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Reading these notes

Chapter [1| serves to introduce notation and some preliminary material. More prelim-
inary material can be found in Appendix [Al Most of the material there is covered by
the DTF and SAF courses and you must be well familiar with the material there.

Chapter [2| is essential reading for what follows but Chapters (3| and [4] are basically
independent of each other. There is another topic in the SCDAA course, which is
the Duality Theory and this is not covered by these notes. This is again more or less
independent from material in Chapters [3|and

Exercises

You will find a number of exercises throughout these notes. You must make an effort
to solve them (individually or with friends).

Solutions to some of the exercises will be made available as time goes by but remem-
ber: no one ever learned swimming by watching other people swim (and similarly
no-one ever learned mathematics by reading others’ solutions).



1 Background and Preparation

1.1 Basic notation and useful review of analysis concepts

Here we set the main notation for the rest of the course. These pages serve as an easy
reference.

General For any two real numbers z, y,

r Ay =min{z,y}, zVy=max{r,y}, 27 =max{r,0}, 2z~ = max{—x,0}.

Sets, metrics and matrices N is the set of strictly positive integers and Ny = NU{0}.

R denotes the d-dimensional Euclidean space of real numbers. For any 2 = (z1, - - - , zq),
y = (y1,--- ,yq) in R?, we denote the inner product by xy and by | - | the Euclidean
norm i.e.

d d 1
2
Ty = g ziy; and |z|:= ( g x?)

i=1 i=1

R?*" denotes the set of real valued d x n-matrices; I,, denotes the n x n-identity
matrix. For any o € R™ 9, o = (0yj)1<i<n1<j<a We write the transpose of o as

o' = (0ji)1<j<di<i<n € R¥™. We write the trace operator of an n x n-matrix o as

Tr(o) = Y.i', 0y;. For a matrices we will use the norm |o| := (Tr(co ")) 2
Definition 1.1 (Supremum/Infimum). Given a set S C R, we say that y is the supre-
mum of S if (i) > x for each z € S and if (i) for every e > 0 there exists an element
y € S such that y > p —e. We write 4y = sup S.

The infimum is defined symmetrically as follows: \ is the infimum if (i) A < x for each
x € S and if (ii) for every € > 0 there exists an element y € S such that y < A +¢. We
write A = inf S.

Note that supremum is the least upper bound, i.e. the smallest real number greater
than or equal to all the elements of the set S. Infimum is the greatest lower bound,
i.e. the largest number smaller than or equal to all the elements of the set S. It is also
important to note that the infimum (or supremum) do not necessarily have to belong
to the set S.

Functions and functional spaces For any set A, the indicator function of A is

Ta(z)=1ifz € A, otherwise 14(z) =0if z ¢ A.

We write C*(A) is the space of all real-valued continuous functions on A with con-
tinuous derivatives up to order k € Ny, A C R™. In particular C°(A) is the space of
real-valued functions on A that are continuous.

For a real-valued function functions f = f(¢,z) defined I x A we write 0, f, J,, f and
8%% f for 1 <, j < n for its partial derivatives. By D f we denote the gradient vector
of f and by D?f the Hessian matrix of f (whose entries 1 < i,j < d are given by
Deie, f(1,2)).



Consider an interval I (and think of I as a time interval I = [0,7] or I = [0, 00)).
Then CH2(I x A) is the set of real valued functions f = f(¢,z) on I x A whose partial
derivatives 0, f, 0., f and O, f for 1 <, j < n exist and are continuous on I x A.

Integration and probability We use (€2, F,P) to denote a probability space with P
being the probability measure and F the o-algebra.

“P-a.s.” denotes “almost surely for the probability measure P” (we often omit the
reference to P). “u-a.e.” denotes “almost everywhere for the measure p”; here u
will not be a probability measure. This means is that a statement Z made about
w € Q holds P-a.s. if there is a set E € F such that P(E) = 0 and Z is true for all
we E°=0\E.

B(U) is the Borel o-algebra generated by the open sets of the topological space U.

E[X] is the expectation of the random variable X with respect to a probability P.
E[X|G] is the conditional expectation of X given G. The variance of the random vari-
able X, possibly vector valued, is denoted by Var(X) = E[(X — E(X))(X — E(X))T].

Since we may define different measures on the same o-algebra we must sometimes
distinguish which measure is used for expectation, conditional expectation or vari-
ance. We thus sometimes write E2[X], E2[X|G] or Var? to show which measure was
used.

1.1.1 General analysis definitions and inequalities
Definition 1.2 (Convex function). A function f : R — (—o0, o] is called convex if
VAel0,l]Vz,yeR fAz+ (1= N)y) < Af(z)+ (1= N)f(y).

