:
∫ T

t
Y n

s dKn
s ≤

∫ T

t
LsdKn

s ≤ sup0≤t≤T |Lt|(Kn
T −Kn

t ).
From the Lipschitz property of f in condition (B), and using the inequality 2ab ≤ 1

αa2 +
αb2 for any constant α > 0, we then obtain

E
[
|Y n

t |2 +
∫ T

t

|Zn
s |2ds

]

≤ E[|ξ|2] + 2E
[ ∫ T

t

(
f(s, 0, 0) + Cf (|Y n

s |+ |Zn
s |)Y s

n ds
]

+ 2E
[

sup
0≤t≤T

|Lt|(Kn
T −Kn

t )
]

≤ C
(
1 + E

[ ∫ T

t

|Y n
s |2ds

])
+

1
2
E
[ ∫ T

t

|Zn
s |2ds

]
+

1
α

E
[

sup
0≤t≤T

|Lt|2
]
+ αE|Kn

T −Kn
t |2,

and so

E
[
|Y n

t |2 +
1
2

∫ T

t

|Zn
s |2ds

]
≤ C

(
1 + E

[ ∫ T

t

|Y n
s |2ds

])
+ αE|Kn

T −Kn
t |2. (6.48)

Moreover, from the relation

Kn
T −Kn

t = Y n
t − ξ −

∫ T

t

f(s, Y n
s , Zn

s )ds +
∫ T

t

Zn
s .dWs,

and conditions (A) and (B) on ξ and f , there exists a constant C1 such that

E|Kn
T −Kn

t |2 ≤ C1

(
1 + E|Y n

t |2 + E
[ ∫ T

t

|Y n
s |2 + |Zn

s |2ds
])

.

By choosing α = 1/4C1, and plugging into (6.48), we get
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3
4
E
[
|Y n

t |2 +
1
4

∫ T

t

|Zn
s |2ds

]
≤ C

(
1 + E

[ ∫ T

t

|Y n
s |2ds

])
.

By Gronwall’s lemma, this implies

sup
0≤t≤T

E|Y n
t |2 + E

[ ∫ T

t

|Zn
s |2ds

]
+ E|Kn

T |2 ≤ C. (6.49)

Finally, by writing from (6.47) that

sup
0≤t≤T

|Y n
t |2 ≤ C

(
|ξ|2 +

∫ T

0

|f(s, Y n
s , Zn

s )|2ds + |Kn
T |2 + sup

0≤t≤T

∣
∣
∣

∫ T

0

Zs.dWs

∣
∣
∣
2)

,

we obtain the required result from the Burkholder-Davis-Gundy inequality, conditions
(A) and (B) on (ξ, f), and estimate (6.49). �

We next focus on the convergence of the sequence (Y n)n.

Lemma 6.5.2 The sequence (Y n)n converges increasingly to a process Y ∈ S
2(0, T ),

and the convergence also holds in H
2(0, T ), i.e.

lim
n→∞

E
[ ∫ T

0

|Y n
t − Yt|2dt

]
= 0. (6.50)

Furthermore, Yt ≥ Lt, 0 ≤ t ≤ T , a.s., and

lim
n→∞

E
[

sup
0≤t≤T

(Y n
t − Lt)−

]
= 0. (6.51)

Proof. Since the generator fn of the BSDE for Yn is nondecreasing in n: fn(t, y, z) ≤
fn+1(t, y, z), we deduce from the comparison principle (Theorem 6.2.2) that Y n

t ≤ Y n+1
t ,

0 ≤ t ≤ T a.s. Together with the uniform estimate for (Yn)n in S
2(0, T ) in Lemma 6.5.1,

this shows that the nondecreasing limit

Yt := lim
n→∞

Y n
t , 0 ≤ t ≤ T,

exists a.s., and this defines an adapted process Y ∈ S2. From the dominated convergence
theorem, we also get the convergence (6.50).

Notice that since the sequence Kn
T = n

∫ T

0
(Y n

t −Lt)−dt is bounded in L2(Ω,F , P ) by
Lemma 6.5.1, then E

[ ∫ T

0
(Yt−Lt)−dt

]
= 0, which implies that Yt ≥ Lt dt⊗ dP a.e. We

want to prove the stronger result Yt ≥ Lt, 0 ≤ t ≤ T , a.s., and so use another argument.
Let us consider the solution (Ỹ n, Z̃n) to the linear BSDE

Ỹ n
t = ξ +

∫ T

t

f(s, Y n
s , Zn

s )ds + n

∫ T

t

(Ls − Ỹ s
n )ds−

∫ T

t

Z̃n
s .dWs.

The generator f̃n(t, ỹ, z̃) = f(t, Y n
t , Zn

t )+n(Lt−ỹ) of this BSDE satisfies f̃n(t, Ỹ n
t , Z̃n

t ) ≤
fn(t, Ỹ n

t , Z̃n
t ), so that by the comparison principle (Theorem 6.2.2) Ỹ n

t ≤ Y n
t , 0 ≤ t ≤ T .

Moreover, by Proposition 6.2.1, the solution to this linear BSDE is explicitly given by

Ỹ n
τ = E

[
e−n(T−τ)ξ +

∫ T

τ

e−n(s−τ)(f(Y n
s , Zn

s ) + nLs)ds
∣
∣
∣Fτ

]
,
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for any stopping time τ valued in [0, T ]. It is not difficult (left to the reader) to check
that as n goes to infinity

Ỹ n
τ → ξ1τ=T + Lτ1τ<T ≥ Lτ in L2(Ω,F , P ).

Therefore Yτ ≥ Lτ a.s. From that and section theorem (see Theorem 1.1.1), we deduce
that Yt ≥ Lt, 0 ≤ t ≤ T , a.s. This implies (Y n

t − Lt)− ↓ 0, 0 ≤ t ≤ T a.s., and this
convergence is also uniform in t by Dini’s theorem: supt∈[0,T ](Y n

t −Lt)− ↓ 0 a.s. Finally,
we obtain the result (6.51) by the monotone convergence theorem. �

We can finally state the main result of this section.

Theorem 6.5.8 There exists a unique (Y,Z,K) solution to the reflected BSDE (6.39),
(6.40) and (6.41), and this triple (Y,Z,K) is the limit of the sequence (Y n, Zn, Zn)n in
S

2(0, T )×H
2(0, T )d × S

2(0, T ), i.e.

lim
n→∞

E
[

sup
0≤t≤T

|Y n
t − Yt|2 +

∫ T

0

|Zn
t − Zt|2dt + sup

0≤t≤T
|Kn

t −Kt|2
]

= 0. (6.52)

Proof. For any n, p ∈ N, we apply Itô’s formula to |Y n
t − Y p

t |2:

|Y n
t − Y p

t |2 +
∫ T

t

|Zn
s − Zp

s |2ds

= 2
∫ T

t

(
f(s, Y n

s , Zn
s )− f(s, Y p

s , Zp
s )
)
(Y n

s − Y p
s )ds− 2

∫ T

t

(Y n
s − Y p

s )(Zn
s − Zp

s ).dWs

+ 2
∫ T

t

(Y n
s − Y p

s )d(Kn
s −Kp

s )

≤ C

∫ T

t

|Y n
s − Y p

s |2ds +
1
2

∫ T

t

|Zn
s − Zp

s |2ds− 2
∫ T

t

(Y n
s − Y p

s )(Zn
s − Zp

s ).dWs

+ 2
∫ T

t

(Y n
s − Ls)−dKp

s + 2
∫ T

t

(Y p
s − Ls)−dKn

s , (6.53)

where we used the Lipschitz condition on f , the inequality 2ab ≤ αa2 + 1
αb2 (for suitable

choice of α > 0), and the definitions of Kn, Kp. By taking the expectation, this yields

E
[ ∫ T

t

|Zn
s − Zp

s |2ds
]
≤ CE

[ ∫ T

t

|Y n
s − Y p

s |2ds
]

+ 4E
[ ∫ T

t

(Y n
s − Ls)−dKp

s +
∫ T

t

(Y p
s − Ls)−dKn

s

]
.

From Lemma 6.5.1 and (6.51), we have

E
[ ∫ T

t

(Y n
s − Ls)−dKp

s +
∫ T

t

(Y p
s − Ls)−dKn

s

]
→ 0, as n, p →∞. (6.54)

We deduce with (6.50) that

E
[ ∫ T

t

|Y n
s − Y p

s |2ds +
∫ T

t

|Zn
s − Zp

s |2ds
]
→ 0, as n, p →∞. (6.55)
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Now, from (6.53) and the Burholder-Davis-Gundy inequality, we get

E
[

sup
0≤t≤T

|Y n
t − Y p

t |2
]
≤ CE

[ ∫ T

t

|Y n
s − Y p

s |2ds +
∫ T

t

|Zn
s − Zp

s |2ds
]

+ 2E
[ ∫ T

t

(Y n
s − Ls)−dKp

s +
∫ T

t

(Y p
s − Ls)−dKn

s

]

+ CE
[

sup
0≤t≤T

|Y n
s − Y p

s |
(∫ T

t

|Zn
s − Zp

s |2
) 1

2
]

≤ CE
[ ∫ T

t

|Y n
s − Y p

s |2ds +
∫ T

t

|Zn
s − Zp

s |2ds
]

+ 2E
[ ∫ T

t

(Y n
s − Ls)−dKp

s +
∫ T

t

(Y p
s − Ls)−dKn

s

]

+
1
2
E
[

sup
0≤t≤T

|Y n
t − Y p

t |2
]
+ CE

[ ∫ T

t

|Zn
s − Zp

s |2ds
]
,

where we used again the inequality 2ab ≤ αa2 + 1
αb2. Together with (6.54) and (6.55),

this proves that

E
[

sup
0≤t≤T

|Y n
t − Y p

t |2
]
→ 0, as n, p →∞. (6.56)

By writing from (6.47) that

Kn
t −Kp

t = Y n
0 − Y p

0 − (Y n
t − Y p

t )−
∫ t

0

(f(s, Y n
s , Zn

s )− f(s, Y p
s , Zp

s ))ds

+
∫ t

0

(Zn
s − Zp

s ).dWs,

we then obtain by the Lipschitz condition on f , (6.55) and (6.56) that

E
[

sup
0≤t≤T

|Kn
t −Kp

t |2
]
→ 0, as n, p →∞.

Consequently, (Zn, Kn)n is a Cauchy sequence in the Banach space H
2(0, T )d×S

2(0, T ),
and this gives the existence of a (Z, K) ∈ H

2(0, T )d × S
2(0, T ) such that

lim
n→∞

E
[ ∫ T

0

|Zn
t − Zt|2dt + sup

0≤t≤T
|Kn

t −Kt|2
]

= 0.

By (6.56), we also know that the convergence of the sequence (Y n) to the limit Y in
Lemma 6.5.2, holds in S

2(0, T ): E
[
sup0≤t≤T |Y n

t − Yt|2
]
→ 0. Notice that the limit K

of Kn in S
2(0, T ), inherits from Kn the nondecreasing and continuity path properties.

We can then pass to the (strong) limit in (6.47), and deduce that (Y,Z,K) solves (6.39)-
(6.40). Let us now check the condition (6.41). The convergence of (Y n, Kn) to (Y,K) in
S

2(0, T )×S
2(0, T ) implies by the Tchebyshev inequality that the convergence also holds

uniformly in t in probability. Then the measure dKn tends to dK weakly in probability,
and so

∫ T

0
(Y n

t −Lt)dKn
t →

∫ T

0
(Yt−Lt)dKt in probability as n goes to infinity. Moreover,

since Y satisfies (6.40), we have
∫ T

0
(Yt−Lt)dKt ≥ 0 a.s. On the other hand, by definition
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of Kn, we have
∫ T

0
(Yt − Lt)dKn

t ≤ 0. We conclude that
∫ T

0
(Yt − Lt)dKt = 0 a.s., and

this shows that (Y,Z,K) is a solution to the reflected BSDE (6.39)-(6.40)-(6.41).
We finally turn to uniqueness. Let (Y,Z,K) and (Ȳ , Z̄, K̄) be two solutions of (6.39),

(6.40) and (6.41), and define ΔY = Y − Ȳ , ΔZ = Z − Z̄, ΔK = K − K̄. Then,
(ΔY, ΔZ, ΔK) satisfies

ΔYt =
∫ T

t

(f(s, Ys, Zs)− f(s, Ȳs, Z̄s)ds−
∫ T

t

ΔZs.dWs + ΔKT −ΔKt, 0 ≤ t ≤ T.

By applying Itô’s formula to |ΔYt|2, and using similar computations as for |Y n
t − Y p

t |2
and recalling

∫ T

t
ΔYsdΔKs ≤ 0 (see (6.45)), we have

E
[
|ΔYt|2 +

1
2

∫ T

t

|ΔZs|2ds
]
≤ CE

[ ∫ T

t

|ΔYs|2ds
]
.

By Gronwall’s lemma, we conclude that ΔY = 0, ΔZ = 0 and so ΔK = 0. �

Remark 6.5.3 For any triple (Ỹ , Z̃, K̃) satisfying (6.39)-(6.40), and for (Y n, Zn) so-
lution to the penalized BSDE (6.47) one can prove by a comparison principle that Y n

t

≤ Ỹt, 0 ≤ t ≤ T a.s. By passing to the limit, this shows that Yt ≤ Ỹt, 0 ≤ t ≤ T a.s.
Therefore, the solution to the reflected BSDE (6.39), (6.40) and (6.41) is also a minimal
solution in the sense defined in Remark 6.5.2.

6.5.2 Connection with variational inequalities

We put our reflected BSDE in a Markovian framework in the sense that the terminal
condition, the generator and the obstacle are functions of a forward SDE. More precisely,
we are given a diffusion on R

n

dXs = b(Xs)ds + σ(Xs)dWs, (6.57)

with Lipschitz coefficents b and σ on R
n, and we consider the reflected BSDE

Yt = g(XT ) +
∫ T

t

f(s,Xs, Ys, Zs)ds + KT −Kt −
∫ T

t

Zs.dWs, 0 ≤ t ≤ T (6.58)

Yt ≥ h(Xt), 0 ≤ t ≤ T, (6.59)

∫ T

0

(Yt − h(Xt))dKt = 0, (6.60)

where f is a continuous function on [0, T ] × R
n × R × R

d, satisfying a linear growth
condition in (x, y, z), a Lipschitz condition in (y, z) uniformly in (t, x), g is a measurable
function on R

n with a linear growth condition, and h is a continuous function on R
n

with a linear growth condition, and g ≥ h.
By the Markov property of the diffusion X, and uniqueness of a solution to the

reflected BSDE, we see that Yt = v(t,Xt), 0 ≤ t ≤ T , where
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v(t, x) := Y t,x
t (6.61)

is a deterministic function of (t, x) ∈ [0, T ]×R
n, {Xt,x

s , t ≤ s ≤ T} denotes the solution
to (6.57) starting from x at t, and {(Y t,x

s , Zt,x
s , Kt,x

s ), t ≤ s ≤ T} is the solution to the
reflected BSDE (6.58), (6.59) and (6.60) with Xs = Xt,x

s , t ≤ s ≤ T . We shall relate this
reflected BSDE to the variational inequality

min
[
− ∂v

∂t
− Lv − f(., v, σ′Dxv) , v − h

]
= 0, on [0, T )× R

n (6.62)

v(T, .) = g on R
n, (6.63)

where L is the second-order operator associated to the diffusion X:

Lv = b(x).Dxv +
1
2
tr(σσ′(x)D2

xv).

The following result is the analog of Proposition 6.3.2 for BSDEs, and shows that a
classical solution to the variational inequality provides a solution to the reflected BSDE.

Proposition 6.5.4 Suppose that v ∈ C1,2([0, T )× R
n) ∩ C0([0, T ]× R

n) is a classical
solution to (6.62)-(6.63), satisfying a linear growth condition and such that for some
positive constants C, q > 0: |Dxv(t, x)| ≤ C(1 + |x|q), for all x ∈ R

n. Then, the triple
(Y,Z,K) defined by

Yt = v(t,Xt), Zt = σ′(Xt)Dxv(t,Xt), 0 ≤ t ≤ T,

Kt =
∫ t

0

(
− ∂v

∂t
(s,Xs)− Lv(s,Xs)− f(t,Xs, Ys, Zs)

)
ds,

is the solution to the reflected BSDE (6.58), (6.59) and (6.60).

Proof. By Itô’s formula applied to v(t,Xt) and from the terminal condition (6.63), we im-
mediately see that (Y,Z,K) satisfies the relation (6.58). Since v satisfies (6.62), the term
in the bracket of K is nonnegative, and so K is nondecreasing. The obstacle constraint
(6.59) is also clearly satisfied. Moreover, the minimality condition (6.60) follows from the
equality in (6.62). Finally, the integrability conditions on (Y,Z) ∈ S

2(0, T ) × H
2(0, T )d

are direct consequences of the growth conditions on v and Dxv. �

We now focus on the converse property, and prove that a solution to the reflected
BSDE provides a solution to the variational inequality.

Theorem 6.5.9 The function v(t, x) = Y t,x
t in (6.61) is continuous on [0, T ]×R

n, and
is a viscosity solution to (6.62)-(6.63).

Proof. The continuity of v is proved similarly as in Theorem 6.3.3, and the termi-
nal condition (6.63) is obviously satisfied from the terminal condition on the BSDE. In
order to prove the viscosity property to the variational inequality, we use the approx-
imation by the penalized BSDE. For any (t, x) ∈ [0, T ] × R

n, m ∈ N, we denote by
{(Y m,t,x, Zm,t,x), t ≤ s ≤ T} the solution to the penalized BSDE

Y m
t = g(XT ) +

∫ T

t

f(s,Xs, Y
m
s , Zm

s )ds + m

∫ T

t

(Y m
s − h(Xs))−ds−

∫ T

t

Zm
s .dWs,
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with Xs = Xt,x
s . From Theorem 6.3.3, we know that the function

vm(t, x) := Y m,t,x
t

is a continuous viscosity solution to the semilinear PDE

− ∂vm

∂t
− Lvm − f(., vm, σ′Dxvm)−m(vm − h)− = 0, on [0, T )× R

n (6.64)

vm(T, .) = g, on R
n. (6.65)

From the convergence result of the penalized BSDEs proved in the previous section, we
know that for any (t, x) ∈ [0, T ]×R

n, vm(t, x) converges increasingly to v(t, x) as m goes
to infinity. Since vm and v are continuous, this convergence is uniform on compacts of
[0, T ]× R

n by Dini’s theorem.
We prove the viscosity solution property of v by using the definition-characterization

by super(sub)-jets (see Lemma 4.4.5). We first show the viscosity supersolution property.
Let (t, x) ∈ [0, T )× R

n, and (q, p, M) ∈ P̄2,−v(t, x). From Lemma 6.1 in [CIL92], there
exist sequences

mj →∞, (tj , xj) → (t, x), (qj , pj , Mj) ∈ P2,−vmj (tj , xj),

such that

(vmj (tj , xj), qj , pj , Mj) → (v(t, x), q, p, M).

From the viscosity supersolution property of vmj to (6.64), we have

−qj − b(xj).pj −
1
2
tr(σσ′(xj)Mj)− f(tj , xj , vmj (tj , xj), σ′(xj)pj)

−mj(vmj (tj , xj)− h(xj))− ≥ 0,

and so

−qj − b(xj).pj −
1
2
tr(σσ′(xj)Mj)− f(tj , xj , vmj (tj , xj), σ′(xj)pj) ≥ 0.

By sending j to infinity, we then obtain

−q − b(x).p− 1
2
tr(σσ′(x)M)− f(t, x, v(t, x), σ′(x)p) ≥ 0.

Since we already know that v(t, x) ≥ h(x) by the obstacle condition on the reflected
BSDE, this proves that v is a viscosity supersolution to (6.62).