If a function f is convex then it is differentiable a.e. and (with f’ denoting its left-
derivative, f:L its right-derivative) and we have

fly) = fl@) . o fly) — f(@)

I Pyp— 3 —
fi(x) '_31{371;—9: ==

y/ y—x y<x Yy—x
So, from the expression with infimum we see that,
if y > x then [’ (z) < Jw which implies f(y) > f(z)+f} (z)(y—=z) fory > .
Moreover, from the expression with supremum we see tha
if y < z then f (x) > Jy) = /(@) which implies f(y) > f(z)+f" (z)(y—=z) fory < z.

y—x

We review a few standard analysis inequalities, some not named and some others
named: Cauchy-Schwarz, Holder, Young and Gronwall’s inequality.

VreR z<1+2?
Va,b e R 2ab<a®+ >
VneNVabeR la+b|" < 2"_1(|a]”+ b]™)

'As y < = we multiply by negative number, flipping the inequality.



Lemma 1.3 (Cauchy-Schwarz inequality). Let H be a Hilbert space with inner product
() and norm | - |g. If z,y € H then (z,y) < |z|uly|n.

Example 1.4. i) If 2,y € R? then zy < |z||y|.

ii) We can check that L?(£2) with inner product given by E[XY] for X,Y € L?() isa
Hilbert space. Hence the Cauchy-Schwarz inequality is E[X Y] < (E[X?]) 1/2 (E[Y?]) vz

Lemma 1.5 (Young’s inequality). Let a,b € R. Then for any ¢ € (0,00) for any p,q €
(1, 00) such that 1/p+ 1/q = 1 it holds that

lalP1]b]?
ab<e—+ ——.
p € q

The above inequality is not the original Young’s inequality, that is for the choice ¢ = 1.
The one here is the original Young’s inequality with the choice (ab) = (ga)(b/¢).

Lemma 1.6 (Gronwall’s lemma / inequality). Let A = A(¢) > 0, a = a(t), b = b(t)
and y = y(t) be locally integrable, real valued functions defined on I (with I = [0,T] or
I = [0, 00)) such that Ay is also locally integrable and for almost all t € [0, T

(0)+alt) <60+ [ AGhuls) ds
Then
y(t) + a(t) < b(t) + /0 t A(s)els M (h(s) — a(s))ds  for almost all t € 1.
Furthermore, if b is monotone increasing and a is non-negative, then
y(t) +a(t) < b(t)efot AMr)dr - for almost all ¢ € 1.

If the function y in Gronwall’s lemma is continuous then the conclusions hold for all
t € I. For proof see Exercise[1.35

1.1.2 Some fundamental probability results

(Following the notation established in SAF) we define lim inf and lim sup.

Definition 1.7 (limsup & liminf). Let (a,)n,en be any sequence in R = R U {—o0, 0o}

liminf a, := lim lim min{a,,apt1,an+2,...,a;} = infsup ag,
n— oo n—00 k—o00 N f>n
limsupa, := lim lim max{an,ant1,0n+2,...,ar} = sup inf ag.
n— o~ n—00 k—00 n k>n

Clearly liminf,, o a, < limsup,,_, ., a, and if lim,_, a,, =: a exists, then lim inf,,_, a, =
limsup,,_,., a, = a. On the other hand, if liminf, ,» a, > limsup,_, an, then
lim,, 0 @y, = @ exists.

Exercise 1.8 (lim sup and lim inf of RV are RV). Show that lim inf,,_,, X, and lim sup,,_, .o X,
are random variables for any sequence of random variables X,,.



Lemma 1.9 (Fatou’s lemma). Let (X,,),cn be a sequence of non-negative random vari-
ables. Then

E [lim inf Xn] < liminf E[X,].

n—0o0 n—oo

Moreover,
i) If there exists arv. Y such that E[|Y|] < ccand Y < X, Vn (allows X,, < 0), then

E [lim inf Xn] < liminf E[X,].
n—oo

n—o0

ii) If there exists arv. Y such that E[|Y|] < co and Y > X,, Vn, then

E [lim sup Xn] > limsupE [X,,].

n—o0 n—oo

The first part of the above lemma does not require integrability of the sequence of
(Xn)nen due to the use of the Monotone Convergence Theorem in its proof. The
enumerated statements follow as a corollary of the first statement. Of course, a version
of Fatou’s lemma using conditional expectations also exists (simply replace E|[-] with
E[F).

Lemma 1.10 (Hoélder’s inequality). Let (X, X, 1) be a measure space (i.e. X is a set,
X a o-algebra and p a measure). Let p,q > 1 be real numbers s.t. 1/p+1/q =1 or let
p=1,qg=oc. Let f € LP(X,pn), g € LY X, u). Then

Jiraan< ([ |fpdu)’l’( / |g|Qdu)'11

In particular if p,q are such that 1 /p+1/¢ = 1 and X € LP(Q2), Y € L9(Q2) are random
variables then

E[|XY|] < E[|X[P]?E[|Y]*]1.