We conclude by showing the viscosity subsolution property. Let (t, x) ∈ [0, T )× R
n,

and (q, p, M) ∈ P̄2,+v(t, x) such that v(t, x) > h(x). As above, there exist sequences

mj →∞, (tj , xj) → (t, x), (qj , pj , Mj) ∈ P2,−vmj (tj , xj),

such that

(vmj (tj , xj), qj , pj , Mj) → (v(t, x), q, p, M).



162 6 Backward stochastic differential equations and optimal control

From the viscosity subsolution property of vmj to (6.64), we have

− qj − b(xj).pj −
1
2
tr(σσ′(xj)Mj)− f(tj , xj , vmj (tj , xj), σ′(xj)pj) (6.66)

−mj(vmj (tj , xj)− h(xj))− ≤ 0. (6.67)

Since v(t, x) > h(x), then for j large enough, vmj (tj , xj) > h(xj) and so (vmj (tj , xj) −
h(xj))− = 0. By sending j to infinity into (6.66), this yields

−q − b(x).p− 1
2
tr(σσ′(x)M)− f(t, x, v(t, x), σ′(x)p) ≤ 0,

which proves the required result. �

6.6 Applications

6.6.1 Exponential utility maximization with option payoff

We consider a financial market with one riskless asset of price S0 = 1 and one risky asset
of price process

dSt = St(btdt + σtdWt),

where W is a standard Brownian motion on (Ω,F , F = (Ft)t, P ) equipped with the
natural filtration F of W , b and σ are two bounded progressively measurable processes,
σt ≥ ε, for all t, a.s. with ε > 0. An agent, starting from a capital x, invests an amount
αt at any time t in the risky asset. His wealth process, controlled by α, is given by

Xx,α
t = x +

∫ t

0

αu
dSu

Su
= x +

∫ t

0

αu(budu + σudWu), 0 ≤ t ≤ T. (6.68)

We denote by A the set of progressively measurable processes α valued in R, such that
∫ T

0
|αt|2dt < ∞ a.s. and Xx,α is lower-bounded. The agent must provide at maturity T

an option payoff represented by a bounded random variable ξ FT -measurable. Given his
risk aversion characterized by an exponential utility

U(x) = − exp(−ηx), x ∈ R, η > 0, (6.69)

the objective of the agent is to solve the maximization problem:

v(x) = sup
α∈A

E[U(Xx,α
T − ξ)]. (6.70)

The approach adopted here for determining the value function v and the optimal
control α̂ is quite general, and is based on the following argument. We construct a family
of processes (Jα

t )0≤t≤T , α ∈ A, satisfying the properties:

(i) Jα
T = U(Xx,α

T − ξ) for all α ∈ A
(ii) Jα

0 is a constant independent of α ∈ A
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(iii) Jα is a supermartingale for all α ∈ A, and there exists α̂ ∈ A such that J α̂ is a
martingale.

Indeed, in this case, for such α̂, we have for any α ∈ A,

E[U(Xx,α
T − ξ)] = E[Jα

T ] ≤ Jα
0 = J α̂

0 = E[J α̂
T ] = E[U(Xx,α̂

T − ξ)] = v(x),

which proves that α̂ is an optimal control, and v(x) = J α̂
0 .

We construct such a family (Jα
t ) in the form

Jα
t = U(Xx,α

t − Yt), 0 ≤ t ≤ T, α ∈ A, (6.71)

with (Y,Z) solution to the BSDE

Yt = ξ +
∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (6.72)

where f is a generator to be determined. The conditions (i) and (ii) are clearly satisfied,
and the value function is then given by

v(x) = Jα
0 = U(x− Y0).

In order to satisfy the condition (iii), we shall exploit the particular structure of the
exponential utility function U . Indeed, by substituting (6.68), (6.72) into (6.71) with U

as in (6.69), we obtain

Jα
t = Mα

t Cα
t ,

where Mα is the (local) martingale given by

Mα
t = exp(−η(x− Y0)) exp

(
−
∫ t

0

η(αuσu − Zu)dWu −
1
2

∫ t

0

|η(αuσu − Zu)|2du
)
,

and

Cα
t = − exp

(∫ t

0

ρ(u, αu, Zu)du
)
,

with

ρ(t, a, z) = η
(η

2
|aσt − z|2 − abt − f(t, z)

)
.

We are then looking for a generator f such that the process (Cα
t ) is nonincreasing for all

α ∈ A, and constant for some α̂ ∈ A. In other words, the problem is reduced to findng
f such that

ρ(t, αt, Zt) ≥ 0, 0 ≤ t ≤ T, ∀α ∈ A (6.73)

and

ρ(t, α̂t, Zt) = 0, 0 ≤ t ≤ T. (6.74)
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By rewriting ρ in the form

1
η
ρ(t, a, z) =

η

2

∣
∣
∣
∣aσt − z − 1

η

bt

σt

∣
∣
∣
∣

2

− z
bt

σt
− 1

2η

∣
∣
∣
∣
bt

σt

∣
∣
∣
∣

2

− f(t, z),

we clearly see that conditions (6.73) and (6.74) will be satisfied with

f(t, z) = −z
bt

σt
− 1

2η

∣
∣
∣
∣
bt

σt

∣
∣
∣
∣

2

, (6.75)

and

α̂t =
1
σt

(

Zt +
1
η

bt

σt

)

, 0 ≤ t ≤ T. (6.76)

Theorem 6.6.10 The value function to problem (6.70) is equal to

v(x) = U(x− Y0) = − exp(−η(x− Y0)),

where (Y,Z) is the solution to the BSDE

− dYt = f(t, Zt)dt− ZtdWt, YT = ξ, (6.77)

with a generator f given by (6.75). Moreover, the optimal control α̂ is given by (6.76).

Proof. In view of the above arguments, it remains to check rigorously the condition
(iii) on Jα. Since b/σ and ξ are bounded, we first observe from (6.2.1) that the solution
(Y,Z) to the linear BSDE (6.77) is such that Y is bounded. Moreover, for all α ∈ A, the
process Mα is a local martingale, and there exists a sequence of stopping times (τn), τn

→ ∞ a.s., such that (Mα
t∧τn

) is a (positive) martingale. With the choice of f in (6.75),
the process Cα is nonincreasing, and thus (Jα

t∧τn
) = (Mα

t∧τn
Cα

t∧τn
) is a supermartingale.

Since Xx,α is lower-bounded and Y is bounded, the process Jα, given by (6.71), is also
lower-bounded. By Fatou’s lemma, we deduce that Jα is a supermartingale.

Finally, with the choice of α̂ in (6.76), we have

J α̂
t = M α̂

t = exp(−η(x− Y0)) exp
(
−
∫ t

0

bu

σu
dWu −

1
2

∫ t

0

∣
∣
∣
∣
bu

σu

∣
∣
∣
∣

2

du
)
.

Since b/σ is bounded, we conclude that J α̂ is a martingale. �

Remark 6.6.4 The financial model described in this example is a complete market
model: any contingent claim ξ, FT -measurable and bounded, is perfectly replicable by
means of a self-financed wealth process. In other words, there exists π ∈ A such that ξ

= X
xξ,π
T where xξ is the arbitrage price of ξ given by xξ = EQ[ξ], and Q is the unique

probability measure equivalent to P , which makes the price process S a (local) martingale
under Q, and called risk-neutral probability. The problem (6.70) may be then formulated
as

v(x) = sup
α∈A

E[U(Xx−xξ,α−π
T )].
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We are thus reduced to an exponential utility maximization problem without option
payoff. Hence, the optimal strategy (6.76) of the initial problem is decomposed into the
sum αt = πt + α0

t of the hedging strategy πt = Zt/σt for the contingent claim ξ and the
optimal strategy α0

t = 1
η bt/σ2

t for the exponential utility maximization without option.
In a more general context of incomplete market, i.e. when the option ξ is not perfectly

replicable, the same approach (i), (ii), (iii), can be applied, but leads to a more complex
generator f involving a quadratic term in z, see El Karoui and Rouge [ElkR00].

6.6.2 Mean-variance criterion for portfolio selection

We consider a Black-Scholes financial model. There is one riskless asset of price process

dS0
t = rS0

t dt,

and one stock of price process

dSt = St(bdt + σdWt),

with constants b > r and σ > 0. An agent invests at any time t an amount αt in the
stock, and his wealth process is governed by

dXt = αt
dSt

St
+ (Xt − αt)

dS0
t

S0
t

= [rXt + αt(b− r)] dt + σαtdWt, X0 = x. (6.78)

We denote by A the set of progressively measurable processes α valued in R, such that
E[
∫ T

0
|αt|2dt] < ∞.

The mean-variance criterion for portfolio selection consists in minimizing the variance
of the wealth under the constraint that its expectation is equal to a given constant:

V (m) = inf
α∈A

{Var(XT ) : E(XT ) = m} , m ∈ R. (6.79)

We shall see in Proposition 6.6.5, by the Lagrangian method, that this problem is reduced
to the resolution of an auxiliary control problem

Ṽ (λ) = inf
α∈A

E[XT − λ]2, λ ∈ R. (6.80)

We shall solve problem (6.80) by the stochastic maximum principle described in
Section 6.4.2. In this case, the Hamiltonian in (6.24) takes the form

H(x, a, y, z) = [rx + a(b− r)] y + σaz.

The adjoint BSDE (6.25) is written for any α ∈ A as

− dYt = rYtdt− ZtdWt, YT = 2(XT − λ). (6.81)

Let α̂ ∈ A a candidate for the optimal control, and X̂, (Ŷ , Ẑ) the corresponding processes.
Then,
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H(x, a, Ŷt, Ẑt) = rxŶt + a
[
(b− r)Ŷt + σẐt

]
.

Since this expression is linear in a, we see that conditions (6.26) and (6.27) will be
satisfied iff

(b− r)Ŷt + σẐt = 0, 0 ≤ t ≤ T, a.s. (6.82)

We are looking for the (Ŷ , Ẑ) solution to (6.81) in the form

Ŷt = ϕ(t)X̂t + ψ(t), (6.83)

for some deterministic C1 functions ϕ and ψ. By substituting in (6.81), and using ex-
pression (6.78), we see that ϕ, ψ and α̂ should satisfy

ϕ′(t)X̂t + ϕ(t)(rX̂t + α̂t(b− r)) + ψ′(t) = −r(ϕ(t)X̂t + ψ(t)), (6.84)

ϕ(t)σα̂t = Ẑt, (6.85)

together with the terminal conditions

ϕ(T ) = 2, ψ(T ) = −2λ. (6.86)

By using relations (6.82), (6.83) and (6.85), we obtain the expression of α̂:

α̂t =
(r − b)Ŷt

σ2ϕ(t)
=

(r − b)(ϕ(t)X̂t + ψ(t))
σ2ϕ(t)

. (6.87)

On the other hand, from (6.84), we have

α̂t =
(ϕ′(t) + 2rϕ(t))X̂t + ψ′(t) + rψ(t)

(r − b)ϕ(t)
. (6.88)

By comparing with (6.87), we get the ordinary differential equations satisfied by ϕ and
ψ:

ϕ′(t) +
(
2r − (b− r)2

σ2

)
ϕ(t) = 0, ϕ(T ) = 2 (6.89)

ψ′(t) +
(
r − (b− r)2

σ2

)
ψ(t) = 0, ϕ(T ) = −2λ, (6.90)

whose explicit solutions are (only ψ = ψλ depends on λ)

ϕ(t) = 2 exp
[(

2r − (b− r)2

σ2

)
(T − t)

]
, (6.91)

ψλ(t) = λψ1(t) = −2λ exp
[(

r − (b− r)2

σ2

)
(T − t)

]
. (6.92)

With this choice of ϕ, ψλ, the processes (Ŷ , Ẑ) solve the adjoint BSDE (6.81), and the
conditions for the maximum principle in Theorem 6.4.6 are satisfied: the optimal control
is given by (6.87), which is written in the Markovian form as

α̂λ(t, x) =
(r − b)(ϕ(t)x + ψλ(t))

σ2ϕ(t)
. (6.93)



6.6 Applications 167

To compute the value function Ṽ (λ), we proceed as follows. For any α ∈ A, we apply
Itô’s formula to 1

2ϕ(t)X2
t + ψλ(t)Xt between 0 and T , by using the dynamics (6.78) of

X and the ODE (6.89)-(6.90) satisfied by ϕ and ψλ. By taking the expectation, we then
obtain

E [XT − λ]2 =
1
2
ϕ(0)x2 + ψλ(0)x + λ2

+ E
[ ∫ T

0

ϕ(t)σ2

2

(

αt −
(r − b)(ϕ(t)Xt + ψλ(t))

σ2ϕ(t)

)2

dt
]

− 1
2

∫ T

0

(
b− r

σ

)2
ψλ(t)2

ϕ(t)
dt.

This shows again that the optimal control is given by (6.87), and the value function is
equal to

Ṽ (λ) =
1
2
ϕ(0)x2 + ψλ(0)x + λ2 − 1

2

∫ T

0

(
b− r

σ

)2
ψλ(t)2

ϕ(t)
dt,

and so with the explicit expressions (6.91)-(6.92) of ϕ and ψλ

Ṽ (λ) = e−
(b−r)2

σ2 T (λ− erT x)2, λ ∈ R. (6.94)

We finally show how problems (6.79) and (6.80) are related.

Proposition 6.6.5 We have the conjugate relations

Ṽ (λ) = inf
m∈R

[
V (m) + (m− λ)2

]
, λ ∈ R, (6.95)

V (m) = sup
λ∈R

[
Ṽ (λ)− (m− λ)2

]
, m ∈ R. (6.96)

For any m in R, the optimal control of V (m) is equal to α̂λm given by (6.93) where λm

attains the maximum in (6.96), i.e.

λm =
m− exp

[(
r − (b−r)2

σ2

)
T
]
x

1− exp
[
− (b−r)2

σ2 T
] . (6.97)

Proof. Notice first that for all α ∈ A, λ ∈ R, we have

E[XT − λ]2 = Var(XT ) + (E(XT )− λ)2. (6.98)

Fix an arbitrary m ∈ R. By definition of V (m), for all ε > 0, one can find αε ∈ A with
controlled diffusion Xε, such that E(Xε

T ) = m and Var(Xε
T ) ≤ V (m) + ε. We deduce

with (6.98) that

E[Xε
T − λ]2 ≤ V (m) + (m− λ)2 + ε,

and so

Ṽ (λ) ≤ V (m) + (m− λ)2, ∀ m, λ ∈ R. (6.99)
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On the other hand, for λ ∈ R, let α̂λ ∈ A with controlled diffusion X̂λ, an optimal
control for Ṽ (λ). We set mλ = E(X̂λ

T ). From (6.98), we then get

Ṽ (λ) = Var(X̂λ
T ) + (mλ − λ)2

≥ V (mλ) + (mλ − λ)2.

This last inequality, combined with (6.99), proves (6.95):

Ṽ (λ) = inf
m∈R

[
V (m) + (m− λ)2

]

= V (mλ) + (mλ − λ)2,

and also that α̂λ is solution to V (mλ).
We easily check that the function V is convex in m. By writing the relation (6.95)

under the form (λ2− Ṽ (λ))/2 = supm[mλ− (V (m)+m2)/2], we see that the function λ

→ (λ2−Ṽ (λ))/2 is the Fenchel-Legendre transform of the convex function m→ (V (m)+
m2)/2. We then have the duality relation (V (m) + m2)/2 = supλ[mλ− (λ2 − Ṽ (λ))/2],
which gives (6.96).

Finally, for any m ∈ R, let λm ∈ R be the argument maximum of V (m) in (6.96), which
is explicitly given by (6.97) from the expression (6.94) of Ṽ . Then, m is an argument
minimum of Ṽ (λm) in (6.95). Since the function m→ V (m)+(m−λ)2 is strictly convex,
this argument minimum is unique, and so m = mλm = E(X̂λm

T ). We thus obtain

V (m) = Ṽ (λm) + (m− λm)2

= E[X̂λm

T − λm]2 +
[
E(X̂λm

T )− λm

]2
= Var(X̂λm

T ),

which proves that α̂λm is a solution to V (m). �

Remark 6.6.5 There is a financial interpretation of the optimal portfolio strategy (6.93)
to problem (6.80). Indeed, observe that it is written also as

α̂
(λ)
t := α̂λ(t,Xt) = −b− r

σ2
(Xt −Rλ(t)), 0 ≤ t ≤ T,

where the (deterministic) process Rλ(t) = −ψλ(t)/ϕ(t) is explicitly determined by

dRλ(t) = rRλ(t)dt, Rλ(T ) = λ.

Rλ is the wealth process with zero investment in the stock, and replicates perfectly
the constant option payoff λ. On the other hand, consider the problem of an investor
with self-financed wealth process X̄t, who wants to minimize E[(X̄T )2] in this complete
market model. His optimal strategy is the Merton portfolio allocation for a quadratic
utility function U(x) = −x2, and given by

ᾱt = −b− r

σ2
X̄t, 0 ≤ t ≤ T. (6.100)

The optimal strategy for the problem (6.80) is then equal to the stragegy according to
(6.100) with wealth process Xt −Rλ(t), and could be directly derived with this remark.
We illustrated here in this simple example how one may apply the maximum principle
for solving the mean-variance criterion. Actually, this approach succeeds for dealing with
more complex cases of random coefficients on the price process in incomplete markets,
and leads to BSDE for ϕ(t) and ψλ(t), see e.g. Kohlmann and Zhou [KZ00].
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6.7 Bibliographical remarks
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extended in the papers by Kohlmann and Zhou [KZ00], Zhou and Li [ZL00], Kohlmann
and Tang [KT02], or Mania [Ma03].
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Martingale and convex duality methods

7.1 Introduction

In the optimization methods by dynamic programming or BSDEs studied in the previous
chapters, the optimization carried essentially on the control process α influencing the
state process. The basic idea of martingale methods is to reduce the initial problem to
an optimization problem on the state variable by means of a linear representation under
an expectation formula weighted by a variable, called a dual variable. Let us illustrate
this idea in a simple example. Consider a state process X, controlled by a progressively
measurable process α, with dynamics

dXt = αt(dt + dWt), 0 ≤ t ≤ T,

where W is a standard Brownian motion on (Ω,F , F, P ). We assume that F = (Ft)0≤t≤T

is the natural filtration of W . For x ∈ R+ and α control, we denote by Xx the solution
to the above SDE starting from x at t = 0 and A(x) the set of control processes α such
that Xx

t ≥ 0, 0 ≤ t ≤ T . Given a gain function, increasing and concave on R+, the
optimization problem is

v(x) = sup
α∈A(x)

E[g(Xx
T )], x ≥ 0. (7.1)

Let us introduce the probability measure Q ∼ P , which makes the process Bt = Wt

+ t a Brownian motion, by Girsanov’s theorem. From the Itô representation theorem
under Q, for any nonnegative random variable XT , FT -measurable, denoted by XT ∈
L0

+(Ω,FT , P ), and satisfying the constraint EQ[XT ] ≤ x, there exists α ∈ A(x) such
that

XT = EQ[XT ] +
∫ T

0

αtdBt ≤ Xx
T = x +

∫ T

0

αtdBt.

Conversely, for any α ∈ A(x), the process Xx = x +
∫

αdB is a nonnegative local
martingale under Q, thus a Q supermartingale, and so EQ[Xx

T ] ≤ x. We deduce that the
optimization problem (7.1) can be formulated equivalently in

v(x) = sup
XT ∈L0

+(Ω,FT ,P )

E[g(XT )] under the constraint E
[dQ

dP
XT

]
≤ x. (7.2)
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We are then reduced to a concave optimization problem in L0
+(Ω,FT , P ) subject to a

linear constraint represented by the dual variable dQ/dP . Thus, we may apply methods
in convex analysis for solving (7.2).

The key tool in the above dual resolution approach is the Itô martingale representa-
tion theorem, which is also the central argument in the perfect replication of contingent
claims in complete markets. The extension of this method to more general optimization
problems is based on a powerful theorem in stochastic analysis, called optional decompo-
sition for supermartingales. This theorem was initially motivated by the superreplication
problem in incomplete markets, and was originally stated in the context of Itô processes
by El Karoui and Quenez [ElkQ95]. It was then extended to the general framework of
semimartingale processes. This result is stated in Section 7.2.

When the initial problem is transformed into a convex optimization (primal) problem
under linear constraints, we can then use convex analysis methods. This leads to the
formulation and resolution of a dual problem arising from the Lagrangian method on the
constrained primal problem. In Section 7.3, we detail this dual resolution approach for
the utility maximization problem from terminal wealth. We mention that this martingale
duality approach allows us to obtain existence and characterization results in a general
semimartingale model for asset prices, while the dynamic programming and Hamilton-
Jacobi-Bellman approach requires us to consider a Markovian framework.

We study in Section 7.4 the mean-variance hedging problem in a general continuous
semimartingale model. This is formulated as a projection in L2 of a random variable into
a space of stochastic integrals. We solve this problem by combining the Kunita-Watanabe
projection theorem, duality methods and change of numéraire.

7.2 Dual representation for the superreplication cost

7.2.1 Formulation of the superreplication problem

Let S be a continuous R
n-valued semimartingale on a filtered probability space (Ω,F , F =

(Ft)0≤t≤T , P ) satisfying the usual conditions. For simplicity, we assume that F = FT

and F0 is trivial, i.e. F0 = {∅, Ω}. We fix a finite horizon T < ∞. S represents the
discounted price process of n risky assets. We denote by L(S) the set of progressively
measurable processes, integrable with respect to S. An element α ∈ L(S) represents a
portfolio strategy for an investor: αt is the number of shares invested in the assets at
time t. Thus, starting from some initial capital x ∈ R, the wealth process of the investor
following the portfolio strategy α is

x +
∫ t

0

αsdSs, 0 ≤ t ≤ T.

We say that a control α ∈ L(S) is admissible if
∫

αdS is lower-bounded, and we denote by
A(S) the set of such controls. This admissibility condition prevents doubling strategies
(see Harrison and Pliska [HP81]): indeed, otherwise, one could construct a sequence of
portfolio strategies (αn)n≥1 ∈ L(S) such that

∫ T

0
αn

t dSt → ∞ a.s., which represents a
way to earn money as much as desired at time T from a zero capital!
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We are given a contingent claim of maturity T characterized by an FT -measurable
nonnegative random variable XT . The superreplication problem of XT consists in finding
the minimal initial capital that allows us to dominate (superhedge) the contingent claim
at maturity. Mathematically, this problem is formulated as

v0 = inf
{

x ∈ R : ∃α ∈ A(S), x +
∫ T

0

αtdSt ≥ XT a.s.
}
. (7.3)

v0 is called superreplication cost of XT , and if v0 attains the infimum in the above rela-
tion, the control α ∈ A(S) such that v0 +

∫ T

0
αtdSt ≥ XT a.s., is called a superreplication

portfolio strategy.
We denote by L0

+(Ω,FT , P ) the space of FT -measurable nonnegative random vari-
ables. For any x ∈ R+, we define the set

C(x) =
{

XT ∈ L0
+(Ω,FT , P ) : ∃α ∈ A(S), x +

∫ T

0

αtdSt ≥ XT a.s.
}
. (7.4)

C(x) represents the set of contingent claims, which can be dominated from an initial
capital x and an admissible portfolio strategy.

The aim of this section is to provide a representation and characterization of v0 and
C(x) in terms of some dual space of probability measures.

7.2.2 Martingale probability measures and no arbitrage

We define

Me(S) =
{

Q ∼ P on (Ω,FT ) : S is a Q− local martingale
}

.

Me(S) is called set of martingale or risk-neutral probability measures.
In the rest of this chapter, we make the crucial standing assumption

Me(S) �= ∅. (7.5)

This assumption is equivalent to the no free lunch condition, which is a refinement of the
no arbitrage condition, and we refer to the seminal paper by Delbaen and Schachermayer
[DS94] for this result, known as the first fundamental theorem of asset pricing. Let us
simply mention here that for any Q ∈Me(S) and α ∈ A(S), the lower-bounded stochastic
integral

∫
αdS is a local martingale under Q, thus a Q-supermartingale by Fatou’s lemma.

We then get EQ[
∫ T

0
αtdSt] ≤ 0. In consequence, the condition (7.5) implies

� ∃ α ∈ A(S),
∫ T

0

αtdSt ≥ 0, a.s. and P

[∫ T

0

αtdSt > 0

]

> 0.

In other words, we cannot find an admissible portfolio strategy, which allows us, starting
from a null capital, to reach almost surely at T a nonnegative wealth, with a nonzero
probability of being strictly positive. This is the economical condition of no arbitrage.
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7.2.3 Optional decomposition theorem and dual representation for the
superreplication cost

The superreplication problem inspired a very nice result on stochastic analysis, which
we state in the general continuous semimartingale case. We shall give below a detailed
proof of this result, called the optional decomposition theorem for supermartingales, in
the context of Itô processes.

Theorem 7.2.1 Let X be a nonnegative càd-làg process, which is a supermartingale
under any probability measure Q ∈ Me(S) �= ∅. Then, there exists α ∈ L(S) and C an
adapted process, nondecreasing, C0 = 0, such that

X = X0 +
∫

αdS − C. (7.6)

Remark 7.2.1 We recall that in the Doob-Meyer decomposition theorem of a super-
martingale X as the difference of a local M and a nondecreasing process C: X = M −
C, the process C can be chosen predictable, and in this case the decomposition is unique.
The decomposition (7.6) is universal in the sense that the process M = X0 +

∫
αdS is

a local martingale under any Q ∈ Me(S). Moreover, the process C is in general not
predictable, but only optional, and it is not unique.

Let us now investigate how this theorem provides a dual representation for the su-
perreplication cost of a contingent claim XT ∈ L0

+(Ω,FT , P ). For this, we consider a
càd-làg modification of the process

Xt = ess sup
Q∈Me(S)

EQ
[
XT

∣
∣Ft

]
, 0 ≤ t ≤ T, (7.7)

(there is no ambiguity of notation at time T in the previous relation). We check that it is
a supermartingale under any Q ∈Me(S), and we then apply the optional decomposition
theorem.

Theorem 7.2.2 Let XT ∈ L0
+(Ω,FT , P ). Then, its superreplication cost is equal to

v0 = sup
Q∈Me(S)

EQ[XT ], (7.8)

Furthermore, if supQ∈Me(S) EQ[XT ] < ∞, i.e. v0 is finite, then v0 attains its infimum
in (7.3) with a superreplication portfolio strategy α given by the optional decomposition
(7.6) of the process X defined in (7.7).

Proof. Notice that for all α ∈ A(S) and Q ∈ Me(S), the lower-bounded stochastic
integral

∫
αdS is a local martingale under Q, and so a Q-supermartingale. It follows that

for all x ∈ R+ such that x +
∫ T

0
αtdSt ≥ XT a.s. with α ∈ A(S), EQ[XT ] ≤ x for all Q

∈ Me(S). This implies by definition of v0 that

sup
Q∈Me(S)

EQ[XT ] ≤ v0. (7.9)

If supQ∈Me(S) EQ[XT ] = ∞, the equality (7.8) is then obvious. We now suppose that
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sup
Q∈Me(S)

EQ[XT ] < ∞. (7.10)

1. Let us first show that the process (Xt)0≤t≤T defined in (7.7) is a supermartingale
under any Q ∈ Me(S), and that it admits a càd-làg modification. We consider the
family of adapted processes {ΓQ

t : 0 ≤ t ≤ T, Q ∈Me(S)} where

ΓQ
t = EQ [XT | Ft] , 0 ≤ t ≤ T, Q ∈Me(S),

is well-defined by (7.10).

(i) We check that for all t ∈ [0, T ], the set {ΓQ
t : Q ∈Me(S)} is stable by supremum,

i.e. for all Q1, Q2 ∈ Me(S), there exists Q ∈ Me(S) such that max(ΓQ1
t , ΓQ2

t ) = ΓQ
t .

For this, let us fix some element Q0 ∈ Me(S) with martingale density process Z0, and
define the process

Zs =

{
Z0

s , s ≤ t

Z0
t

(
Z1

s

Z1
t
1A + Z2

s

Z2
t
1Ω\A

)
, t < s ≤ T,

where Z1 (resp. Z2) is the martingale density process of Q1 (resp. Q2), A = {ω : ΓQ1
t (ω)

≥ ΓQ2
t (ω)} ∈ Ft. By using the law of iterated conditional expectations, it is easy to see

that Z inherits from Z0, Z1 and Z2 the martingale property under P . Moreover, since Z

is strictly positive with Z0 = 1, one can associate a probability measure Q ∼ P such that
Z is the martingale density process of Q. By definition of Me(S), and from the Bayes
formula, the processes Z1S and Z2S are local martingales under P , and so ZS inherits
this local martingale property. Thus, Q ∈ Me(S). Moreover, we have

ΓQ
t = EQ[XT |Ft] = E

[
ZT

Zt
XT

∣
∣
∣
∣Ft

]

= E

[
Z1

T

Z1
t

XT 1A +
Z2

T

Z2
t

XT 1Ω\A

∣
∣
∣
∣Ft

]

= 1AEQ1
[XT |Ft] + 1Ω\AEQ2

[XT |Ft]

= 1AΓQ1
t + 1Ω\AΓQ2

t = max(ΓQ1
t , ΓQ2

t ),

which is the stability property by supremum. It follows that for all t ∈ [0, T ], there exists
a sequence (Qt

k)k≥1 in Me(S) such that

Xt := ess sup
Q∈Me(S)

ΓQ
t = lim

k→∞
↑ Γ

Qt
k

t , (7.11)

(the symbol limk→∞ ↑ means that the limit is increasing, i.e. Γ
Qt

k
t ≤ Γ

Qt
k+1

t .)

(ii) Let us now prove the universal supermartingale property. Let Q0 be arbitrary in
Me(S) with martingale density process Z0, and fix 0 ≤ u < t ≤ T . Denote by (Qt

k)k≥1

the sequence given in (7.11) and (Zk,t)k≥1 the associated sequence of martingale density
processes. Observe that for all k ≥ 1, the process defined by

Z̃k,t
s =

{
Z0

s , s ≤ t

Z0
t

Zk,t
s

Zk,t
t

, t < s ≤ T,
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is a martingale (under P ), strictly positive with initial value Z̃k,t
0 = 1, and is thus

associated to a probability measure Q̃t
k ∼ P . Moreover, Z̃k,tS is a local martingale

under P , and so Q̃t
k ∈ Me(S). We then have for all k ≥ 1,

EQ0 [ΓQt
k

t |Fu] = E
[Z0

t

Z0
u

Γ
Qt

k
t

∣
∣
∣Fu

]
= E

[Z0
t

Z0
u

E
[Zk,t

T

Zk,t
t

XT

∣
∣
∣Ft

]∣
∣
∣Fu

]

= E
[Z0

t

Z0
u

Zk,t
T

Zk,t
t

XT

∣
∣
∣Fu

]
= E

[ Z̃k,t
T

Z̃k,t
u

XT

∣
∣
∣Fu

]

= EQ̃t
k [XT |Fu] = Γ

Q̃t
k

u .

From (7.11), we deduce by the monotone convergence theorem

EQ0 [Xt|Fu] = lim
k→∞

↑ EQ0 [ΓQk
t |Fu] = lim

k→∞
↑ Γ

Q̃t
k

u (7.12)

≤ ess sup
Q∈Me(S)

ΓQ
u = Xu,

which proves that X is a Q0-supermartingale.

(iii) It remains to check that X admits a càd-làg modification. We know from Theorem
1.1.8 that this is indeed the case when the function t → EQ0

[Xt] is right continuous.
From (7.12) with u = 0, we have:

EQ0
[Xt] = lim

k→∞
↑ EQ̃t

k [XT ], ∀t ∈ [0, T ]. (7.13)

Fix t in [0, T ] and let (tn)n≥1 be a sequence in [0, T ] converging decreasingly to t. Since
X is a Q0-supermatingale, we have

lim
n→∞

EQ0
[Xtn ] ≤ EQ0

[Xt].

On the other hand, for all ε > 0, there exists, by (7.13), k̂ = k̂(ε) ≥ 1 such that

EQ0
[Xt] ≤ EQ̃t

k̂ [XT ] + ε. (7.14)

Notice that Z̃ k̂,tn

T , the Radon-Nikodym density of Q̃tn

k̂
, converges a.s. to Z̃ k̂,t

T , the Radon-
Nikodym density of Q̃t

k̂
, as n goes to infinity. By Fatou’s lemma, we deduce with (7.14)

EQ0
[Xt] ≤ lim

n→∞
EQ̃tn

k̂ [XT ] + ε

≤ lim
n→∞

EQ0
[Xtn ] + ε

where the second inequality follows by (7.13). Since ε is arbitrary, this proves that
limn→∞ EQ0

[Xtn ] = EQ0
[Xt], i.e. the right continuity of (EQ0

[Xt])t∈[0,T ].

2. We can then apply the optional decomposition theorem to the càd-làg modification,
still denoted by X, and obtain the existence of a process α̂ ∈ L(S), and an adapted
nondecreasing process C, C0 = 0 such that

Xt = X0 +
∫ t

0

α̂sdSs − Ct, 0 ≤ t ≤ T, a.s. (7.15)
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Since X are C are nonnegative, this last relation shows that
∫

α̂dS is lower-bounded (by
−X0), and so α̂ ∈ A(S). Moreover, the relation (7.15) for t = T yields

XT ≤ X0 +
∫ T

0

α̂sdSs, a.s.

This proves by definition of v0 that

v0 ≤ X0 = sup
Q∈Me(S)

EQ[XT ].

We conclude the proof by recalling (7.9). �

By means of this dual representation of the superreplication cost, we get immediately
the following characterization of the sets C(x) introduced in (7.4).

Corollary 7.2.1 For all x ∈ R+, we have

C(x) =
{

XT ∈ L0
+(Ω,FT , P ) : sup

Q∈Me(S)

EQ[XT ] ≤ x
}

. (7.16)

In particular, C(x) is closed for the topology of the convergence in measure, i.e. if (Xn)n≥1

is a sequence in C(x) converging a.s. to X̂T , then X̂T ∈ C(x).

We have a useful characterization of C(x): to know if a contingent claim can be
dominated from an initial capital x, it is necessary and sufficient to test if its expectation
under any martingale probability measure is less or equal to x. Mathematically, this
characterization is the starting point for the resolution by duality methods of the utility
maximization problem from terminal wealth. Furthermore, from this characterization,
we get the closure property of the set C(x) in L0

+(Ω,FT , P ), which was not obvious from
its original (primal) definition (7.4).

7.2.4 Itô processes and Brownian filtration framework

We consider the following model for the asset price process S = (S1, . . . , Sn):

dSt = μtdt + σtdWt, 0 ≤ t ≤ T, (7.17)

where W is a d-dimensional Brownian motion on (Ω,F , F, P ) with F = (Ft)0≤t≤T , the
natural filtration of W , d ≥ n, μ, σ are progressively measurable processes valued res-
pectively in R

n and R
n×d, and such that

∫ T

0
|μt|dt +

∫ T

0
|σt|2dt < ∞ a.s. We assume

that for all t ∈ [0, T ], the matrix σt is of full rank equal to n. The square n× n matrix,
σtσ

′
t, is thus invertible, and we define the progressively measurable process valued in R

d:

λt = σ′
t(σtσ

′
t)

−1μt, 0 ≤ t ≤ T.

For simplicity, we assume (see Remark 7.2.4) that λ is bounded.

Remark 7.2.2 In the literature, in order to get a positive price process, we often con-
sider an Itô dynamics in the form
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dSt = diag(St) (μ̃tdt + σ̃tdWt) , 0 ≤ t ≤ T, (7.18)

where diag(St) denotes the diagonal n×n matrix with diagonal elements Si
t . The Black-

Scholes model and stochastic volatility models considered in the previous chapters are
particular examples of (7.18). Observe that the model (7.17) includes (7.18) with

μt = diag(St)μ̃t, σt = diag(St)σ̃t.

In a first step, we give in this framework an explicit description of the set of martingale
probability measures Me(S). Let us consider the set

K(σ) =
{
ν ∈ L2

loc(W ) : σν = 0, on [0, T ]×Ω, dt⊗ dP a.e.
}

.

For any ν ∈ K(σ), we define the exponential local martingale

Zν
t = exp

(
−
∫ t

0

(λu + νu).dWu −
1
2

∫ t

0

|λu + νu|2du
)
, 0 ≤ t ≤ T.

We also define the set

Km(σ) = {ν ∈ K(σ) : Zν is a martingale} .

Remark 7.2.3 We recall (see Chapter 1, Section 1.2.5) that a sufficient condition en-
suring that Zν is a martingale, i.e. E[Zν

T ] = 1, is the Novikov criterion:

E
[
exp
(1

2

∫ T

0

|λu|2 + |νu|2du
)]

< ∞. (7.19)

(Notice that since λ and ν are orthogonal, i.e. λ′ν = 0, then |λ + ν|2 = |λ|2 + |ν|2.)

For any ν ∈ Km(σ), one can define a probability measure P ν ∼ P with martingale
density process Zν . Moreover, by Girsanov’s theorem, the process

W ν = W +
∫

λ + ν dt

is a Brownian motion under P ν .

We then obtain the following explicit characterization of Me(S).

Proposition 7.2.1 We have

Me(S) = {P ν : ν ∈ Km(σ)} .

Proof. (i) Since by definition, σλ = μ, and for all ν ∈ Km(σ), σν = 0, it follows that
the dynamics of S under P ν is written as

dSt = σtdW ν
t . (7.20)

This shows that S is a local martingale under P ν , i.e. P ν ∈ Me(S).
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(ii) Conversely, let Q ∈ Me(S) and Z its martingale density process (which is strictly
positive). By the martingale Itô representation theorem, there exists ρ ∈ L2

loc(W ) such
that

Zt = exp
(
−
∫ t

0

ρu.dWu −
1
2

∫ t

0

|ρu|2du
)
, 0 ≤ t ≤ T.

Moreover, by Girsanov’s theorem, the process

Bρ = W +
∫

ρ dt

is a Brownian motion under Q. The dynamics of S under Q is then written as

dSt = (μt − σtρt)dt + σtdBρ
t , 0 ≤ t ≤ T.

Since S is a local martingale under Q, we should have

σρ = μ, on [0, T ]×Ω, dt⊗ dP a.e.

By writing ν = ρ − λ, and recalling that σλ = μ, this shows that σν = 0, and so ν ∈
K(σ). Moreover, Zν = Z (which is a martingale), thus ν ∈ Km(σ), and so Q = P ν . �

Remark 7.2.4 1. Part (i) of the previous proof shows that the inclusion {P ν : ν ∈
Km(σ)} ⊂Me(S) holds always true even without the assumption of Brownian filtration.

2. Since λ is assumed bounded, we see that the Novikov condition (7.19) is satisfied
for any bounded process ν. Actually, this holds also true once λ satisfies the Novikov
condition E

[
exp
(

1
2

∫ T

0
|λu|2du

)]
<∞. In particular, the null process ν = 0 lies in Km(σ).

The associated martingale probability measure P 0 is called minimal martingale measure
following the terminology of Föllmer and Schweizer.

3. The above remark also shows in particular that once λ satisfies the Novikov criterion,
Me(S) is nonempty, and contains P 0. In the case where Z0 is not a martingale, the
assumption Me(S) �= ∅ is not necessarily satisfied, and is equivalent to the existence of
some element ν in Km(σ).

We now give a proof of the optional decomposition theorem in the above framework.
Actually, we shall see that in the case of Itô processes and Brownian filtration, the process
C in the decomposition is predictable.

Theorem 7.2.3 Let X be a nonnegative càd-làg supermartingale under any martingale
measure P ν , ν ∈ Km(σ). Then, X admits a decomposition under the form

X = X0 +
∫

αdS − C

where α ∈ L(S) and C is a nondecreasing predictable process, C0 = 0.