Lemma 1.11 (Minkowski’s inequality or triangle inequality). Let (X, X, i) be a mea-
sure space (i.e. X is a set, X a o-algebra and p a measure). For any p € [1,00] and

fr9 € LP(X, )

(Aﬁ+m%0;§<éfwwf+(émwmy.

Lemma 1.12 (Jensen’s inequality). Let f be a convex function and X be any random
variable with E[| X|] < cc. Then

f(E[X]) <E[f(z)].

1.2 Some useful results from stochastic analysis

For convenience we state some results from stochastic analysis. Proofs can be found
for example in Stochastic Analysis for Finance lecture notes, in [Pha09], [Bjo09]
or [KS91]].



1.2.1 Probability Space

Let us always assume that (2, F,P) is a fixed probability space. We assume that F is
complete which means that all the subsets of sets with probability zero are included
in F. We assume there is a filtration (]:t)te[o,T] (which means F, C F; C F) such that
Fu contains all the sets of probability zero.

1.2.2 Stochastic Processes, Martingales

A stochastic process X = (X;):>o is a collection of random variables X; which take
values in R?.

We will always assume that stochastic processes are measurable. This means that
(w,t) — X (w); taken as a function from Q x [0, 00) to R? is measurable with respect
to o-algebra F ® B(]0, 00)). This product is defined as the o-algebra generated by sets
E x B such that E € F and B € B(|0,c0)). From Theorem[A.2] we then get that

t — X¢(w) is measurable for all w € Q.

We say X is (F;):>0 adapted if for all t > 0 we have that X, is F;-measurable.

Definition 1.13. Let X be a stochastic process that is adapted to (F;):>o and such
that for every ¢t > 0 we have E[|X;|] < oc. If for every 0 < s < t < T we have

) E[X:|Fs] > X, a.s.then the process is called submartingale.
ii) E[X:|Fs] < X, a.s.then the process is called supermartingale.

iii) E[X:|Fs] = X, a.s.then the process is called martingale.

For submartingales we have Doob’s maximal inequality:

Theorem 1.14 (Doob’s submartingale inequality). Let X > 0 be an (F3)¢(o,r)-submartingale
and p > 1 be given. Assume E [X1] < co. Then

p
E[ swp X} < <p> E[X2].
0<t<T p—1

Definition 1.15 (Local Martingale). A stochastic process X is called a local martingale
if is there exists a sequence of stopping time (7, ),en such that 7,, < 7,41 and 7,, — o0
as n — oo and if the stopped process (X (t A 7,,))¢>0 is a martingale for every n.

Lemma 1.16 (Bounded from below local martingales are supermartingales). Let (M;)c(o,7)
be a local Martingale and assume it is positive or more generally bounded from below.
Then M is a super-martingale.

Proof. The proof makes use of Fatou’s Lemma[I.9]above. Since M is a local Martingale
then there exists a sequence of stopping times (7,,),cn increasing to infinity a.s. such
that the stopped process M;* := M;x,, is a Martingale. We have then, using Fatou’s
lemma forany 0 < s <t < T
E[M;|F,] = E[lim inf M| F,] < lim inf E[M}*|F,] = liminf M = M,
n—oo n—oo

n—oo

and hence M is a supermartingale. O

Exercise 1.17 (Submartingale). In view of the previous lemma, is a bounded from
above local martingale a submartingale?



1.2.3 Integration Classes and Itd’s Formula

Definition 1.18. By H we mean all R-valued and adapted processes g such that for
any 7" > 0 we have

T
913, = E [ / |gs|2ds} < o0,

By S we mean all R-valued and adapted processes g such that for any 7" > 0 we have

T
P [/ |lgs|%ds < oo} =1
0

Exercise 1.19. Show that H C S.

The importance of these two classes is that stochastic integral with respect to W is
defined for all integrands in class S and this stochastic integral is a continous local
martingale. For the class H the stochastic integral with respect to W is a martingale.

Definition 1.20. By .A we denote R-valued and adapted processes g such that for any

T > 0 we have T
IP’[/ |g5’d8<00:| =1
0

By H%*", §%" we denote processes taking values the space of d x n-matrices such that
each component of the matrix is in H or S respectively. By .A¢ we denote processes
taking values in R? such that each component is in A

1.2.4 1It0 processes and It6 Formula

We will need the multi-dimensional version of the It6’s formula. Let W be an n-
dimensional Wiener martingale with respect to (F);>¢. Let 0 € S™*9 and let b € A™.
We say that the d-dimensional process X has the stochastic differential

dXt = bt dt + Ot th (11)
fort € [0,T], if
t t
Xt=X0+/ bsds+/ oy dW (s).
0 0

Such a process is also called an Ité process.

The It6 formula or chain rule for stochastic processes Before we go into the
main result, let us go over an example from classic analysis. Take three functions,
u=u(t,z), g = g(t) and h = h(t) given by h(t) := u(t, g(t)). Let us compute -%h(t).

Since h is given as a composition of functions, we use here is the standard chain for
functions of several variables (this takes into account that the variation of A arising
from changes in ¢t comes from the variation of g and also from the first component in
u). Thus we have

%h(t) = (9w (t, g(t)) + (ru) (t,g(t))%g(t)-



We want to see the contrast with Itd6 formula, which has to be written in integral form
(since W has almost everywhere non-differentiable paths). To that end, we integrate

/(]Zh(S)ds:/o (8tu)(s,g(s))ds+/0 ((%u)(s,g(s))%g(s)ds

and use the Fundamental theorem of calculus

t t
h(t) — h(0) = /0 (Ou) (s, 9(s)) ds + /0 (0zu) (s, 9(s)) dg(s)
which can be written in the differential notation as

dh(t) = 0y f (t, g(t)) dt + 0. f (¢, g(t)) dg(t). (1.2)

Compare (1.2]) with (1.3) below. You see a fundamental difference: the second deriva-
tive term! It appears there exactly because the Wiener process has non-differentiable
paths and hence a correction to (1.2) is needed.

We have then the following important result.

Theorem 1.21 (Multi-dimensional It6 formula). Let X be a m-dimensional It process
given by (LI). Let u € C%2([0,T] x R™). Then the process given by u(t, X;) has the
stochastic differential

d
| = (1.3)
+5 > Oue,u(t, Xy) dX] dX7,
ij=1
where fori,j =1,...,m

dtdt = dtdW} =0, dW;dW] = 6 dt.
We now consider a very useful special case. Let X and Y be R-valued It6 processes.
We will apply to above theorem with f(x,y) = zy. Then 0,f =y, 0yf = x, Opaf =

Oyyf = 0 and O,y f = O0y,f = 1. Hence from the multi-dimensional It6 formula we
have

df (X4, Yy) =Y, dX, + X dY; + %dYt dX; + %dXt dY;.
Hence we have the following corollary
Corollary 1.22 (It6’s product rule). Let X and Y be R-valued It6 processes. Then
d(XyY;) = Xy dYy 4+ Yy dX, + dX, dY;.

1.2.5 Martingale Representation Formula and Girsanov’s theorem

Theorem 1.23 (Lévy characterization). Let (F¢).c[o, ) be a filtration. Let X = (X¢);c(0,1
be a continuous m-dimensional process adapted to (F).c(o,7] Such that fori =1,...,d
the processes

M} = X] - X
are local martingales with respect to (F;)c(or) and dM; dM;} = dijdtfori,j=1,...,d
Then X is a Wiener martingale with respect to (Fi).e(o,1)-

10



So essentially any continuous local martingale with the right quadratic variation is a
Wiener process.

Theorem 1.24 (Girsanov). Let (F¢).cjo,r) be a filtration. Let W = (Wy)icpo,r) be a
d-dimensional Wiener martingale with respect to (Fi):cjor)- Let v = (¢1)iecjo,1) be a
d-dimensional process adapted to (Fy)e[o,) such that

T
E[/ |gps|2ds] < o0.
0

t 1 t
Li := exp {—/ @) dW (s) — 2/ |<ps\2ds} 1.4
0 0

and assume that E[L7] = 1. Let Q be a new measure on Fr given by the Radon-Nikodym
derivative dQ = L(T') dP. Then

Let

t
w2 =W, + / @5 ds
0
is a Q-Wiener martingale.
We don’t give proof but only make some useful observations.

1. Clearly Ly = 1.

2. The Novikov condition is a useful way of establishing that E[L;] = 1: if
E {e% Js lenl? dt} < 00
then L is a martingale (and hence E[Ly] = E[Ly] = 1).

3. Applying It6’s formula to f(x) = exp(z) and
1
dXt = —(p;r th - §‘§0t’2dt

yields
dL; = —Lyp, dW;.

Theorem 1.25 (Martingale representation). Let W = (W4).¢(o,r) be a d-dimensional
Wiener martingale and let (Fy)ico,r) be generated by W. Let M = (M;).ejo,r) be a
continuous real valued martingale with respect to (F)ic(o,1)-

Then there exists unique adapted d-dimensional process h = (hy)cjo,r) such that for
t € [0,T] we have

d  pt
M, :M0+Z/ AL AW,
i=170
If the martingale M is square integrable then h is in H.
Essentially what the theorem is saying is that we can write continuous martingales

as stochastic integrals with respect to some process as long as they’re adapted to the
filtration generated by the process.

11



1.3 Stochastic differential equations

In this chapter we review, without proofs, some standard results about stochastic dif-
ferential equations and related partial differential equations.