Proof. From the Doob-Meyer decomposition theorem applied to the nonnegative super-
martingale X under P ν , for ν ∈ Km(σ), we get

Xt = X0 + Mν
t −Aν

t , 0 ≤ t ≤ T,
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where Mν is a local martingale under P ν , Mν
0 = 0, and Aν is a predictable nondecreas-

ing process, integrable (under P ν), with Aν
0 = 0. By the martingale Itô representation

theorem under P ν , there exists ψν ∈ L2
loc(W

ν) such that

Xt = X0 +
∫ t

0

ψν
u.dW ν

u −Aν
t , 0 ≤ t ≤ T. (7.21)

Fix some element in Me(S), say P 0 for simplicity, and compare the decompositions
(7.21) of X under P ν , and P 0. By observing that W ν = W 0 +

∫
νdt, and identifying the

(local) martingale and predictable finite variation parts, we obtain a.s.

ψν
t = ψ0

t , 0 ≤ t ≤ T, (7.22)

Aν
t −
∫ t

0

ν′
uψν

udu = A0
t , 0 ≤ t ≤ T, (7.23)

for all ν ∈ Km(σ).
Let us define the progressively measurable process α valued in R

n by

αt = (σtσ
′
t)

−1σtψ
0
t , 0 ≤ t ≤ T.

Observe that
∫ T

0
|α′

tμt|dt =
∫ T

0
|λ′

tψ
0
t |dt < ∞ and

∫ T

0
|α′

tσt|2dt =
∫ T

0
|ψ0

t |2dt < ∞ a.s.,
and so α ∈ L(S). By writing ηt = ψ0

t − σ′
tαt, we have

∫ T

0
|ηt|2dt < ∞ a.s., ση = 0, and

so η ∈ K(σ). Actually, we wrote the decomposition of ψ0 on Im(σ′) and its orthogonal
space K(σ):

ψ0
t = σ′

tαt + ηt, 0 ≤ t ≤ T. (7.24)

We now show that η = 0 by using (7.22)-(7.23). Let us consider, for any n ∈ N, the
process

ν̃t = −n
ηt

|ηt|
1ηt �=0, 0 ≤ t ≤ T.

Then ν̃ is bounded, and lies in Km(σ). From (7.22)-(7.23) for ν̃, and using also (7.24),
we get

Aν̃
T = A0

T − n

∫ T

0

|ηt|1ηt �=0dt.

Since EP 0
[A0

T ] < ∞ and EP 0
[Aν̃

T ] ≥ 0, we see by taking expectation under P 0, and
sending n to infinity into the above relation that

η = 0, on [0, T ]×Ω, dt⊗ dP 0 a.e.

By recalling the dynamics (7.20) of S under P 0, and writing C = A0, the decomposition
(7.21) of X under P 0 is written as

X = X0 +
∫

α′σdW 0 −A0 = X0 +
∫

αdS − C,

and the proof is complete. �
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7.3 Duality for the utility maximization problem

7.3.1 Formulation of the portfolio optimization problem

In the context of the financial market model described in Section 7.2.1, we formulate the
portfolio utility maximization problem. We are given a function U(x) for the utility of
an agent with wealth x, and we make the following standard assumptions on the utility
function. The function U : R → R ∪ {−∞} is continuous on its domain dom(U) =
{x ∈ R : U(x) > −∞}, differentiable, strictly increasing and strictly concave on the
interior of its domain. Without loss of generality, up to a constant to be added, we may
assume that U(∞) > 0. Such a function will be called a utility function. We consider
the case where

int(dom(U)) = (0,∞), (7.25)

which means that negative wealth is not allowed.

The utility maximization problem from terminal wealth is then formulated as

v(x) = sup
α∈A(S)

E
[
U
(
x +

∫ T

0

αtdSt

)]
, x > 0. (7.26)

Finally, in order to exclude trivial cases, we suppose that the value function is non-
degenerate:

v(x) < ∞, for some x > 0. (7.27)

Actually, from the increasing and concavity properties of U on its domain, which are
transmitted to v, this assumption is equivalent to

v(x) < ∞, for all x > 0. (7.28)

7.3.2 General existence result

In this section, we prove directly the existence of a solution to the utility maximization
problem (7.26).

First, observe that since U(x) = −∞ for x < 0, it suffices to consider in the supremum
of (7.26) the controls α ∈ A(S) leading to nonnegative wealth x +

∫ T

0
αtdSt ≥ 0 a.s.

Moreover, by the increasing property of U on (0,∞), it is clear that

v(x) = sup
XT ∈C(x)

E[U(XT )], x > 0, (7.29)

where the set C(x) was defined in (7.4). It is also clear that if X̂x
T ∈ C(x) is a solution

to (7.29), then there exists α̂ ∈ A(S) such that X̂x
T = x +

∫ T

0
α̂tdSt and α̂ is solution to

(7.26).
We show the existence of a solution to (7.29) by means of the dual characterization

of C(x), and actually from its closure property in L0
+(Ω,FT , P ), see Corollary 7.2.1. The
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idea is to consider a maximizing sequence (Xn)n≥1 for (7.29), to use a compactness result
in L0

+(Ω,FT , P ), which allows us, up to a convex combination, to obtain a limit a.s. X̂T

of Xn, and then to pass to the limit in E[U(Xn)]. The technical point is to get the
uniform integrability of the sequence U+(Xn). We then make the following assumption:

lim sup
x→∞

v(x)
x

≤ 0. (7.30)

This condition may seem a priori strange and hard to check in practice since it carries
on the value function to be determined. Actually, we shall see in the proof below that it
is precisely the necessary condition to obtain the convergence of E[U(Xn)] to E[U(X̂T )].
On the other hand, we shall give in the next section some practical conditions carrying
directly on the utility function U , which ensure (7.30).

Theorem 7.3.4 Let U be a utility function satisfying (7.25), (7.27) and (7.30). Then,
for all x > 0, there exists a unique solution X̂x

T to problem v(x) in (7.29).

Proof. Let x > 0 and (Xn)n≥1 be a maximizing sequence in C(x) for v(x) < ∞, i.e.

lim
n→∞

E[U(Xn)] = v(x) < ∞. (7.31)

From the compactness theorem A.3.5 in L0
+(Ω,FT , P ), we can find a convex combina-

tion X̂n ∈ conv(Xn, Xn+1, . . .), which is still in the convex set C(x) and such that X̂n

converges a.s. to some nonnegative random variable X̂x
T . Since C(x) is closed for the

convergence in measure, we have X̂x
T ∈ C(x). By concavity of U and from (7.31), we also

have

lim
n→∞

E[U(X̂n)] = v(x) < ∞. (7.32)

Denote by U+ and U− the positive and negative parts of U , and observe from (7.32)
that: supn E[U−(X̂n)] < ∞ and supn E[U+(X̂n)] < ∞. On the other hand, by Fatou’s
lemma, we have

lim inf
n→∞

E[U−(X̂n)] ≥ E[U−(X̂x
T )].

The optimality of X̂x
T , i.e. v(x) = E[U(X̂x

T )], is thus obtained iff we can show that

lim
n→∞

E[U+(X̂n)] = E[U+(X̂x
T )], (7.33)

i.e. the uniform integrability of the sequence (U+(Xn))n≥1.
If U(∞) ≤ 0, i.e. U+ ≡ 0, there is nothing to check. We recall that U(∞) > 0, and

we define

x0 = inf{x > 0 : U(x) ≥ 0} < ∞.

We argue by contradiction by assuming on the contrary that the sequence (U+(Xn))n

is not uniformly integrable. Then, there exists δ > 0 such that

lim
n→∞

E[U+(X̂n)] = E[U+(X̂x
T )] + 2δ.
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From Corollary A.1.1, and up to a subsequence still denoted y (X̂n)n≥1, we can find
disjoint sets (Bn)n≥1 of (Ω,FT ) such that

E[U+(X̂n)1Bn ] ≥ δ, ∀n ≥ 1.

We thus consider the sequence of random variables in L0
+(Ω,FT , P )

Hn = x0 +
n∑

k=1

X̂k1Bk .

For all Q ∈ Me(S), we have

EQ[Hn] ≤ x0 +
n∑

k=1

EQ[X̂k] ≤ x0 + nx,

since X̂k ∈ C(x). The characterization (7.16) implies that Hn ∈ C(x0 + nx). Moreover,
we get

E[U(Hn)] = E
[
U+
(
x0 +

n∑

k=1

X̂k1Bk

)]

≥ E
[
U+
( n∑

k=1

X̂k1Bk

)]
=

n∑

k=1

E[U+(X̂k)1Bk ] ≥ δn.

We deduce that

lim sup
x→∞

v(x)
x

≥ lim sup
n→∞

E[U(Hn)]
x0 + nx

≥ lim sup
n→∞

δn

x0 + nx
= δ > 0,

which is in contradiction with (7.30). Therefore, (7.33) holds true and X̂x
T is solution to

v(x). The uniqueness follows from the strict concavity of U on (0,∞). �

7.3.3 Resolution via the dual formulation

The optimization problem v(x) in (7.29) is formulated as a concave maximization prob-
lem on infinite dimension in L0

+(Ω,FT , P ) subject to an infinity of linear constraints
given by the dual characterization (7.16) of C(x): for XT ∈ L0

+(Ω,FT , P ), we have

XT ∈ C(x) ⇐⇒ E[ZT XT ] ≤ x, ∀ZT ∈Me. (7.34)

Here and in the sequel, we identify a probability measure Q� P with its Radon-Nikodym
density ZT = dQ/dP , and we write for simplicity Me = Me(S).

We can now apply to our context the duality methods for convex optimization prob-
lems developed in an abstract framework in the book by Ekeland and Temam [ET74].

We start by outlining the principle of this method in our context, and we then em-
phasize the arising difficulties and how to overcome them.

Let us introduce the convex conjugate (Fenchel-Legendre transform) of U :

Ũ(y) = sup
x>0

[U(x)− xy] , y > 0, (7.35)
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and define dom(Ũ) = {y > 0 : Ũ(y) < ∞}. We require the usual Inada conditions:

U ′(0) := lim
x↓0

U ′(x) = ∞, and U ′(∞) := lim
x→∞

U ′(x) = 0, (7.36)

and we define I : (0,∞)→ (0,∞) the inverse function of U ′ on (0,∞), which is strictly de-
creasing, and satisfies I(0) =∞, I(∞) = 0. We recall (see Proposition B.3.5 in Appendix
B) that under (7.36), int(dom(Ũ)) = (0,∞), Ũ is differentiable, decreasing, strictly con-
vex on (0,∞) with Ũ(0) = U(∞) and

Ũ ′ = −(U ′)−1 = − I.

Moreover, the supremum in (7.35) is attained at x = I(y) > 0, i.e.

Ũ(y) = U(I(y))− yI(y), y > 0, (7.37)

and we have the conjugate relation

U(x) = inf
y>0

[
Ũ(x) + xy

]
, x > 0,

with an infimum attained at y = U ′(x).

Typical examples of utility functions satisfying (7.36), and their conjugate functions
are

U(x) = lnx, Ũ(y) = − ln y − 1,

U(x) =
xp

p
, p < 1, p �= 0, Ũ(y) =

y−q

q
, q =

p

1− p
.

The starting point of the dual approach is the following. For all x > 0, y > 0, XT ∈
C(x), ZT ∈ Me, we have by definition of Ũ and the dual characterization (7.34) of C(x)

E[U(XT )] ≤ E[Ũ(yZT )] + E[yZT XT ]

≤ E[Ũ(yZT )] + xy. (7.38)

We then introduce the dual problem to v(x):

ṽ(y) = inf
ZT ∈Me

E[Ũ(yZT )], y > 0. (7.39)

The inequality (7.38) shows that for all x > 0

v(x) = sup
XT ∈C(x)

E[U(XT )]

≤ inf
y>0

[ṽ(y) + xy] = inf
y>0,ZT ∈Me

{
E[Ũ(yZT )] + xy

}
. (7.40)

The basic dual resolution method to the primal problem v(x) consists in the following
steps: show the existence of a (ŷ, ẐT ) (depending on x) solution to the dual problem
in the right-hand side of (7.40). Equivalently, we have to show the existence of ŷ > 0
attaining the minimum of ṽ(y) + xy, and to get the existence of a ẐT solution to the
dual problem ṽ(ŷ). We then set
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X̂x
T = I(ŷẐT ), i.e. U ′(X̂x

T ) = ŷẐT .

From the first-order optimality conditions on ŷ and ẐT , we shall see that this implies

X̂x
T ∈ C(x) and E[ẐT X̂x

T ] = x.

From (7.37), we then obtain

E[U(X̂x
T )] = E

[
Ũ
(
ŷẐT

)]
+ xŷ,

which proves, recalling (7.40), that

v(x) = E[U(X̂x
T )], i.e. X̂x

T is solution to v(x).

Moreover, the conjugate duality relations on the primal and dual value functions hold
true:

v(x) = inf
y>0

[ṽ(y) + xy] = ṽ(ŷ) + xŷ.

Before we mention the difficulties arising in this dual approach, we can already at
this step give some sufficient conditions (found in the literature on this topic) ensuring
that assumption (7.30) is valid, so that we get the existence of a solution to the primal
problem v(x).

Remark 7.3.5 Suppose that

ṽ(y) < ∞, ∀y > 0. (7.41)

Then, inequality (7.40) shows immediately that condition (7.30) holds true. The condi-
tion (7.41) is obviously satisfied once

∀y > 0, ∃ZT ∈Me : E
[
Ũ (yZT )

]
< ∞. (7.42)

A condition carrying directly on U and ensuring (7.42) is: there exists p ∈ (0, 1), positive
constants k1, k2 and ZT ∈ Me such that

U+(x) ≤ k1x
p + k2, ∀x > 0, (7.43)

E
[
Z−q

T

]
< ∞, where q =

p

1− p
> 0. (7.44)

Indeed, in this case, we have

Ũ(y) ≤ sup
x>0

[k1x
p − xy] + k2 = (k1p)

1
1−p

y−q

q
+ k2, ∀y > 0,

and (7.42) is clearly satisfied. We shall see later a weaker condition (actually a minimal
condition) on U ensuring (7.41).
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Let us turn back to the dual approach formally described above. The delicate point is
the existence of a solution to the dual problem ṽ(y), y > 0. The set Me on which the op-
timization is achieved is naturally included in L1(Ω,FT , P ), but there is no compactness
result in L1. The Komlos theorem states that from any bounded sequence (Zn)n in L1,
we can find a convex combination converging a.s. to a random variable Ẑ ∈ L1. However,
this convergence does not hold true in general in L1. In our problem, the maximizing
sequence of probability measures (Zn)n≥1 in Me (which satisfies E[Zn] = 1) for ṽ(y)
does not necessarily converge to a probability measure ẐT : in general, we have E[ẐT ] <

1. Actually, the space L0
+(Ω,FT , P ) in which the primal variables XT ∈ C(x) vary, is not

in suitable duality with L1(Ω,FT , P ). It is more natural to let the dual variables vary
also in L0

+(Ω,FT , P ).

We then “enlarge” in L0
+(Ω,FT , P ) the setMe as follows. We define D as the convex,

solid and closed envelope ofMe in L0
+(Ω,FT , P ), i.e. the smallest convex, solid and closed

subset in L0
+(Ω,FT , P ) containing Me. Recall that a subset S of L0

+(Ω,FT , P ) is said
to be solid if: Y ′

T ≤ YT a.s. and YT ∈ S implies that Y ′
T ∈ S. It is easy to see that D is

written as

D =
{

YT ∈ L0
+(Ω,FT , P ) : ∃ (Zn)n≥1 ∈Me, YT ≤ lim

n→∞
Zn
}

,

where the limit limn→∞ Zn should be interpreted in the almost sure convergence. From
(7.34) and Fatou’s lemma, we deduce that the set C(x) is also written in duality relation
with D: for XT ∈ L0

+(Ω,FT ),

XT ∈ C(x) ⇐⇒ E[YT XT ] ≤ x, ∀YT ∈ D. (7.45)

We then consider the dual problem

ṽ(y) = inf
YT ∈D

E[Ũ(yYT )], y > 0. (7.46)

We shall see below that this definition is consistent with the one in (7.39), i.e. the infimum
in ṽ(y) coincides when it is taken over Me or D.

We finally require the so-called condition of reasonable asymptotic elasticity:

AE(U) := lim sup
x→∞

xU ′(x)
U(x)

< 1. (7.47)

Typical examples (and counter-examples) of such utility functions are:

• U(x) = lnx, for which AE(U) = 0

• U(x) = xp

p , p < 1, p �= 0, for which AE(U) = p.

• U(x) = x
ln x , for x large enough, for which AE(U) = 1.

The following theorem states that under these assumptions on the utility function
U , the duality theory “works” well in this context. Actually, the condition of reasonable
asymptotic elasticity is minimal and cannot be relaxed in the sense that one can find
counter-examples of continuous price processes S for which the value function ṽ(y) is not
finite for all y and there does not exist a solution to the primal problem v(x), whenever
AE(U) = 1 (see Kramkov and Schachermayer [KS99]).
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Theorem 7.3.5 Let U be a utility function satisfying (7.25), (7.27), (7.36) and (7.47).
Then, the following assertions hold:

(1) The function v is finite, differentiable, strictly concave on (0,∞), and there exists a
unique solution X̂x

T ∈ C(x) to v(x) for all x > 0.

(2) The function ṽ is finite, differentiable, strictly convex on (0,∞), and there exists a
unique solution Ŷ y

T ∈ D to ṽ(y) for all y > 0.

(3) (i) For all x > 0, we have

X̂x
T = I(ŷŶT ), i.e. U ′(X̂x

T ) = ŷŶT , (7.48)

where ŶT ∈ D is the solution to ṽ(ŷ) with ŷ = v′(x) the unique solution to argminy>0[ṽ(y)+
xy], and satisfying

E[ŶT X̂x
T ] = x. (7.49)

(ii) We have the conjugate duality relations

v(x) = min
y>0

[ṽ(y) + xy], ∀x > 0,

ṽ(y) = max
x>0

[v(x)− xy], ∀y > 0.

(4) Furthermore, if there exists y > 0 such that infZT ∈Me E[Ũ(yZT )] < ∞, then

ṽ(y) = inf
YT ∈D

E[Ũ(yYT )] = inf
ZT ∈Me

E[Ũ(yZT )].

Remark 7.3.6 Denote by X̂x
t = x +

∫ t

0
α̂udSu, 0 ≤ t ≤ T , the optimal wealth process

associated to problem v(x). (there is no ambiguity of notation at time T since x +
∫ T

0
α̂udSu = X̂x

T = I(ŷŶT ) is indeed the solution in C(x) to v(x)). The process X̂x is
equal (up to a càd-làg modification) to

X̂x
t = ess sup

Q∈Me

EQ
[
I(ŷŶT )

∣
∣Ft

]
, 0 ≤ t ≤ T,

and the optimal control α̂ is determined from the optional decomposition of X̂x. In
the case where the dual problem ṽ(ŷ) admits a solution ẐT in Me with corresponding
probability measure Q̂, then the process X̂x is a nonegative local martingale under Q̂,
hence a Q̂-supermartingale such that EQ̂[X̂x

T ] = x by (7.49). It follows that X̂x is a
Q̂-martingale, which is thus written as

X̂x
t = EQ̂

[
I(ŷẐT )

∣
∣Ft

]
, 0 ≤ t ≤ T.

Remark 7.3.7 The assertion (4) can be proved without assuming that infZT ∈Me

E[Ũ(yZT )] < ∞ (see Proposition 3.2 in Kramkov and Schachermayer [KS99]). We give
here a simpler proof due to Bouchard and Mazliak [BM03].

The rest of this section is devoted to the proof of Theorem 7.3.5. We split the proof
in several propositions and lemmas where we put in evidence the required assumptions
for each step.
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Lemma 7.3.1 Let U be a utility function satisfying (7.25) and (7.36). Then, for all y

> 0, the family {Ũ−(yYT ), YT ∈ D} is uniformly integrable.