1.3.1 Stochastic differential equations

On a given stochastic basis (€2, F, (F¢):e[o,c], P) We consider a stochastic differential
equation (SDE) of the form,

dX; =b(t, Xy)dt + o(t, X;) dWy, X(0) =¢, (1.5)
fort € [0,7], if
¢ t
X; :X0—|—/ b(s,Xs)ds—}—/ o(s, Xs) dWs.
0 0

Here W is a d-dimensional Brownian motion, o(t,-) is a m x d-matrix, and b(¢,-) is a
m-dimensional vector. Written component-wise, the SDE reads

d
dX] =b(t, Xo)dt + > o (t, Xo)dW/, Xi=¢&, i€{l,--- m}.
j=1

The drift and volatility coefficients
(t,w,z) —~ (b(t,w,x),a(t,w,x))

are progressively measurable with respect to F; ® B(R?); as usual, we suppress w in
the notation and write b(t, z) instead of b(¢, w, z). The initial value £ is Fy-measurable.
Note that ¢ = 0 plays no special role in this; we may as well start the SDE at some time
t > 0 (even a stopping time), and we shall write X*% = (Xﬁ’x)se[t’ﬂ for the solution
of the SDE started at time ¢ with initial value = (assuming it exists and is unique).

Remark 1.26. In the setup above the coefficients b and o are random. In applications
we will deal essentially with two settings for b and o.

i) b and o are deterministic (Borelian) functions, i.e. b(t,z) and o(t,x) are not
random. In this case, the corresponding SDE is called a diffusion process.

ii) b and o are effectively random maps, but the randomness has a specific form.
Namely, the random coefficients b(¢,w, x) and o(t,w, ) are of the form

b(t,w,z) == b(t,z,04(w)) and o(t,w,z) =7 (t,z, ()

where 3, & are deterministic (Borelian) functions on [0, 7] x R? x U , A is a com-
plete separable metric space and (a).c(o,7] is @ progressively measurable process
valued in A.

This case arises in stochastic control problems that we will study later on, an ex-
ample of which can already be seen with SDE (2.1I)). This type of SDE, depending
on a control process « is called a controlled diffusion by c.

Given T > 0, we write H?2. for the set of progressively measurable processes ¢ such
that

r
lollg, =& | [ 0P at] "<

12



Proposition 1.27 (Existence and uniqueness of solutions). Let £ € L™ (Fy) and T > 0.
Assume there exists a constant K such that

115G, O) Iz, + o (-, 0) Iz, < K,
b(t,z) — bt y)| + |o(t,2) —o(t,y)| < K|lzr—y|, P—as.

forallt < T and z,y € R%

Then the SDE has a unique (strong) solution X on the interval [0,T]. Moreover, there
exists a constant C' = C(K,T, m) such that

E

sup \Xt\m
0<t<T

< C(1L+E[g™]).

1.3.2 General properties of SDEs

In the remainder, we always assume that the coefficients b and o satisfy the above
conditions.

Proposition 1.28 (Stability). Let z,2’ e R" and 0 <t <t <T.

i) There exists a constant C = C'(K,T,m) such that

E | sup |Xb" — x12|m

t<s<T

< Clz —2|™.

ii) Suppose in addition that there is a constant K’ such that

/

E / |b(r,0)|2+|o(r,0)|2dr] < K'|s—4§|

forall 0 < s < s’ <T. Then there exists C = C(K,T) such that

E | sup ]Xg’x—Xg’ﬂQ

H<s<T

< C(K + |z)?)|t = 1.

To prove the above two propositions one uses often the following inequalities: Cauchy-
Schwartz, Holder and Young’s inequality; Gronwall’s inequality (see Lemma ;
Doob’s maximal inequality (see Theorem [1.14).

Proposition 1.29 (Flow property). Let x € R™ and 0 <t < t' < T. Then

/ Xt,z
Xte = x| se[t,T).
(This property holds even if t,t' are stopping times.)

Proof. Exercise; deduce this property from the uniqueness of solutions of SDEs. [
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Proposition 1.30 (Markov property). Let x € R?and 0 <t <t < s <T. Ifband o
are deterministic functions, then

X;’m is afunction Oft, z, s, and (WT - Wt)re[t s]”

Moreover,
E[0(X, ¢ <r<s)|Fu] =E [0(X07, ' <7 < 5)[X)7]
for all bounded and measurable functions ® : CO([t', s]; R™) — R.

On the left hand side (LHS), the conditional expectation is on F; that contains all the
information from time ¢ = 0 up to time ¢ = ¢’. On the right hand side (RHS), that
information is replaced by the process Xtt,’x at time ¢ = /. In words, for Markovian
processes the best prediction of the future, given all knowledge of the present and past
(what you see on the LHS), is the present (what you see on the RHS; all information
on the past can be ignored).

1.3.3 PDEs and Feynman-Kac Formula

(This section can be traced back to either [Pha09]] or SAF notes (Section 16).)

In the case of deterministic maps b and o in (1.5)), the so-called diffusion SDE, we can
give the following definition of Infinitesimal generator.

Definition 1.31 (Infinitesimal generator (associated to an SDE)). Let b and o be de-
terministic functions in (1.5). For all ¢ € [0, T, the following second order differential
operator L is called the infinitesimal generator associated to the diffusion (1.5)),

Lo(t,z) = b(t,x)Dep(t,x) + %Tr(aaTchp)(t,m), @ € C%2([0,T] x R™).

Although the above definition does seems weird and unfamiliar, the operator £ ap-
pears every time one uses the It6 formula to (¢, X;) where the process (Xt);c(o,7 is
the solution to (1.5)).

Exercise 1.32. Let (X;)c[o,) be the solution to (1.5).
Show that for ¢ € C12([0, T x R), we have

do(t, X¢) = (Orp + L) (t, Xy) dt + (0p00) (t, Xy) dWr.

It is possible, for certain classes of SDE and differential equations, to write the solution
to a PDE as an expectation of (a function of) the solution to the SDE associated to the
differential operator appearing in the PDE; it is not surprising that the PDE differential
operator must be the infinitesimal generator. That is the core message of the next
result.

Theorem 1.33 (Feynman-Kac formula in 1-dim). Assume that the function v : [0,T] X
R — R belongs to C*2([0,T) x R) N C°([0,T] x R) and is a solution to the following
boundary value problem

Ow(t,x) + b(t,x)0v(t, z) + %02(75, x)Ogzv(t, x) — rv(t,z) =0, (1.6)
(T, x) = h(x), (1.7)
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where b and o are deterministic functions.

For any (t,r) € [0,T] x R, define the stochastic process (Xs)qe[s, ) as the solution to the
SDE

dXs =b(s,Xs)ds+ o(s,Xs)dWs, Vse[t,T], Xt =z (1.8)

Assume that the stochastic process (e~ "o (s, X;)dzv(s, XS))se[t 7 € L2([0,T] x R).

Then the solution v of (1.6)-(1.7) can be expressed as (with E, ,[-] = E[-|X; = z])
o(t,z) = e "TIE L [h(Xr)]  V(ta)€[0,T xR

Proof. The proof is rather straightforward and is based on a direct application of Itd’s
formula.

Define the process (Y;) e 1] as Ys = e "*v(s, X,) where X is given by (I.8). Applying
It6’s formula to Y, i.e. computing dY; gives

4, = d(e " u(s, X,) )
= (—r)e "vds+ e "P0svds + e "0 vdXs + %eirs :cx”( dX5)2
=e " [ —rv+ 0w + boyv + %Uzaa:x”] ds+e " [Uaﬂfv} dWs,

where the v function is evaluated in point (s, X;). Using the equality given by
we see that the ds term disappears completely leaving

dYs = d(efrsv(s,Xs)) =e¢ " o(s, Xs)0p0(s, Xs) | dW.

Integrating both sides from s =t to s = T gives

s=T

T
[e*rsv(s,Xs)} = / e "o (u, Xy)0gpv(u, Xy) dWy,
t

s=t

T
s et Xy) = e "Tu(T, X7) — / e "o (u, Xy)0pv(u, Xyy) dWy,
t

T
sot, X)) = e " TDy(T, X7) — / e g (u, Xy)Opv(u, X)) dWy.
t

Taking expectations E(, ,.y[-] on both sides (recall that the process X starts at time ¢ in
position z; this is the meaning of the subscript (¢, x) in the expectation sign),

U(t7 Xt) = eir(Tit)EtJ [U(T7 XT)] = eiT(Tit)]Et,z [h(XT)] )
where the expectation of the stochastic integral disappears due to the properties of
the stochastic integral, since by assumption we have (e~"o (s, X)0,v(s, Xs))s cit1] €
L?([0,T] x R). O
Exercise 1.34 (Two extensions of the Feynman-Kac formula). a) Redo the previous

proof when the constant r is replaced by a function r : [0, 7] x R — R; assume r to be
bounded and continuous. Hint instead of e~"*, use exp{— [;’ r(u, X,,) du}.

b) Redo the previous proof when the PDE is equal to some f(t,z) instead of
being equal to zero.
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1.4 Exercises

Exercise 1.35 (On Gronwall’s lemma). Prove Gronwall’s Lemma by following these
steps:

1) Let ,
z(t) = (ei Jo MT)dT) /0 A(s)y(s) ds.

and show that .
Z(t) < A(t)e” o XA (h(1) — a(t)) .

ii) Integrate from 0 to ¢ to obtain the first conclusion Lemma (1.6
iii) Obtain the second conclusion of Lemma|l.6

Exercise 1.36 (On liminf). Let (a,),en be a bounded sequence. Then the number

(inf{ay : £ > n})

lim
n—oo
is called limit inferior and is denoted by lim inf,, .~ ay,.

1. Show that the limit inferior is well defined, that is, the limit lim,, ,~ (inf{ay : £ > n})
exists and is finite for any bounded sequence (a,,).

2. Show that the sequence (a,,),en has a subsequence that converges to lim,,_,, inf a,.

Hint: Argue that for any n € N one can find ¢ > n such that
1

inf{ag : k >n} <a; <inf{ap : k >n}+ —.

n

Use this to construct the subsequence we are looking for.