Proof. Since the function Ũ is strictly decreasing, we consider the case where Ũ(∞) =
−∞ (otherwise there is nothing to prove). Let φ be the inverse function of −Ũ : φ is a
strictly increasing function from (−Ũ(0),∞) into (0,∞). Recall that Ũ(0) = U(∞) > 0,
and so φ is well-defined on [0,∞). For all y > 0, we have

E[φ(Ũ−(yYT ))] ≤ E[φ(Ũ(yYT ))] + φ(0) = yE[YT ] + φ(0)

≤ y + φ(0), ∀YT ∈ D,

by (7.45) since XT = 1 ∈ C(1). Moreover, with a trivial change of variable and by the
l’Hôpital rule, we have from (7.36)

lim
x→∞

φ(x)
x

= lim
y→∞

y

−Ũ(y)
= lim

y→∞

1
I(y)

= ∞.

We conclude with the theorem of la Vallée-Poussin (see Theorem A.1.2). �

The next result shows that the conjugate duality relations between the value functions
of the primal and dual problem hold true.

Proposition 7.3.2 (Conjugate duality relations)
Let U be a utility function satisfying (7.25), (7.27) and (7.36). Then,

v(x) = inf
y>0

[ṽ(y) + xy], ∀x > 0, (7.50)

ṽ(y) = sup
x>0

[v(x)− xy], ∀y > 0. (7.51)

Proof. By the same argument as for (7.38), we have by using (7.45)

sup
x>0

[v(x)− xy] ≤ ṽ(y), ∀y > 0.

Fix some y > 0. To show (7.51), we can assume w.l.o.g. that supx>0[v(x) − xy] < ∞.
For all n > 0, let us consider the set

Bn =
{
XT ∈ L0

+(Ω,FT , P ) : XT ≤ n, a.s.
}

.

Bn is compact in L∞ for the weak topology σ(L∞, L1). It is clear that D is a convex,
closed subset of L1(Ω,FT , P ), and we may apply the min-max theorem B.1.2:

sup
XT ∈Bn

inf
YT ∈D

E[U(XT )− yXT YT ] = inf
YT ∈D

sup
XT ∈Bn

E[U(XT )− yXT YT ], (7.52)

for all n and y > 0. From the duality relation (7.45) between C(x) and D, we get

lim
n→∞

sup
XT ∈Bn

inf
YT ∈D

E[U(XT )− yXT YT ] = sup
x>0

sup
XT ∈C(x)

E[U(XT )− xy]

= sup
x>0

[v(x)− xy]. (7.53)

On the other hand, by defining
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Ũn(y) = sup
0<x≤n

[U(x)− xy], y > 0,

we have

inf
YT ∈D

sup
XT ∈Bn

E[U(XT )− yXT YT ] = inf
YT ∈D

E[Ũn(yYT )] := ṽn(y),

so that by (7.52) and (7.53)

lim
n→∞

ṽn(y) = sup
x>0

[v(x)− xy] < ∞.

Thus, to obtain (7.51), we must prove that

lim
n→∞

ṽn(y) = ṽ(y). (7.54)

Clearly, ṽn(y) is an increasing sequence and limn ṽn(y) ≤ ṽ(y). Let (Y n)n≥1 be a mini-
mizing sequence in D for limn ṽn(y):

lim
n→∞

E[Ũn(yY n
T )] = lim

n→∞
ṽn(y) < ∞.

From the compactness theorem A.3.5 in L0
+(Ω,FT , P ), we can find a convex combination

Ŷ n ∈ conv(Y n, Y n+1, . . .), which is still lying in the convex set D, and converges a.s. to
a nonnegative random variable YT . Since D is closed for the convergence in measure, we
have YT ∈ D. Notice that Ũn(y) = Ũ(y) for y ≥ I(n) (→ 0 as n goes to infinity). By
Fatou’s lemma, we first deduce that

lim inf
n→∞

E[Ũ+
n (yŶ n)] ≥ E[Ũ+(yYT )],

and on the other hand, by Lemma 7.3.1

lim
n→∞

E[Ũ−
n (yŶ n)] = E[Ũ−(yYT )].

From the convexity of Ũn, we then get

lim
n→∞

ṽn(y) = lim
n→∞

E[Ũn(yY n)] ≥ lim inf
n→∞

E[Ũn(yŶ n)]

≥ E[Ũ(yYT )] ≥ ṽ(y),

which proves (7.54), and so (7.51). Under the assumption (7.27), the relation (7.50) fol-
lows from the bipolarity property of the Fenchel-Legendre transform for convex functions
(see Proposition B.3.5 in appendix B). �

Remark 7.3.8 From the conjugate duality relation (7.50), we see that assumption
(7.27) on the finiteness of v is formulated equivalently in the finiteness of ṽ at some
point:

∃ ( or ∀) x > 0, v(x) < ∞⇐⇒ ∃y > 0, ṽ(y) < ∞, i.e. dom(ṽ) �= ∅,

where

dom(ṽ) = {y > 0 : ṽ(y) < ∞} .

We shall see below with the additional assumption (7.47) that dom(ṽ) = (0,∞) (and so
(7.30) holds true by Remark 7.3.5).
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Proposition 7.3.3 (Existence of a solution to the dual problem)
Let U be a utility function satisfying (7.25), (7.27) and (7.36). Then, for all y ∈ dom(ṽ),
there exists a unique solution Ŷ y

T ∈ D to ṽ(y). In particular, ṽ is strictly convex on
dom(ṽ).

Proof. For all y ∈ dom(ṽ), let (Y n)n≥1 be a minimizing sequence in D for ṽ(y) < ∞:

lim
n→∞

E[Ũ(yY n)] = ṽ(y).

By the compactness theorem A.3.5 in L0
+(Ω,FT , P ), we can find a convex combination

Ŷ n ∈ conv(Y n, Y n+1, . . .) lying in the convex set D, and converging a.s. to a random
variable Ŷ y

T . Since D is closed for the convergence in measure, we have Ŷ y
T ∈ D. As in

the proof of Proposition 7.3.2, by convexity of Ũ , Fatou’s lemma and Lemma 7.3.1, we
have

ṽ(y) = lim
n→∞

E[Ũ(yY n)] ≥ lim inf
n→∞

E[Ũ(yŶ n)]

≥ E[Ũ(yŶ y
T )] ≥ ṽ(y),

which proves that Ŷ y
T is a solution to ṽ(y). The uniqueness follows from the strict con-

vexity of Ũ , which implies also that ṽ is strictly convex on its domain dom(ṽ). �

The next result gives a useful characterization of the reasonable asymptotic elasticity
condition in terms of U or Ũ .

Lemma 7.3.2 Let U be a utility function satisfying (7.25), (7.36). Then, the following
assertions are equvalent:

(i) AE(U) < 1.

(ii) There exist x0 > 0 and γ ∈ ]0, 1[ such that

xU ′(x) < γU(x), ∀x ≥ x0.

(iii) There exist x0 > 0 and γ ∈ (0, 1) such that

U(λx) < λγU(x), ∀λ > 1, ∀x ≥ x0.

(iv) There exist y0 > 0 and γ ∈ (0, 1) such that

Ũ(μy) < μ− γ
1−γ Ũ(y), ∀0 < μ < 1, ∀0 < y ≤ y0.

(v) There exist y0 > 0, γ ∈ (0, 1) such that

−yŨ ′(y) <
γ

1− γ
Ũ(y), ∀0 < y ≤ y0.

Proof. The equivalence (i) ⇔ (ii) is trivial.

(ii) ⇔ (iii): Fix some x ≥ x0 and consider the functions F (λ) = U(λx) and G(λ) =
λγU(x) for λ ∈ [1,∞). F and G are differentiable and we have F (1) = G(1). Observe
that (iii) is equivalent to

F (λ) < G(λ), ∀λ > 1,



7.3 Duality for the utility maximization problem 191

for all x ≥ x0. Suppose that (ii) holds true. Then, F ′(1) < G′(1), and we deduce that
there exists ε > 0 such that for all λ ∈ (1, 1 + ε], F (λ) < G(λ). We now show that it is
indeed valid for all λ > 1. On the contrary, this would mean that

λ̂ := inf{λ > 1 : F (λ) = G(λ)} < ∞.

At this point λ̂, we should have F ′(λ̂) ≥ G′(λ̂). But, from (ii):

F ′(λ̂) = xU ′(λ̂x) <
γ

λ̂
U(λ̂x) =

γ

λ̂
F (λ̂) =

γ

λ̂
G(λ̂) = G′(λ̂),

which is the required contradiction. Conversely, suppose that (iii) holds true. Then,
F ′(1) ≤ G′(1) and we have

U ′(x) =
F ′(1)

x
≤ G′(1)

x
= γ

U(x)
x

,

which clearly implies (ii).

(iv) ⇔ (v): this equivalency is obtained similarly as for (ii) ⇔ (iii) by fixing 0 < y ≤ y0

and considering the functions F (μ) = Ũ(μy) and G(μ) = μ− γ
1−γ Ũ(y).

(ii) ⇔ (v): suppose (ii), and write y0 = U ′(x0). Then, for all 0 < y ≤ y0, we have I(y)
≥ I(y0) = x0, and so

Ũ(y) = U(I(y))− yI(y) >
1
γ

I(y)U ′(I(y))− yI(y) =
1− γ

γ
yI(y).

Since Ũ ′(y) = −I(y), this proves (v). Conversely, suppose (v), and write x0 = I(y0) =
−Ũ ′(y0). Then, for all x ≥ x0, we have U ′(x) ≤ U ′(x0) = y0, and so

U(x) = Ũ(U ′(x)) + xU ′(x) > −1− γ

γ
U ′(x)Ũ ′(U ′(x)) + xU ′(x) =

1
γ

xU ′(x),

which is exactly assertion (ii). �

Remark 7.3.9 1. The characterizations (iv) and (v) show that if AE(U) < 1, then
there exists y0 > 0 such that for all 0 < μ < 1

yI(μy) ≤ CŨ(y), 0 < y ≤ y0, (7.55)

where C is a positive constant depending on μ.

2. Notice that the characterization (ii) for AE(U) < 1 implies the growth condition
(7.43) on U mentioned in Remark 7.3.5.

The following result gives a characterization of the solution to the dual problem by
deriving the first-order optimality conditions.

Proposition 7.3.4 (Characterization of the solution to the dual problem)
Let U be a utility function satisfying (7.25), (7.27), (7.36) and (7.47). Then, ṽ is finite,
differentiable, strictly convex on (0,∞) with
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− ṽ′(y) = E
[
Ŷ y

T I(yŶ y
T )
]

= sup
YT ∈D

E
[
YT I(yŶ y

T )
]
, y > 0, (7.56)

and thus

I(yŶ y
T ) ∈ C(−ṽ′(y)), y > 0.

Proof. 1. We have seen in Remark 7.3.8 that assumption (7.27) is equivalent to dom(ṽ)
�= ∅, i.e. there exists y1 > 0 such that

ṽ(y) < ∞, ∀y ≥ y1, (7.57)

by the decreasing feature of Ũ , and so of ṽ. Since ṽ(y1) < ∞, there exists YT ∈ D such
that E[Ũ(y1YT )] < ∞. Since we also have Ũ(y1YT ) ≥ U(x0) − x0y1YT with E[YT ] ≤ 1
and x0 > 0 given, this proves that Ũ(y1YT ) ∈ L1(P ). Moreover, the characterization (iv)
of AE(U) < 1 in Lemma 7.3.2 shows that there exists y0 > 0 such that for all 0 < y <

y1

Ũ(yYT ) ≤ C(y)Ũ(y1YT )1y1YT ≤y0 + Ũ(yYT )1y1YT >y0

≤ C(y)
∣
∣
∣Ũ(y1YT )

∣
∣
∣+
∣
∣
∣
∣Ũ

(
y

y1
y0

)∣
∣
∣
∣ ,

for some positive constant C(y). This proves that ṽ(y) < ∞ for y < y1 and so dom(ṽ)
= (0,∞).

2. Fix y > 0. Then, for all δ > 0, we have by definition of ṽ:

ṽ(y + δ)− ṽ(y)
δ

≤ E
[ Ũ((y + δ)Ŷ y

T ))− Ũ(yŶ y
T )

δ

]

≤ E
[
Ŷ y

T Ũ ′((y + δ)Ŷ y
T ))
]
,

by convexity of Ũ . Since Ũ ′ = −I ≥ 0, we deduce by Fatou’s lemma and sending δ to
zero:

lim sup
δ↓0

ṽ(y + δ)− ṽ(y)
δ

≤ −E
[
Ŷ y

T I(yŶ y
T )
]
. (7.58)

Moreover, for any δ > 0 such that y − δ > 0, we have by same arguments as above:

ṽ(y)− ṽ(y − δ)
δ

≥ E
[ Ũ(yŶ y

T ))− Ũ((y − δ)Ŷ y
T )

δ

]

≥ E
[
Ŷ y

T Ũ ′((y − δ)Ŷ y
T ))
]
. (7.59)

Notice (as in step 1) that since E[Ũ(yŶ y
T )] < ∞, then Ũ(yŶ y

T ) ∈ L1(P ). From (7.55)
(consequence of AE(U) < 1), there exists y0 > 0 such that for all 0 < δ < y/2, we get

0 ≤ −Ŷ y
T Ũ ′((y − δ)Ŷ y

T )) = Ŷ y
T I((y − δ)Ŷ y

T ))

≤ C(y)Ũ(yŶ y
T )1yŶ y

T ≤y0
+ Ŷ y

T I
(y0

2

)
1yŶ y

T >y0

≤ C(y)
∣
∣
∣Ũ(yŶ y

T )
∣
∣
∣+ Ŷ y

T I
(y0

2

)
,
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where C(y) < ∞ and x0 > 0 is arbitrary. The r.h.s. of this last inequality is integrable,
and we may then apply dominated convergence theorem to (7.59) by sending δ to zero:

lim inf
δ↓0

ṽ(y)− ṽ(y − δ)
δ

≥ −E
[
Ŷ y

T I(yŶ y
T ))
]
. (7.60)

By combining with (7.58) and from the convexity of ṽ, we deduce that ṽ is differentiable
at any y ∈ (0,∞) with

ṽ′(y) = −E
[
Ŷ y

T I(yŶ y
T ))
]
.

3. Given an arbitrary element YT ∈ D, we define

Y ε
T = (1− ε)Ŷ y

T + εYT ∈ D, 0 < ε < 1.

Then, by definition of ṽ(y) and convexity of Ũ , we have

0 ≤ E[Ũ(yY ε
T )]−E[Ũ(yŶ y

T )]

≤ yE[Ũ ′(yY ε
T )(Y ε

T − Ŷ y
T )] = εyE[I(yY ε

T )(Ŷ y
T − YT )],

from which we deduce by the nonincreasing property of I

E[YT I(yY ε
T )] ≤ E[Ŷ y

T I(y(1− ε)Ŷ y
T )].

As in step 2, we can apply the dominated convergence theorem (under AE(U) < 1) to
the r.h.s. and Fatou’s lemma to the l.h.s. by sending ε to zero:

E[YT I(yYT )] ≤ E[Ŷ y
T I(yŶ y

T )],

and this holds true for any YT ∈ D. This is relation (7.56). The property I(yŶ y
T ) ∈

C(−ṽ′(y)) follows finally from the dual characterization (7.45). �

Proof of Theorem 7.3.5

• The existence of a solution to v(x) for all x > 0 follows from the fact that dom(ṽ) =
(0,∞), which ensures assumption (7.30) (see Remark 7.3.5). The strict convexity of ṽ

on (0,∞) and the conjugate relation (7.50) show (see Proposition B.3.5 in Appendix B)
that v is differentiable on (0,∞). The strict concavity of v on (0,∞) is a consequence of
the strict concavity of U and the uniqueness of a solution to v(x). This implies in turn
that ṽ is differentiable on (0,∞).

• Assertion (2) of the theorem follows from Proposition 7.3.3 and the fact that dom(ṽ)
= (0,∞).

• Let us check that ṽ′(∞) := limy→∞ ṽ′(y) = 0. Since the function −Ũ is increasing and
−Ũ ′(y) = I(y) converges to zero as y goes to infinity, then for all ε > 0, there exists Cε

> 0 such that

−Ũ(y) ≤ Cε + εy, y > 0.

From the l’Hôpital rule, we deduce that
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0 ≤ −ṽ′(∞) = lim
y→∞

−ṽ(y)
y

= lim
y→∞

sup
YT ∈D

E
[−U(yYT )

y

]

≤ lim
y→∞

sup
YT ∈D

E
[Cε

y
+ εYT

]

≤ lim
y→∞

E
[Cε

y
+ ε
]

= ε,

where we used the relation E[YT ] ≤ 1 for all YT ∈ D, by (7.45) with XT = 1 ∈ C(1).
This shows that

ṽ′(∞) = 0. (7.61)

On the other hand, by (7.56), we get

− ṽ′(y) ≥ E[ZT I(yŶ y
T )], ∀y > 0, (7.62)

where ZT > 0 a.s. is a fixed element in Me. Notice that since E[Ŷ y
T ] ≤ 1 for all y > 0,

we have by Fatou’s lemma E[Ŷ 0
T ] ≤ 1 where Ŷ 0

T = lim infy↓0 Ŷ y
T . In particular, Ŷ 0

T < ∞
a.s. By sending y to zero in (7.62), and recalling that I(0) = ∞, we obtain by Fatou’s
lemma

ṽ′(0) = lim
y↓0

ṽ′(y) = ∞. (7.63)

From (7.61) and (7.63), we deduce that for all x > 0, the strictly convex function y

∈ (0,∞) → ṽ(y) + xy admits a unique minimum ŷ characterized by ṽ′(ŷ) = −x or
equivalently ŷ = v′(x) since ṽ′ = −(v′)−1 from the conjugate duality relation (7.51).

• Let us prove that I(ŷŶT ) is the solution to v(x). From Proposition 7.3.4, we have

I(ŷŶT ) ∈ C(x) and E[ŶT I(ŷŶT )] = x.

We then get

v(x) ≥ E[U(I(ŷŶT ))] = E[Ũ(ŷŶT )] + E[ŷŶT I(ŷŶT )]

= E[Ũ(ŷŶT )] + xŷ

≥ ṽ(ŷ) + xŷ.

By combining with the conjugate relation (7.50), this proves that we have equality in
the above inequalities, and so I(ŷŶT ) is the solution to v(x).

• It remains to prove assertion (4). Under the assumption that infZT ∈Me E[Ũ(yZT )] <

∞, for some given y > 0, we can find Z0
T ∈ Me such that Ũ(yZ0

T ) ∈ L1(P ). Consider an
arbitrary element YT ∈ D, and let (Zn)n≥1 be a sequence in Me such that YT ≤ limn Zn

a.s. For ε ∈ (0, 1) and n ≥ 1, we define

Z̄n,ε = (1− ε)Zn + εZ0
T ∈ Me.

Then, by the decreasing property of Ũ and the characterization (iv) of AE(U) < 1 in
Lemma 7.3.2, there exists y0 > 0 such that
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Ũ(yZ̄n,ε) ≤ Ũ(yεZ0
T ) ≤ CεŨ(yZ0

T )1yZ0
T ≤y0

+ Ũ(εy0)1yZ0
T >y0

,

for some positive constant Cε. We then get

Ũ+(yZ̄n,ε) ≤ Cε|Ũ(yZ0
T )|+ |Ũ(εy0)|, ∀n ≥ 1,

which proves that the sequence {Ũ+(yZ̄n,ε), n ≥ 1} is uniformly integrable. By Fatou’s
lemma, and the decreasing feature of Ũ , we deduce that

inf
ZT ∈Me

E[Ũ(yZT )] ≤ lim sup
n→∞

E[Ũ(yZ̄n,ε)] ≤ E[Ũ(y(1− ε)YT + εZ0
T )]

≤ E[Ũ(y(1− ε)YT )].