Exercise 1.37 (Property of the supremum/infimum). Let a,b € R. Prove that

if b> 0, then sup {a + bf(w)} =a+bsup f(x),
zeX zeX

if b <0, then sup{a+bf(z)} =a+binf f(z).
reX zeX
The below exercises were created by Dr. David Siska and are the first set of exercises

to the Course Risk Neutral Asset Pricing (RNAP).

Exercise 1.38 (ODEs). Assume that (r;) is an adapted stochastic process such that for
anyt >0 fot |rs| ds < oo holds P-almost surely (in other words r € A).

1. Solve
dBt = BtTtdt, BO =1. (19)

2. Is the function ¢ — B; continuous? Why?
3. Calculate d(1/By).

Exercise 1.39 (Geometric Brownian motion). Assume that 4 € Aand o € S. Let W
be a real-valued Wiener martingale.
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2.
3.
4.

. Solve

dSt = St [,ut dt + gt th] y S(O) = S. (110)

Hint: Solve this first in the case that p and o are real constants. Apply It0’s
formula to the process S and the function x — In z.

Is the function ¢ — S; continuous? Why?
Calculate d(1/S;), assuming s # 0.
With B given by ((1.9) calculate d(S;/By).

Exercise 1.40 (Multi-dimensional gBm). Let W be an R¢-valued Wiener martingale.
Let u € A™ and o € S™*¢. Consider the stochastic processes S; = (Si(t))icio,r given

by

1.

2.

m
S} = Sjpidt + 8} > o AW}, Sh=si,i=1,...,m. (1.11)
j=1

Solve fori=1,...,m.

Hint: Proceed as when solving (1.10). Start by assuming that x4 and o are
constants. Apply the multi-dimensional It6 formula to the process S; and the
function  — In(z). Note that the process S; is just R-valued so the multi-
dimensionality only comes from W being R? valued.

Is the function ¢ — S} continuous? Why?

Exercise 1.41 (Ornstein—Uhlenbeck process). Let a,b,0 € R be constants such that
b> 0,0 > 0. Let W be a real-valued Wiener martingale.

1.

2.
3.
4.

Solve
dry = (b—ary) dt + o dW;,  7(0) = 19. (1.12)

Hint: Apply It&’s formula to the process r and the function (¢, z) — e®x.
Is the function ¢ — r; continuous? Why?
Calculate E[r;] and E[r?].

What is the distribution of r;?

Exercise 1.42. If X is a Gaussian random variable with E[X] = x and Var(X) =
E[X? — (E[X])?] = ¢ then we write X ~ N (u,c?).

Fact. If X ~ N(0,0%), Y ~ N(0,0%) are independent then X +Y ~ N(0,0% + 0%).

02
Show that if X ~ N(u,0?) then E[e*] = /T2,
Exercise 1.43. Consider the SDE

dX5" = b(XE%) ds + o (XE")dW,, t<s<T, X" =z.

Assume it has a unique strong solution i.e. if Y2 is another process that satisfies the
SDE then

P| sup | XL —YDI*| >0| =0.
t<s<T

Show that then the flow property holds i.e. for 0 < ¢ < ¢ < T we have

’ t,x
X}
S

X =X : s €[t T).
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1.5 Solutions to Exercises

Solution (Solution to Exercise[1.35)). Let

z(t) = (e* Jo MT)‘”) t A(s)y(s) ds.

0

Then, almost everywhere in I,

2(t) = Aty Jo X (yof) - / Asw(s) ds),

<b(t)—a(t)

by the inequality in our hypothesis. Hence for a.a. s € T

s

2 (s) < A(s)e™ o A9 (p(s) — afs)).

Integrating from O to ¢ and using the fundamental theorem of calculus (which gives us fot Z'(s)ds =
z(t) — z(0) = z(¢)) we obtain

/t A(s)y(s) ds < elo Ardr /t A(s)e™ Jo AT (h(5) — a(s)) ds
0

0
- / M AP (4(s) — a(s)) ds.
0

Using the left hand side of above inequality as the right hand side in the inequality in our
hypothesis we get

y(t) + a(t) < b(t) + / )\(s)ef-: AT (h(s) — a(s)) ds,

0

which is the first conclusion of the lemma. Assume now further that b is monotone increasing
and a nonnegative. Then

y(t) +a(t) < b(t) +b(t) /Ot A(s)el Awdr g

t
= b(t) + b(t) / —de S AT — () 4 b(t) (—1 +els WW)
0
= b(t)edo Mr)dr,
Solution (Solution to Exercise[1.36]). Let n € N.

1. The sequence b, := inf{a; : k¥ > n} is monotone increasing as {ax : k > n+ 1} is a
subset of {ay, : £ > n}, hence b,, < b,11. Additionally, the sequence is also bounded by
the same bounds as the initial sequence (a,). A monotone and bounded sequence of
real numbers must converge and hence we can conclude that lim inf,,_, ., a,, exists.