By using again the characterization (iv) of AE(U) < 1 in Lemma 7.3.2, we get the
uniform integrability {Ũ+(y(1− ε)YT ), ε ∈ (0, 1)}. By sending ε to zero in the previous
inequality, we obtain

inf
ZT ∈Me

E[Ũ(yZT )] ≤ E[Ũ(yYT )],

and this holds true for all YT ∈ D. This proves that infZT ∈Me E[Ũ(yZT )] ≤ ṽ(y). The
converse inequality is obvious since Me ⊂ D. �

7.3.4 The case of complete markets

In this section, we consider the case where the financial market is complete, i.e. the set
of martingale probability measures is reduced to a singleton:

Me(S) = {P 0}.

We denote by Z0 the martingale density process of P 0. In this context, the dual problem
is degenerate:

ṽ(y) = E[Ũ(yZ0
T )], y > 0,

and the solution to the dual problem is obviously Z0
T . The solution to the primal problem

v(x) is

X̂x
T = I(ŷZ0

T ),

where ŷ > 0 is the solution to

E[Z0
T I(ŷZ0

T )] = EP 0
[I(ŷZ0

T )] = x.

The wealth process X̂x and the optimal portfolio α̂ are determined by

X̂x
t = x +

∫ t

0

α̂udSu = EP 0 [
I(ŷZ0

T )
∣
∣Ft

]
, 0 ≤ t ≤ T.

Example: Merton model
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Consider the typical example of the Black-Scholes-Merton model:

dSt = St (μdt + σdWt) ,

where W is a standard Brownian motion on (Ω,F , F = (Ft)0≤t≤T , P ) with F the natural
filtration of W , F0 trivial and μ, σ > 0 are constants. Recall (see Section 7.2.4) that the
unique martingale measure is given by

Z0
T = exp

(
− λWT −

1
2
|λ|2T

)
, where λ =

μ

σ
,

and the dynamics of S under P 0 is

dSt = StσdW 0
t ,

where W 0
t = Wt +λt, 0 ≤ t ≤ T , is a P 0 Brownian motion. Take the example of a power

utility function:

U(x) =
xp

p
, p < 1, p �= 0, for which I(y) = y−r, r =

1
1− p

.

We easily calculate the optimal wealth process for v(x):

X̂x
t = EP 0[

(ŷZ0
T )−r

∣
∣Ft

]
= ŷ−rEP 0

[
exp
(
λrW 0

T −
1
2
|λ|2rT

)∣
∣
∣Ft

]

= ŷ−r exp
[1
2
(
|λr|2 − |λ|2r

)
T
]

exp
(
λrW 0

t −
1
2
|λr|2t

)
.

Since ŷ is determined by the equation X̂x
0 = x, we obtain

X̂x
t = x exp

(
λrW 0

t −
1
2
|λr|2t

)
, 0 ≤ t ≤ T.

In order to determine the optimal control α̂, we apply Itô’s formula to X̂x:

dX̂x
t = X̂x

t λrdW 0
t ,

and we identify with

dX̂x
t = α̂tdSt = α̂tσStdW 0

t .

This provides the optimal proportion of wealth invested in S:

α̂tSt

X̂x
t

=
λr

σ
=

μ

σ2(1− p)
.

We find again the same result as in the dynamic programming approach in Section 3.6.1.
The computation of the value function v(x) = E[U(X̂x

T )] is easy, and gives of course the
same result as derived in Section 3.6.1:

v(x) =
xp

p
exp
(1

2
μ2

σ2

p

1− p
T
)
.
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7.3.5 Examples in incomplete markets

In the context of incomplete markets, i.e. Me(S) is not reduced to a singleton, and
actually of infinite cardinality, we cannot explicitly find the solution to the dual problem.
However, some computations may be led more or less explicitly in some particular models.
Let us consider the model for Itô price processes as described in Section 7.2.4. With the
notation of this section, we consider the set including Me(S):

Mloc = {Zν
T : ν ∈ K(σ)} ⊃ Me(S) = {Zν

T : ν ∈ Km(σ)} .

It is easy to check by Itô’s formula that for any wealth process Xx = x +
∫

αdS, α ∈
A(S), and for all ν ∈ K(σ), the process ZνXx is a P -local martingale. Notice also that
for all ν ∈ K(σ), the bounded process νn = ν1|ν|≤n lies in Km(σ), and Zνn

T converges a.s.
to Zν

T . Thus, Mloc ⊂ D and from the assertion (4) of Theorem 7.3.5 (see also Remark
7.3.7), we get

ṽ(y) = inf
ν∈K(σ)

E[Ũ(yZν
T )], y > 0. (7.64)

The interest to introduce the set Mloc is that it is explicit (in contrast with D), com-
pletely parametrized by the set of controls ν ∈ K(σ), and relaxed from the strong con-
straints of martingale integrability in Km(σ), so that we can hope to find a solution
ν̂y in K(σ) to ṽ(y) in (7.64) by stochastic control methods as in the previous chapters.
Actually, if we suppose that the function

ξ ∈ R �−→ Ũ(eξ) is convex,

which is satisfied once x ∈ (0,∞) �→ xU ′(x) is increasing (this is the case of power and
logarithm utility functions), then it is proved in Karatzas et al. [KLSX91] that for all y

> 0, the dual problem ṽ(y) admits a solution Z ν̂y

T ∈ Mloc. One also shows that for all ν

∈ K(σ) such that E[
∫ T

0
|νt|2dt] = ∞, we have E[Ũ(yZν

T )] = ∞, so that in (7.64), we can
restrict to take the infimum over K2(σ) = {ν ∈ K(σ) : E[

∫ T

0
|νt|2dt] < ∞}, and thus ν̂y

∈ K2(σ). Notice that in general, this solution Z ν̂y

T does not lie in Me(S). The solution
to the dual problem is given by

X̂x
T = I

(
ŷZ ν̂ŷ

T

)
,

where ŷ > 0 is the solution to argminy>0[ṽ(y) + xy] and satisfying

E
[
Z ν̂ŷ

T I
(
ŷZ ν̂ŷ

T

)]
= x.

For determining the (nonnegative) wealth process X̂x, we observe that the process Z ν̂ŷ

X̂x

is a nonnegative local martingale, thus a supermartingale, which also satisfies E[Z ν̂ŷ

T X̂x
T ]

= x. Therefore, it is a martingale, and we have

X̂x
t = E

[Z ν̂ŷ

T

Z ν̂ŷ

t

I
(
ŷZ ν̂ŷ

T

)∣∣
∣Ft

]
, 0 ≤ t ≤ T.

Logarithm utility function
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Consider the example of the logarithm utility function U(x) = lnx, x > 0, for which

I(y) =
1
y

and Ũ(y) = − ln y − 1, y > 0.

For all ν ∈ K2(σ), we have

E[Ũ(yZν
T )] = − ln y − 1− 1

2
E
[ ∫ T

0

|λt|2 + [νt|2dt
]
, y > 0.

This shows that the solution to the dual problem ṽ(y) is attained for ν = 0 (in partic-
ular independent of y), corresponding to Z0

T and the optimal wealth process for v(x) is
explicitly given by

X̂x
t =

1
Z0

t

, 0 ≤ t ≤ T.

The optimal control is determined by applying Itô’s formula to the above expression,
and identifying with dX̂x

t = α̂tdSt. In the model written under the “geometrical” form

dSt = St(μtdt + σtdWt),

we find the optimal proportion of wealth invested in S:

α̂tSt

X̂x
t

=
μt

σ2
t

.

Power utility function

Consider the example of the power utility function U(x) = xp/p, x > 0, p < 1, p �= 0,
for which

I(y) = y
1

p−1 and Ũ(y) =
y−q

q
, y > 0, q =

p

1− p
.

For all ν ∈ K(σ), we have

E[Ũ(yZν
T )] =

y−q

q
E[(Zν

T )−q], y > 0.

The solution to the dual problem ṽ(y) does not depend on y and is a solution to the
problem

inf
ν∈K(σ)

E[(Zν
T )−q]. (7.65)

This stochastic control problem can be solved in a Markovian framework, typically a
stochastic volatility model, by the dynamic programming method. In a more general
framework of Itô processes, we can also use methods of BSDE. Denoting by ν̂ the solution
to (7.65), the optimal wealth process is given by

X̂x
t =

x

E[(Z ν̂
T )−q]

E
[ (Z ν̂

T )−q

Z ν̂
t

∣
∣
∣Ft

]
, 0 ≤ t ≤ T.



7.4 Quadratic hedging problem 199

7.4 Quadratic hedging problem

7.4.1 Problem formulation

We consider the general framework for continuous semimartingale price process as de-
scribed in Section 7.2.1. We are given a contingent claim represented by a random variable
H ∈ L2(P ) = L2(Ω,FT , P ), i.e. H FT -measurable and E|H|2 <∞. The quadratic hedg-
ing criterion consists in minimizing for the L2-norm the difference between the payoff H

and the terminal wealth XT = x +
∫ T

0
αtdSt of a portfolio strategy α ∈ L(S).

In the utility maximization problem, we considered utility functions on (0,∞). It was
then natural to define admissible portfolio strategies leading to a lower-bounded wealth
process. In the quadratic hedging problem, the cost function to be minimized U(x) =
(H−x)2 is defined on R, and in general we cannot hope to find a solution X̂ = x+

∫
α̂dS,

which is lower-bounded. On the other hand, we should exclude doubling strategies. In
our context of quadratic optimization, we introduce the following admissibility condition:

A2 =
{

α ∈ L(S) :
∫ T

0

αtdSt ∈ L2(P ) and
∫

αdS is a Q−martingale for all Q ∈M2
e

}
,

where

M2
e =

{
Q ∈Me :

dQ

dP
∈ L2(P )

}

is assumed to be nonempty: M2
e �= ∅. This admissibility condition permits lower-

unbounded wealth while excluding arbitrage opportunuities. Indeed, by fixing some ele-
ment Q ∈ M2

e, we have for all α ∈ A2, EQ[
∫ T

0
αtdSt] = 0 and so

� ∃ α ∈ A2,

∫ T

0

αtdSt ≥ 0, a.s. and P

[∫ T

0

αtdSt > 0

]

> 0.

Furthermore, with this integrability condition in A2, we show that the set of stochastic
integrals {

∫ T

0
αtdSt : α ∈ A2} is closed L2(P ), which ensures the existence of a solution

to the quadratic minimization problem.

Proposition 7.4.5 The set GT = {
∫ T

0
αtdSt : α ∈ A2} is closed in L2(P ).

Proof. Let Xn =
∫ T

0
αn

t dSt, n ∈ N, be a sequence in GT converging to XT in L2(P ). Fix
some arbitrary element Q ∈ M2

e. Then, from the Cauchy-Schwarz inequality,
∫ T

0
αn

t dSt

converges to XT in L1(Q). By Theorem 1.2.11, we deduce that XT =
∫ T

0
αtdSt where α

∈ L(S) is such that
∫

αdS is a Q-martingale. Since Q is arbitrary in M2
e, we conclude

that α ∈ A2. �

The quadratic minimization problem (also called mean-variance hedging problem) of
a contingent claim H ∈ L2(P ) is formulated as

vH (x) = inf
α∈A2

E
[
H − x−

∫ T

0

αtdSt

]2
, x ∈ R. (7.66)
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In other words, we project on the Hilbert space L2(P ), the element H − x on the closed
vector subspace GT . We then already know the existence of a solution to v

H
(x). Our

goal is to characterize this solution. The resolution method is based on a combination of
Kunita-Watanabe projection theorem, convex duality methods, and change of numéraire.

7.4.2 The martingale case

In this section, we study the special case where S is a local martingale under P ,
i.e. P ∈ M2

e. In this case, the resolution is direct from the Kunita-Watanabe projection
theorem. Indeed, by projecting the square-integrable martingale Ht = E[H|Ft], 0 ≤ t ≤
T , on the continuous local martingale S under P , we obtain the decomposition

E[H|Ft] = E[H] +
∫ t

0

αH
u dSu + RH

t , 0 ≤ t ≤ T, (7.67)

where αH ∈ L(S) satisfies the integrability condition

E
[ ∫ T

0

αH
t dSt

]2
= E

[ ∫ T

0

(αH
t )′d < S >t αH

t

]
< ∞, (7.68)

and (RH
t )t is a square-integrable martingale, orthogonal to S, i.e. < RH , S > = 0.

Theorem 7.4.6 For any x ∈ R and H ∈ L2(P ), the solution αmv ∈ A2 to vH(x) is
equal to αH . Furthermore, we have

vH (x) = (E[H]− x)2 + E[RH
T ]2.

Proof. Let us check that αH ∈ A2. From condition (7.68), we have
∫ T

0
αH

t dSt ∈ L2(P ).
Moreover, with the Cauchy-Schwarz and Doob inequalities, we have for all Q ∈ M2

e

EQ
[

sup
0≤t≤T

∣
∣
∣

∫ t

0

αH
u dSu

∣
∣
∣
]
≤ 2
(
E
[dQ

dP

]2) 1
2
(
E
[ ∫ T

0

αH
t dSt

]2) 1
2

< ∞.

This shows that the Q-local martingale
∫

αHdS is a uniformly integrable Q-martingale,
and thus αH ∈ A2.

Observe that for all α ∈ A2, the stochastic integral
∫

αdS is a square-integrable P -
martingale. By the Doob and Cauchy-Schwarz inequalities, we have E[supt |RH

t

∫ t

0
αudSu|]

< ∞. Thus, the orthogonality condition between RH and S implies that RH
∫

αdS is a
uniformly integrable P -martingale. We then get

E
[
RH

T

∫ T

0

αtdSt

]
= 0, ∀α ∈ A2.

By writing from (7.67) that H = E[H] +
∫ T

0
αH

t dSt + RH
T , we derive that for all α ∈

A2

E
[
H − x−

∫ T

0

αtdSt

]2
=
(
E[H]− x

)2 + E
[ ∫ T

0

(αH
t − αt)dSt

]2
+ E[RH

T ]2,

which proves the required result. �
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Example

Consider the stochastic volatility model

dSt = σ(t, St, Yt)StdW 1
t

dYt = η(t, St, Yt)dt + γ(t, St, Yt)dW 2
t ,

where W 1 and W 2 are standard Brownian motions, supposed uncorrelated for simplicity.
We make the standard assumptions on the coefficients σ, η, γ to get the existence and
uniqueness of a solution (S, Y ) valued in R+ × R to the above SDE given an initial
condition. We consider an option payoff in the form H = g(ST ) where g is a measurable
function, and we define the function

h(t, s, y) = E[g(ST )|(St, Yt) = (s, y)], (t, s, y) ∈ [0, T ]× R+ × R.

Under suitable conditions on σ, η, γ and g, the function h ∈ C1,2([0, T )×R+ ×R), and
is a solution to the Cauchy problem

∂h

∂t
+ η

∂h

∂y
+

1
2
σ2 ∂2h

∂s2
+

1
2
γ2 ∂2h

∂y2
= 0, on [0, T )× R+ × R

h(T, ., .) = g, on R+ × R.

The Kunita-Watanabe decomposition (7.67) is simply obtained by Itô’s formula applied
to the martingale h(t, St, Yt) = E[g(ST )|Ft], 0 ≤ t ≤ T :

E[g(ST )|Ft] = E [g(ST )] +
∫ t

0

∂h

∂s
(u, Su, Yu)dSu +

∫ t

0

γ
∂h

∂y
(u, Su, Yu)dW 2

u .

The solution to the quadratic minimization problem is then given by

αmv
t =

∂h

∂s
(t, St, Yt), 0 ≤ t ≤ T,

and the value function is

vH (x) = (E[g(ST )]− x)2 + E
[ ∫ T

0

∣
∣
∣γ

∂h

∂y
(t, St, Yt)

∣
∣
∣
2

dt
]
.

In the sequel, we consider the general case where S is a continuous semimartingale.
The principle of our resolution method is the following: we first choose a suitable wealth
process that will be connected to a martingale measure, and derived from a duality
relation. We then use this wealth process as the numéraire, and by a method of change
of numéraire, we reduce our problem to the martingale case.

7.4.3 Variance optimal martingale measure and quadratic hedging
numéraire

Let us consider the quadratic minimization problem corresponding to H = 1 and x = 0:

v1 = min
α∈A2

E
[
1−
∫ T

0

αtdSt

]2
. (7.69)
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Denote by αvar ∈ A2 the solution to v1 and Xvar the wealth process

Xvar
t = 1−

∫ t

0

αvar
u dSu, 0 ≤ t ≤ T.

The purpose of this section is to show that Xvar is related via duality to a martingale
probability measure, and is thus strictly positive. We shall use the duality relation be-
tween GT and M2

e, and follow a dual approach as for the utility maximization problem,
adapted to the L2(P )-context.

Since EQ[1−
∫ T

0
αtdSt] = 1 for all α ∈ A2 and Q ∈M2

e, we get by the Cauchy-Schwarz
inequality

1 =
(
E
[dQ

dP

(
1−
∫ T

0

αtdSt

)])2

≤ E
[dQ

dP

]2
E
[
1−
∫ T

0

αtdSt

]2
.

We then introduce the dual quadratic problem of v1:

ṽ1 = inf
Q∈M2

e

E
[dQ

dP

]2
, (7.70)

so that

1 ≤ inf
Q∈M2

e

E
[dQ

dP

]2
min
α∈A2

E
[
1−
∫ T

0

αtdSt

]2
= ṽ1 v1.

We shall prove the existence of a solution P var to the dual problem ṽ1, and see that it
is related to the solution of the primal problem v1 by dP var

dP = CteXvar
T . We then get

equality in the previous inequalities: 1 = ṽ1 v1.

Theorem 7.4.7 There exists a unique solution to ṽ1, denoted by P var and called the
variance-optimal martingale measure. The solution to the primal problem v1 is related to
the one of dual problem ṽ1 by

Xvar
T =

dP var

dP

E
[

dP var

dP

]2 i.e.
dP var

dP
=

Xvar
T

E[Xvar
T ]

. (7.71)

In particular, we have

Xvar
t > 0, 0 ≤ t ≤ T, P a.s. (7.72)

Remark 7.4.10 Since Xvar is a Q-martingale under any Q ∈ M2
e, in particular under

P var, we have by (7.71), and denoting by Zvar the martingale density process of P var

Xvar
t =

EQ[Zvar
T |Ft]

E[Zvar
T ]2

=
E[(Zvar

T )2|Ft]
Zvar

t E[Zvar
T ]2

, 0 ≤ t ≤ T, ∀Q ∈M2
e. (7.73)

The relation (7.71) also shows that

E[Xvar
T ]2 E

[
dP var

dP

]2
= 1.
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For proving Theorem 7.4.7, we cannot apply directly the duality method developed
in the previous section for maximization of utility function defined on (0,∞), since the
utility function is here U(x) = −(H−x)2, defined on R, and not increasing on the whole
domain R. We shall use the special features of the quadratic utility functions, and the
characterizations by projections in Hilbert spaces. We denote by G⊥

T the orthogonal of
GT in L2(P ):

G⊥
T =

{
ZT ∈ L2(P ) : E

[
ZT

∫ T

0

αtdSt

]
= 0, ∀α ∈ A2

}
.

Lemma 7.4.3 The wealth process associated to the solution αvar ∈ A2 of problem v1 is
nonnegative:

Xvar
t = 1−

∫ t

0

αvar
u dSu ≥ 0, 0 ≤ t ≤ T, P a.s.

Moreover, we have

Xvar
T ∈ G⊥

T and E[Xvar
T ] = E[Xvar

T ]2 > 0.

Proof. Consider the stopping time τ = inf{t ∈ [0, T ] : Xvar
t ≤ 0}, with the convention

that inf ∅ = ∞. Since S and so Xvar is continuous, and Xvar
0 = 1, we have

Xvar
τ∧T = 0 on A := {τ ≤ T},

Xvar > 0 on Ac = {τ =∞}.

Let us define the process ᾱ by ᾱt = αvar
t if 0 ≤ t ≤ τ ∧ T and 0 otherwise. Since αvar ∈

A2, it is clear that ᾱ ∈ A2 and

1−
∫ T

0

ᾱtdSt = Xvar
τ∧T = Xvar

T 1Ac ≥ 0, a.s.

We deduce that E[1−
∫ T

0
ᾱtdSt]2 ≤ E[Xvar

T ]2. Since αvar is solution to v1, we must have
Xvar

T = 1−
∫ T

0
ᾱtdSt ≥ 0. By observing that Xvar is a martingale under Q arbitrary in

M2
e, we get

Xvar
t = EQ [Xvar

T | Ft] ≥ 0, 0 ≤ t ≤ T, a.s.

On the other hand, the solution to problem v1, which is obtained by projection of the
element 1 onto the closed vector subspace GT , is characterized by the property Xvar

T ∈
G⊥

T :

E
[
Xvar

T

∫ T

0

αtdSt

]
= 0, ∀α ∈ A2. (7.74)

For α = αvar, this implies in particular that

E[Xvar
T ] = E[Xvar

T ]2 > 0

since Xvar
T cannot be equal to zero P a.s. from the fact that EQ[Xvar

T ] = 1 for Q ∈ M2
e.
�

In the sequel, we identify, as usual, an absolutely continuous probability measure with
its Radon-Nikodym density.
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Lemma 7.4.4

M2
e =

{
ZT ∈ L2(P ) : ZT > 0, a.s., E[ZT ] = 1

}
∩ G⊥

T . (7.75)

Proof. Denote by M̃2
e the r.h.s. in (7.75). By definition of A2, it is clear that M2

e ⊂
M̃2

e. Let ZT ∈ M̃2
e and Q ∼ P the associated probability measure with Radon-Nikodym

density ZT . Since S is continuous (hence locally bounded), there exists a sequence of
stopping times τn ↑ ∞, such that the stopped process Sτn = (St∧τn)0≤t≤T is bounded.
(for example τn = inf{t ≥ 0 : |St| ≥ n}). A2 contains the simple integrands in the form
αt = θ1(s∧τn,u∧τn](t) where 0 ≤ s ≤ u ≤ T and θ, Fs∧τn-measurable valued in R

n. Since
ZT ∈ G⊥

T , we have

0 = E[ZT

∫ T

0

θ1(s∧τn,u∧τn](t)dSt] = EQ[θ.(Sτn
u − Sτn

s )], (7.76)

for all 0 ≤ s ≤ u ≤ T and θ, Fs∧τn-measurable. From the characterization of random
variables Fs∧τn -measurables (see Proposition 1.1.2), the relation (7.76) holds also true
for all θ, Fs-measurable. This proves that Sτn is a Q-martingale, i.e. S is a Q-local
martingale, and thus Q ∈ M2

e. �

We introduce the closure M2 of M2
e in L2(P ), which is given from the previous

lemma by

M2 =
{

Q� P :
dQ

dP
∈ L2(P ) and S is a Q− local martingale

}

=
{

ZT ∈ L2(P ) : ZT ≥ 0, a.s., E[ZT ] = 1
}
∩ G⊥

T .

The dual problem is then also written as

ṽ1 = inf
ZT ∈M2

E[ZT ]2. (7.77)

Lemma 7.4.5 There exists a unique solution Zvar
T ∈ M2 to the dual problem (7.77).

This solution is related to problem v1 by

Zvar
T = E[Zvar

T ]2Xvar
T . (7.78)

Proof. The nonempty setM2 is clearly convex and closed in L2(P ). The problem (7.77),
which is a projection problem in L2(P ) of the zero element ontoM2 then admits a unique
solution Zvar

T . Recall that this solution is characterized by the property that Zvar
T ∈ M2

and

E[Zvar
T (Zvar

T − ZT )] ≤ 0, ∀ZT ∈M2. (7.79)

Consider the random variable

Z̄T =
Xvar

T

E[Xvar
T ]

. (7.80)

From Lemma 7.4.3, Z̄T ∈ M2. Moreover, by definition of A2 and Z̄T , we have for all ZT

∈ M2
e
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E[ZT Z̄T ] =
1

E[Xvar
T ]

= E[Z̄T ]2.

By density of M2
e in M2, the above relation holds true for all ZT ∈ M2. From the

characterization (7.79) of Zvar
T , this shows that Zvar

T = Z̄T , and concludes the proof. �

Proof of Theorem 7.4.7.

In view of the previous lemmas, it remains to show that Zvar
T > 0 a.s., which then defines

a probability measure P var ∈ M2
e. This is a delicate and technical point, whose proof

may be omitted in a first reading.
Let Zvar be the nonnegative martingale density process of P var ∈ M2: Zvar

t =
E[Zvar

T |Ft] = E
[

dP var

dP

∣
∣Ft

]
, 0 ≤ t ≤ T . We want to prove that P a.s., Zvar

t > 0 for all
t ∈ [0, T ]. Let us consider the stopping time

τ = inf {0 ≤ t ≤ T : Zvar
t = 0}

with the convention inf ∅ = ∞. Consider also the stopping time

σ = inf {0 ≤ t ≤ T : Xvar
t = 0} .

Fix some element Q0 ∈ Me
2 and denote by Z0 its martingale density process.

On the set {σ < τ} ⊂ {σ < ∞}, we have by the martingale property of the nonneg-
ative process Xvar under Q0

0 = Xvar
σ = EQ0

[Xvar
T |Fσ].

Since Xvar
T ≥ 0 by Lemma (7.4.3), this proves that Xvar

σ = 0 on {σ < τ}. With the
relation (7.78), we also have Zvar

T = 0 on {σ < τ}. By the martingale property of Zvar,
we thus get Zvar

σ = 0 on {σ < τ}. This is clearly in contradiction with the definition of
τ unless P{σ < τ} = 0.

On the set {τ < σ} ⊂ {τ < ∞}, we have by the martingale property of the nonneg-
ative process Zvar under P

0 = Zvar
τ = E[Zvar

T |Fτ ].

Since Zvar
T ≥ 0, this proves that Zvar

T = 0 on {τ < σ} and so by (7.78) that Xvar
T = 0 on

{τ < σ}. By the martingale property of Xvar under Q0, we have Xvar
τ = 0 on {τ < σ}.

This is clearly in contradiction with the definition of τ unless P{τ < σ} = 0.
We deduce that τ = σ a.s. and by continuity of the nonnegative process Xvar, τ is

a predictable stopping time: there exists a sequence of stopping times (τn)n≥1, with τn

< τ on {τ > 0}, τn converging increasingly to τ (we say that τ is announced by (τn)n).
Indeed, it suffices to take τn = inf{t ≥ 0 : Xvar

t ≤ 1/n} ∧ n. By the martingale property
of the nonnegative process Zvar and since Zvar

τn
> 0, we have by the Cauchy-Schwarz

inequality

1 = E
[Zvar

T

Zvar
τn

∣
∣
∣Fτn

]
= E

[Zvar
T

Zvar
τn

1Zvar
τ �=0

∣
∣
∣Fτn

]

≤ E
[(Zvar

T

Zvar
τn

)2 ∣
∣
∣Fτn

] 1
2
E[1Zvar

τ �=0|Fτn ]
1
2 . (7.81)
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Since E[1Zvar
τ �=0|Fτn ] converges to 0 on the set {Zvar

τ = 0}, inequality (7.81) proves that

E
[(Zvar

T

Zvar
τn

)2∣∣
∣Fτn

]
→ ∞, on {Zvar

τ = 0}. (7.82)

Since Z0 is a strictly positive P -martingale such that Z0
T ∈ L2(P ), we get

sup
0≤t≤T

E
[(Z0

T

Z0
t

)2 ∣
∣
∣Ft

]
< ∞, a.s.

Suppose that P [Zvar
τ = 0] > 0. From (7.82), we see that for n large enough, the set

An =
{

E
[( Z0

T

Zτn

)2∣∣
∣Fτn

]
< E

[(Zvar
T

Zvar
τn

)2∣∣
∣Fτn

]}

is nonempty in Fτn . Let us then define the martingale

Zt =

⎧
⎪⎨

⎪⎩

Zvar
t t < τn

Z0
t

Zvar
τn

Z0
τn

t ≥ τn on An

Zvar
t t ≥ τn outside An.

We easily check that ZS inherits the local martingale property of ZvarS and Z0S, and
so ZT ∈ M2. Morever, by construction, we get

E [ZT ]2 < E [Zvar
T ]2 ,

which is in contradiction with the definition of Zvar
T . We then conclude that P [Zvar

τ = 0]
= 0 and thus Zvar

t > 0, for all t ∈ [0, T ], P a.s. Finally, the strict positivity of Xvar

follows from the strict positivity of Xvar
T and the martingale property of Xvar under Q0

∼ P . �

The strictly positive wealth process Xvar is called quadratic hedging numéraire, and
shall be used in the next section for the resolution of the mean-variance hedging problem.

7.4.4 Problem resolution by change of numéraire

We use Xvar as numéraire: we consider the discounted price process Svar valued in R
n+1

by

Svar,0 =
1

Xvar
and Svar,i =

Si

Xvar
, i = 1, . . . , n.

Recall that for any Q ∈ M2
e, the process Xvar is a Q-martingale with initial value 1. We

then define the set of probability measures with martingale density Xvar with respect
to a probability measure Q in M2

e:

M2,var
e =

{
Qvar probability on (Ω,FT ) : ∃Q ∈M2

e

dQvar

dQ

∣
∣
∣
Ft

= Xvar
t , 0 ≤ t ≤ T.

}
.
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Since by definition, M2
e is the set of probability measures Q ∼ P with square-integrable

Radon-Nikodym density, under which S is a local martingale, we easily deduce from
Bayes formula that M2,var

e is also written as

M2,var
e =

{
Qvar ∼ P :

1
Xvar

T

dQvar

dP
∈ L2(P ) and

Svar is a Qvar − local martingale
}

. (7.83)

We then introduce the set of admissible integrands with respect to Svar:

Φvar
2 =

{
φ ∈ L(Svar) : Xvar

T

∫ T

0

φtdSvar
t ∈ L2(P ) and

∫

φdSvar is a Qvar −martingale under any Qvar ∈M2,var
e

}
.

We first state a general invariance result for stochastic integrals by change of
numéraire.

Proposition 7.4.6 For all x ∈ R, we have

{
x +

∫ T

0

αtdSt : α ∈ A2

}
=
{

Xvar
T

(
x +

∫ T

0

φtdSvar
t

)
: φ ∈ Φvar

2

}
. (7.84)

Furthermore, the correspondence relation between α = (α1, . . . , αn) ∈ A2 and φ =
(φ0, . . . , φn) ∈ Φvar

2 is given by φ = F var
x (α) where F var

x : A2 → Φvar
2 is defined by

φ0 = x +
∫

αdS − α.S and φi = αi, i = 1, . . . , n, (7.85)

and α = F−1,var
x (φ), with F−1,var

x : Φvar
2 → A2 determined by

αi = φi − αvar,i
(
x +

∫

φdSvar − φ.Svar
)
, i = 1, . . . , n. (7.86)

Proof. The proof is essentially based on Itô’s product rule, the technical point concerning
the integrability questions on the integrands.

(1) By Itô’s product, we have

d
( S

Xvar

)
= Sd

( 1
Xvar

)
+

1
Xvar

dS + d < S,
1

Xvar
> . (7.87)

Let α ∈ A2 and consider the truncated bounded integrand α(n) = α1|α|≤n, which is
integrable with respect to S/Xvar, 1/Xvar and < S, 1

Xvar >. We then get
∫

α(n)d
( S

Xvar

)
=
∫

α(n)Sd
( 1

Xvar

)
+
∫

α(n) 1
Xvar

dS

+
∫

α(n)d < S,
1

Xvar
> . (7.88)

Denote by Xx,α(n)
= x +

∫
α(n)dS. Then, by Itô’s formula and (7.88), we have
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d
(Xx,α(n)

Xvar

)
= Xx,α(n)

d
( 1

Xvar

)
+

1
Xvar

α(n)dS + α(n)d < S,
1

Xvar
>

=
(
Xx,α(n)

− α(n).S
)
d
( 1

Xvar

)
+ α(n)d

( S

Xvar

)

= φ(n)dSvar, (7.89)

with φ(n) = F var
x (α(n)) ∈ L(Svar). The relation (7.89) shows that

x +
∫

α(n)dS = Xvar
(
x +

∫

φ(n)dSvar
)
. (7.90)

Since α is S-integrable, i.e. α ∈ L(S), we know that
∫

α(n)dS converges to
∫

αdS for the
semimartingale topology as n goes to infinity. This implies that Xx,α(n)

/Xvar converges
also for the semimartingale topology. From (7.90), we deduce that

∫
φ(n)dSvar converges

to
∫

ψdX̃ for the semimartingale topology with ψ ∈ L(Svar), since the space {
∫

ψdSvar :
ψ ∈ L(Svar) } is closed for the semimartingale topology. Since φ(n) converges a.s. to φ

= F var
x (α), we get ψ = φ. We then obtain by sending n to infinity in (7.90)

x +
∫

αdS = Xvar
(
x +

∫

φdSvar
)
. (7.91)

Since Xvar
T and

∫ T

0
αtdSt ∈ L2(P ), we get by (7.91) Xvar

T

∫ T

0
φtdSvar

t ∈ L2(P ). Since
∫

αdS is a Q-martingale for any Q ∈ M2
e, it follows by definition of M2,var

e , by (7.91)
and the Bayes formula that

∫
φdSvar is a Qvar-martingale for all Qvar ∈ M2,var

e . Thus,
φ ∈ Φvar

2 , and the inclusion ⊆ in (7.84) is proved.

(2) The proof of the converse is similar. By Itô’s product, we have

d(XvarX) = XvardSvar + SvardXvar + d < Xvar, Svar > . (7.92)

Let φ ∈ Φvar
2 and consider the truncated bounded integrand φ(n) = φ1|φ|≤n. Then, from

(7.92) and the definitions of Svar and Xvar, we get

d
(
Xvar(x +

∫

φ(n)dSvar)
)

=
(
x +

∫

φ(n)dSvar
)
dXvar + Xvarφ(n)dSvar + φ(n)d < Xvar, Svar >

=
(
x +

∫

φ(n)dSvar
)
dXvar + φ(n)d(XvarSvar)− φ(n).SvardXvar

= α(n)dS,

with α(n) = F−1,var
x (φ(n)) ∈ L(S). By the same arguments as in point (1), we obtain by

sending n to infinity

Xvar
(
x +

∫

φdSvar
)

= x +
∫

αdS, (7.93)

with α = F−1,var
x (φ) ∈ L(S). We also check as in (1) that α ∈ A2 since φ ∈ Φvar

2 . The
inclusion ⊇ in (7.84) is proved, and the proof is complete. �
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Notice that in the proof of Proposition 7.4.6, we used only the strict positivity of the
process Xvar = 1−

∫
αvardS. The previous invariance result for the space of stochastic

integrals by change of numéraire is actually valid for any choice of numéraire Xnum =
1−
∫

αnumdSt, αnum ∈ A2, with Xnum
t > 0, 0 ≤ t ≤ T . The particular choice of Xnum =

Xvar, the solution to problem (7.69), is now used in a crucial way for the resolution of the
quadratic minimization problem. We shall prove, by means of this suitable numéraire,
how one can reduce the original mean-variance problem to the martingale case of Section
7.4.2.

To the variance-optimal martingale measure P var ∈M2
e, we associate P 2var ∈M2,var

e

defined by

dP 2var

dP var
= Xvar

T . (7.94)

From the duality relation (7.71), the Radon-Nikodym density of P 2var with respect to
P is

dP 2var

dP
= E

[dP var

dP

]2
(Xvar

T )2. (7.95)

Since H ∈ L2(P ), the relation (7.95) implies in particular that the discounted payoff Hvar

= H/Xvar
T ∈ L2(P 2var). Recall also that Svar is a (continuous) local martingale under

P 2var by the characterization (7.83) ofM2,var
e . We can then apply the Kunita-Watanabe

projection theorem for the square-integrable P 2var-martingale Hvar
t = EP 2var

[Hvar|Ft],
0 ≤ t ≤ T , onto Svar, and we derive

EP 2var
[ H

Xvar
T

∣
∣
∣Ft

]
= EP 2var

[ H

Xvar
T

]
+
∫ t

0

φH
u dSvar

u + Rvar,H
t , 0 ≤ t ≤ T, (7.96)

where φH ∈ L(Svar) satisfies

EP 2var
[ ∫ T

0

φH
t dSvar

t

]2
= EP 2var

[ ∫ T

0

(φH
t )′d < Svar >t φH

t

]
< ∞, (7.97)

and Rvar,H is a square-integrable P 2var-martingale, orthogonal to Svar.

Theorem 7.4.8 For all x ∈ R and H ∈ L2(P ), the solution αmv to v
H

(x) is given by

αmv = F−1,var
x (φH), (7.98)

where φH defined in (7.96) lies in Φvar
2 and F−1,var

x is defined in Proposition 7.4.6.
Moreover, we have

v
H

(x) =

(
EP var

[H]− x
)2

E
[

dP var

dP

]2 + E
[
Xvar

T Rvar,H
T

]2
. (7.99)

Proof. By similar arguments as in the proof of Theorem 7.4.6 (by using the Doob and
Cauchy-Schwarz inequalities), we see that the integrability condition (7.97) on φH implies
that (actually is equivalent to) φH ∈ Φvar

2 . From Proposition 7.4.6 on the invariance by
change of numéraire and relation (7.95), we have
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v
H

(x) := inf
α∈A2

E
[
H − x−

∫ T

0

αtdSt

]2
(7.100)

= inf
φ∈Φvar

2

E
[
H −Xvar

T

(
x +

∫ T

0

φtdSvar
t

)]2

=
1

E
[

dP var

dP

]2 inf
φ∈Φvar

2

EP 2var
[ H

Xvar
T

− x−
∫ T

0

φtdSvar
t

]2
, (7.101)

and the solutions to (7.100) and (7.101) are related via the correspondence function
F−1,var

x . Now, problem (7.101) is a quadratic minimization problem as in the martingale
case, whose solution is determined by the Kunita-Watanabe decomposition (7.96). This
proves (7.98) and also that

v
H

(x) =
1

E
[

dP var

dP

]2

{(
EP 2var

[ H

Xvar
T

]
− x
)2

+ EP 2var

[Rvar
T ]2

}
.

We finally get the expression (7.99) of v
H

(x) with (7.94) and (7.95). �

Remark 7.4.11 The solution xmv (H) to problem infx∈R v
H

(x), called quadratic ap-
proximation price of H, is given from (7.99) by

x
mv

(J) = EP var

[H].

The above theorem shows that the quadratic hedging problem may be solved in the
following three steps:

(1) Determine the solution to problem v1 that defines the quadratic numéraire Xvar or
equivalently the solution to the dual problem ṽ1 defining the variance-optimal martingale
measure. Of course, if S is already a martingale under P , the solution is trivial: Xvar =
1 and P var = P . We give in the next section some other examples of models where the
computations of Xvar and P var are explicit.

(2) Change of numéraire by discounting the price process S, the option payoff H

and the variance-optimal martingale measure by Xvar. We then define the price pro-
cess Svar = (1/Xvar, S/Xvar), the payoff Hvar = H/Xvar

T and the probability P 2var

with Radon-Nikodym density with respect to P var: Xvar
T . We then project according to

the Kunita-Watanabe decomposition, the P 2var-martingale EP 2var

[Hvar|Ft] onto Svar.
In a Markovian framework, for example a diffusion, this decomposition is derived in
the smooth case by Itô’s formula. In the more general case, the integrand of Svar in
the decomposition can be expressed by means of the Clark-Ocone formula or Malliavin
derivative.

(3) The solution to the mean-variance hedging problem is finally given by the corre-
spondence relation between the space of stochastic integrals with respect to S and the
space of stochastic integrals with respect to Svar.

7.4.5 Example

We consider the model and the notation of Section 7.2.4. Recall that we have an explicit
description of M2

e:
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M2
e =

{
P ν :

dP ν

dP
= Zν

T , ν ∈ K2
m(σ)

}
, (7.102)

where

Zν
t = exp

(
−
∫ t

0

(λu + νu).dWu −
1
2

∫ t

0

|λu|2 + |νu|2du
)
, 0 ≤ t ≤ T.

and K2
m(σ) is the set of elements ν in K(σ) such that Zν is a square-integrable martingale.

We assume in this example that the quantity

K̂T =
∫ T

0

|λt|2dt,

called the mean-variance ratio, is deterministic. This is a generalization of the case where
S is a local martingale under P for which K̂T = 0.

Consider for any ν ∈ K2
m(σ), the Doléans-Dade exponential local martingale

ξν
t = exp

(
− 2
∫ t

0

(λu + νu).dWu − 2
∫ t

0

|λu|2 + |νu|2du
)
, 0 ≤ t ≤ T.

It is clear that |ξν
t | ≤ |Zν

t |2. Since Zν is a square-integrable martingale, we have:
E[sup0≤t≤T |Zν

t |2] < ∞. It follows that ξν is uniformly integrable, and so is a mar-
tingale. We can then define a probability measure Qν equivalent to P with martingale
density process ξν . We have for any ν ∈ K2

m(σ):

E
[dP ν

dP

]2
= E

[
exp
(
− 2
∫ T

0

(λu + νu).dWu −
∫ T

0

|λu|2 + |νu|2du
)]

= EQν
[
exp
(∫ T

0

|λu|2 + |νu|2du
)]

= exp(K̂T )EQν
[
exp
(∫ T

0

|νu|2du
)]

≥ exp(K̂T ), (7.103)

where the third equality follows from the fact that K̂T is deterministic. Notice that the
equality in (7.103) holds for ν = 0, which proves that the solution to the problem defining
the variance-optimal martingale measure, given from (7.102) by

ṽ1 = inf
ν∈K2

m(σ)
E
[dP ν

dP

]2
(7.104)

is attained for ν = 0. We then get

P var = P 0 and ṽ1 = E
[dP 0

dP

]2
= exp(K̂T ).

We calculate the quadratic hedging numéraire by means of the expression (7.73):

Xvar
t =

1

E
[
Z0

T

]2 EP 0
[Z0

T |Ft]

= EP 0
[
exp
(
−
∫ T

0

λu.dW 0
u −

1
2

∫ T

0

|λu|2du
)∣
∣
∣FT

]
,
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where W 0 = W +
∫

λdt is a P 0 Brownian motion. Notice that the Novikov condition
EP 0

[exp(1
2

∫ T

0
|λt|2dt)] = exp(K̂T /2) < ∞ is satisfied so that

Xvar
t = exp

(
−
∫ t

0

λu.dW 0
u −

1
2

∫ t

0

|λu|2du
)
, 0 ≤ t ≤ T.

Since dXvar
t = −(αvar

t )′σtdW 0
t , we deduce by identification and recalling the definition

λ = σ′(σσ′)−1μ:

αvar = (σσ′)−1μXvar.

In the general case where K̂T is random, the dual problem (7.104) defining the variance-
optimal martingale measure is a stochastic control problem, which can be studied by the
dynamic programming methods or BSDEs. We give some references in the last section
of this chapter.
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The dual approach to the utility maximization problem was initially formulated in
a complete market by Pliska [Pli86], Karatzas, Lehoczky and Shreve [KLS87] and Cox
and Huang [CH89]. It was then extended to the incomplete markets case for Itô pro-
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A

Complements of integration

We are given a probability space (Ω,F , P ) and L1 = L1(Ω,F , P ) is the set of integrable
random variables.

A.1 Uniform integrability

Definition A.1.1 (Uniformly integrable random variables)
Let (fi)i∈I be a family of random variables in L1. We say that (fi)i∈I is uniformly
integrable if

lim
x→∞

sup
i∈I

E[|fi|1|fi|≥x] = 0.

Notice that any family of random variables, bounded by a fixed integrable random
variable (in particular any finite family of random variables in L1) is uniformly integrable.

The following result extends the dominated convergence theorem.

Theorem A.1.1 Let (fn)n≥1 be a sequence of random variables in L1 converging a.s to
a random variable f . Then f is integrable and the convergence of (fn) to f holds in L1

if and only if the sequence (fn)n≥1 is uniformly integrable. When the random variables
fn are nonnegative, this is equivalent to

lim
n→∞

E[fn] = E[f ].

The following corollary is used in the proof of Theorem 7.3.4.

Corollary A.1.1 Let (fn)n≥1 be a sequence of nonnegative random variables bounded
in L1, i.e. supn E[fn] < ∞, converging a.s to a nonnegative random variable f and such
that limn→∞ E[fn] = E[f ] + δ with δ > 0. Then, there exists a subsequence (fnk

)k≥1 of
(fn)n≥1 and a disjoint sequence (Ak)k≥1 of (Ω,F) such that

E[fnk
1Ak

] ≥ δ

2
, ∀k ≥ 1.
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Proof. We define Bn = {fn ≥ (f + δ) ∨ 1/δ}. The sequence (fn1Ω\Bn
)n≥1 is uniformly

integrable and converges a.s to f . This implies that E[fn1Ω\Bn
] converges to E[f ], and

so E[fn1Bn ] converges to δ. Thus, there exists N = N(δ) ≥ 1 such that

E[fn1Bn ] ≥ 3δ

4
, ∀n ≥ N.

We set n1 = N . the sequence (fn11Bm)m≥1 is uniformly integrable and converges a.s to
0. Thus, there exists n2 ≥ n1 + 1 such that

E[fn11Bn2
] ≤ δ

4
.

We then write A1 = Bn1 \Bn2 so that

E[fn11A1 ] ≥ E[fn11Bn1
]−E[fn11Bn2

] ≥ δ

2
.

The sequence (fn21Bn1
1Bm)m≥1 is uniformly integrable and converges a.s to 0. Thus,

there exists n3 ≥ n2 + 1 such that

E[fn21Bn1∪Bn3
] ≤ δ

4
.

Define A2 = Bn2 \ (Bn1 ∪Bn3) so that A2 is disjoint from A1 and

E[fn21A2 ] ≥
δ

2
.

We repeat this procedure: at step k, the sequence (fnk
1∪k−1

i=1 Bni
1Bm)m≥1 is uniformly

integrable and converges a.s to 0. Thus, there exists nk+1 ≥ nk + 1 such that

E[fnk
1∪k−1

i=1 Bni
∪Bnk+1

] ≤ δ

4
.

We then define Ak = Bnk
\
(
∪k−1

i=1 Bni ∪Bnk+1

)
so that Ak is disjoint from Ai, i ≤ k− 1,

and

E[fnk
1Ak

] ≥ δ

2
.

�

The following result, due to la Vallée-Poussin, gives a practical condition for proving
the uniform integrability.

Theorem A.1.2 (la Vallée-Poussin)
Let (fi)i∈I be a family of random variables. We have equivalence between:

(1) (fi)i∈I is uniformly integrable

(2) there exists a nonnegative function ϕ defined on R+, limx→∞ ϕ(x)/x = ∞, such that

sup
i∈I

E[ϕ(|fi|)] < ∞.

In practice, we often use the implication (2) =⇒ (1). For example, by taking ϕ(x) =
x2, we see that any family of random variables bounded in L2 is uniformly integrable.
One can find the proofs of Theorem A.1.1 and A.1.2 in the book by [Do94].
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A.2 Essential supremum of a family of random variables

Definition A.2.2 (Essential supremum)
Let (fi)i∈I be a family of real-valued random variables. The essential supremum of this
family, denoted by ess supi∈I fi is a random variable f̂ such that

(a) fi ≤ f̂ a.s., for all i ∈ I

(b) if g is a random variable satisfying fi ≤ g a.s., for all i ∈ I, then f̂ ≤ g a.s.

The next result is proved in Neveu [Nev75].

Theorem A.2.3 Let (fi)i∈I be a family of real-valued random variables. Then, f̂ =
ess supi∈I fi exists and is unique. Moreover, if the family (fi)i∈I is stable by supremum,
i.e. for all i, j in I, there exists k in I such that fi ∨ fj = fk, then there exists an
increasing sequence (fin)n≥1 in (fi)i∈I satisfying

f̂ = lim
n→∞

↑ fin a.s

We define the essential infimum of a family of real-valued random variables (fi)i∈I

by: ess infi∈I fi = −ess supi∈I(−fi).

A.3 Some compactness theorems in probability

This first compactness result is well-known, and due to Komlos [Kom67].

Theorem A.3.4 (Komlos)
Let (fn)n≥1 be a sequence of random variables bounded in L1. Then, there exists a sub-
sequence (fnk

)k≥1 of (fn)n∈N and a random variable f in L1 such that

1
k

k∑

j=1

fnj → f a.s when k goes to infinity.

The following compactness theorem in L0
+(Ω,F , P ) is very useful for deriving exis-

tence results in optimization problems in finance. It is proved in the appendix of Delbaen
and Schachermayer [DS94].

Theorem A.3.5 Let (fn)n≥1 be a sequence of random variables in L0
+(Ω,F , P ). Then,

there exists a sequence gn ∈ conv(fn, fn+1, . . .), i.e. gn =
∑Nn

k=n λkfk, λk ∈ [0, 1] and
∑Nn

k=n λk = 1, such that the sequence (gn)n≥1 converges a.s. to a random variable g

valued in [0,∞].



B

Convex analysis considerations

Standard references for convex analysis are the books by Rockafellar [Ro70] and Ekeland
and Temam [ET74]. For the purpose of our book, we mainly focus (unless specified) to
the case in R

d. We define R̄ = R ∪ {−∞,∞}.

B.1 Semicontinuous, convex functions

Given a function f from O open set of R
d into R̄, we define the functions f∗ and f∗ : O

→ R̄ by

f∗(x) = lim inf
y→x

f(y) := lim
ε→0

inf{f(y) : y ∈ O, |y − x| ≤ ε}

f∗(x) = lim sup
y→x

f(y) := lim
ε→0

sup{f(y) : y ∈ O, |y − x| ≤ ε}.

Definition B.1.1 (Semicontinuity)
Let f be a function from O open set in R

d into R̄. We say that f is lower-semicontinuous
(l.s.c.) if one of the following equivalent conditions is satisfied:

(i) ∀ x ∈ O, f(x) ≤ lim inf
n→∞

f(xn), for any sequence (xn)n≥1 converging to x.

(ii) ∀ x ∈ O, f(x) = f∗(x).

(iii) {x ∈ O : f(x) ≤ λ} is closed for all λ ∈ R.

We say that f is upper-semicontinuous (u.s.c.) if −f is lower-semicontinuous.

Notice that f is continuous on O if and only if f is lower and upper-semicontinuous.
The function f∗ is called a lower-semicontinuous envelope of f : it is the largest l.s.c.
function below f . The function f∗ is called a upper-semicontinuous envelope of f : it is
the smallest u.s.c. function s.c.s. above f .

Theorem B.1.1 A l.s.c. (resp. u.s.c.) function attains its minimum (resp. maximum)
on any compact.

Given a convex subset C of E vector space, we recall that a function f from C into
R̄ is convex if for all x, y ∈ C, λ ∈ [0, 1], f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). We
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say that f is strictly convex on C if for all x, y ∈ C, x �= y, λ ∈ (0, 1), f(λx + (1− λ)y)
< λf(x) + (1− λ)f(y). We say that f is (strictly) concave if −f is (strictly) convex.

The following min-max theorem is proved in Strasser [Str85], Theorem 45.8.

Theorem B.1.2 (Min-max)
Let X be a convex subset of a normed vector space E, compact for the weak topology
σ(E, E′), and Y a convex subset of a vector space. Let f : X × Y → R be a function
satisfying:

(1) x → f(x, y) is continuous and concave on X for all y ∈ Y
(2) y → f(x, y) is convex on Y for all x ∈ Y.

Then, we have

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

In the sequel, we shall restrict ourselves to the case E = R
d. Given a convex function

f from R
d into R̄, we define its domain by

dom(f) =
{
x ∈ R

d : f(x) < ∞
}

,

which is a convex set of R
d. We say that a convex function f from R

d into R̄ is proper if
it never takes the value −∞ and if dom(f) �= ∅.

We have the following continuity result for convex functions.

Proposition B.1.1 A proper convex function from R
d into R̄ is continuous on the in-

terior of its domain.

We focus on the differentiability of convex functions.

Definition B.1.2 (Subdifferential)
Given a convex function f from R

d into R̄, we define the subdifferential of f in x ∈ R
d,

denoted by ∂f(x), as the set of points y in R
d such that

f(x) + y.(z − x) ≤ f(z), ∀z ∈ R
d.

Proposition B.1.2 Let f be a convex function from R
d into R̄.

(1) If f is finite and continuous at x ∈ R
d, then ∂f(x) �= ∅.

(2) f is finite and differentiable at x ∈ R
d with gradient Df(x) if and only if ∂f(x) is

reduced to a singleton and in this case ∂f(x) = {Df(x)}.

B.2 Fenchel-Legendre transform

Definition B.2.3 (Polar functions)
Given a function f from R

d into R̄, we define the polar function (or conjugate) of f as
the function f̃ from R

d into R̄ where

f̃(y) = sup
x∈Rd

[x.y − f(x)] , y ∈ R
d.
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When f is convex, we also say that f̃ is the Fenchel-Legendre transform of f . It is clear
that in the definition of f̃ , we may restrict in the supremum to the points x lying in the
domain of f . The polar function f̃ is defined as the pointwise supremum of the affine
functions y → x.y − f(x). Thus, it is a convex function on R

d.
We may also define the polar function of a polar function. We have the following

bipolarity result.

Theorem B.2.3 (Fenchel-Moreau)
Let f be a proper, convex l.s.c. function from R

d into R̄ and f̃ its Fenchel-Legendre
transform. Then,

f(x) = sup
y∈Rd

[
x.y − f̃(y)

]
, x ∈ R

d.

We state the connection between differentiability and polar functions.

Proposition B.2.3 Let f be a proper, convex l.s.c. function from R
d into R̄ and f̃ its

Fenchel-Legendre transform. Then, for all x, y ∈ R
d, we have equivalence between

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f̃(y) ⇐⇒ f(x) = x.y − f̃(y).

Proposition B.2.4 Let f be a proper, convex l.s.c. function from R
d into R̄, strictly

convex on int(dom(f)). Then its Fenchel-Legendre transform f̃ is differentiable on
int(dom(f̃)). Furthermore, if f is differentiable on int(dom(f)), then the gradient of
f , Df , is one-to-one from int(dom(f)) into int(dom(f)) with Df = (Df̃)−1 and f̃ is
strictly convex on int(dom(f̃)).

B.3 Example in R

In Chapter 7, Section 7.3, we often meet the following situation. We have a function u

: (0,∞) → R, increasing, concave on (0,∞) and we consider the function ũ : (0,∞) →
R ∪ {∞} defined by

ũ(y) = sup
x>0

[u(x)− xy], y > 0.

ũ is a decreasing function, convex on (0,∞), and we define dom(ũ) = {y > 0 : ũ(y) <∞}.
The next proposition collects some results used in Section 7.3.

Proposition B.3.5 We have the conjugate relation

u(x) = inf
y>0

[ũ(y) + xy], x > 0, (B.1)

and

ũ(0) := lim
y↓0

ũ(y) = u(∞) := lim
x→∞

u(x).

Suppose that u is strictly concave on (0,∞). Then, ũ is differentiable on int(dom(ũ)).
Furthermore, if one of the two following equivalent conditions:
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(i) u is differentiable on (0,∞)

(ii) ũ is strictly convex on int(dom(ũ))

is satisfied, then the derivative u′ is one-to-one from (0,∞) into int(dom(ũ)) �= ∅ with
I := (u′)−1 = −ũ′, and we have

ũ(y) = u(I(y))− yI(y), ∀y ∈ int(dom(ũ)).

Finally, under the additional conditions

u′(0) = ∞ and u′(∞) = 0, (B.2)

we have int(dom(ũ)) = dom(ũ) = (0,∞).

Proof. Since the function u is concave, and finite on (0,∞), it satisfies a linear growth
condition. It follows that dom(ũ) �= ∅ and its interior is under the form

int(dom(ũ)) = (y0,∞),

where y0 = inf{y > 0 : ũ(y) <∞}.
Notice that u(∞) exists in R̄ by the increasing property of u on (0,∞). Similarly,

ũ(0) exists in R̄. From the definition of ũ, we have ũ(y) ≥ u(x)− xy for all x, y > 0, and
so ũ(0) ≥ u(∞). Moreover, we have for all y > 0, ũ(y) ≤ supx>0 u(x) = u(∞) by the
increasing property u. This proves that ũ(0) = u(∞).

Let us consider the function f from R into R̄ defined by

f(x) =
{
−u(x), x ≥ 0
∞, x < 0.

f is a proper, convex l.s.c. function on R and int(dom(f)) = (0,∞). Its Fenchel-Legendre
transform is given by

f̃(y) = sup
x∈R

[xy − f(x)] = sup
x>0

[xy + u(x)], y ∈ R.

When y < 0, we have by definition of ũ, f̃(y) = ũ(−y). When y > 0, we have by the
increasing property of u, f̃(y) ≥ λx0y +u(x0) for all λ > 1 and x0 > 0 fixed. This proves
that f̃(y) = ∞ for y > 0. For y = 0, we have f̃(0) = supx>0 u(x) = u(∞) = ũ(0). We
thus get

f̃(y) =
{

ũ(−y), y ≤ 0
∞, y > 0,

and int(dom(f̃)) = −int(dom(ũ)) = (−∞,−y0). From the bipolarity theorem B.2.3, we
have for all x ∈ R

f(x) = sup
y∈R

[xy − f̃(y)] = sup
y<0

[xy − ũ(−y)]

= sup
y>0

[−xy − ũ(y)] = − inf
y>0

[xy + ũ(y)].

In particular, we deduce the relation (B.1) for x > 0.
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Moreover, if u is strictly concave on (0,∞), then f is strictly convex on int(dom(f)).
From Proposition B.2.4, f̃ is then differentiable on int(dom(f̃)), i.e. ũ is differentiable
on int(dom(ũ)).

The equivalence between conditions (i) and (ii) of the proposition follows from the
equivalence between:

(i’) f is differentiable on int(dom(f))

(ii’) f̃ is strictly convex on int(dom(f̃)).

This is indeed a consequence of Proposition B.2.4 applied on one hand to f and on
the other hand to f̃ , which is also proper, convex and l.s.c. on R. Under one of these
conditions, we deduce that f ′ is one-to-one from int(dom(f)) into int(dom(f̃)) with
(f ′)−1 = f̃ ′ and by Proposition B.2.3, we have for all y ∈ int(dom(f̃))

f̃(y) = xy − f(x) where x = f̃ ′(y), i.e. y = f ′(x).

This proves the required relations on u and ũ.
Finally, under the conditions (B.2), the function f ′ maps (0,∞) into (−∞, 0) =

int(dom(f̃)), which means that int(dom(ũ)) = (0,∞) = dom(ũ). �
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[Nis81] Nisio M. (1981): Lectures on stochastic control theory, ISI Lect. Notes, 9, Kaigai Publ.

Osaka.

[Oks00] Øksendal B. (2000): Stochastic differential equations: an introduction with applications,

6th edition, Springer-Verlag.

[OR98] Øksendal B. and K. Reikvam (1998): “Viscosity solutions of optimal stopping prob-

lems”, Stoc. and Stoc. Reports, 62, 285-301.

[OS02] Øksendal B. and A. Sulem (2002): “Optimal consumption and portfolio with both fixed

and proportional transaction costs: a combined stochastic control and impulse control

model”, SIAM J. Control and Optim., 40, 1765-1790.

[OS04] Øksendal B. and A. Sulem (2004): Applied stochastic control of jump diffusion, Springer-

Verlag.

[Pa98] Pardoux E. (1998): “Backward stochastic differential equations and viscosity solutions

of systems of semilinear parabolic and elliptic PDEs of second order”, Stochastic analysis

and related topics, VI (Geilo, 1996), 79–127, Progr. Probab., 42, Birkhäuser, Boston, MA,
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