2. It follows from the definition of infimum that there exists a sequence ¢ = i(n) > n such
that

1 1
b, =inf{ax : k >n} <a; <inf{ag: k >n}+—="b, + —.
n n

The sequence of indices (i(n)), _, might not be monotone, but since i(n) > n it is

always possible to select its subsequence, say (j(n)) that is monotone.

neN?
Since |a;(n) — bn| — 0 and (b, )nen converges to liminf,, . an, then so does (a;(n))n-
As (aj(n))n is a subsequence of (a;(,))» the same is true for (a;(,)),. Hence the claim
follows.
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Solution (Solution to Exercise [1.37). We will show the result when b > 0, assuming that the
sup takes a finite value. Let f* := sup,cx f(z), and V* :=sup,cy {a + bf(2)}.

To show that V* = a + bf*, we start by showing that V* < a + bf*.

Note that for all z € X we have a+bf* > a+bf(x), thatis, a+ bf* is an upper bound for the
set {y : y = a + bf(z) for some z € X}. As a consequence, its least upper bound V* must be
such that a + bf* > V* = supex{a + bf(x)}.

To show the converse, note that from the definition of f* as a supremum (see Definition[1.1)),
we have that for any € > 0 there must exist a z° € X such that f(z°) > f* —e.

Hence a + bf(Z°) > a + bf* — be. Since T° € X, it is obvious that V* > a + bf(Z°). Hence
V* > a+ bf* — be. Since ¢ was arbitrarily chosen, we have our result: V* > a + bf*.

Solution (Solution to Exercise[1.38). Lett € [0, 00).

1. We are looking to solve:

which is equivalent to

dBTit) = r(t)B(t) for almost all ¢, B(0) = 1.

Let us calculate (using chain rule and the above equation)

d _dBit) 1
! [ln B(t)] = 0 B r(t).

Integrating both sides and using the fundamental theorem of calculus

InB(t) —In B(0) = /0 r(s) ds

B(t) = exp (/otr(s) ds> .

2. First we note that for any function f integrable on [0,c0) we have that the map ¢ —
fg’ f(z) dx is absolutely continuous in ¢ and hence it is continuous. The function z — e”
is continuous and composition of continuous functions is continuous. Hence ¢t — B(t)
must be continuous.

and hence

3. There are many ways to do this. We can start with (1.9) and use chain rule:

ilzw) =% Cww) =0 (5m)

t(55) = O g

Or we can start with the solution that we have calculated write
d[ 1 d t
- | | = — _ d
i [5w) = e (- o)
t 1
= —r(t) exp (—/0 r(s)ds> = —r(t) <_B(t)>

which leads to the same conclusion again.

and so
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Solution (Solution to Exercise [1.39). 1. We follow the hint (but skip directly to the gen-
eral x4 and o). From It0’s formula:

d(In S(t) = ﬁdé‘(t) - %S%wdsm -dS(t) = <u(t) - ;a%)) dt + pu(t)dw (t).

Now we write this in the full integral notation:

In S(t) =1nS(0) + /Ot {u(s) - ;(;2(5)} ds + /Otu(s)dW(s).
Hence . .
S(t) = sexp (/o {,u(s) - ;0’2(8)] ds —l—/o u(s)dW(s)) . (1.13)

Now this is the correct result but using invalid application of 1t&’s formula. If we want a
full proof we call (I.13) a guess and we will now check that it satisfies (1.10). To that
end we apply Itd’s formula to  — sexp(z) and the It6 process

X0 = [ [ = 3] as + [ s,
Thus
dS(t) = d(f(X(t)) = seXDdX(t) + %sex(t)dX(t)dX(t)
= S(t) Ku(t) — ;a%)) dt + u(t)dW(t)} + %S(t)aQ(t)dt.

Hence we see that the process given by (1.13)) satisfies (1.10).

2. The continuity question is now more intricate than in the previous exercise due to the
presence of the stochastic integral. From stochastic analysis in finance you know that Z
given by

Z(t) ::/0 o(s)dW(s)

is a continuous stochastic process. Thus there is a set Q' € F such that P(0') = 1
and for each w € Q' the function ¢ — S(w,t) is continuous since it’s a composition of
continuous functions.

3. If s # 0 then S(t) # 0 for all . We can thus use It6’s formula

1 1 1
d (sg)) =~ W + G SIS

= _% [u(t)dt + o (t)dW ()] + ﬁaQ(t)dt
= 505 (00 + o) dt = oW ()]

4. We calculate this with Itd’s product rule:

500Y _gema( 1) 4 L 1

+(Z7) =504 (57) + 550 + 1504 (55
_ —r(t)g((?)dt + u(t)g((?)dt + a(t)g((?)dW(t)
— S ) = (o)t + oW ().
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Solution (Solution to Exercise[1.40). 1. We Itd’s formula to the function « — In(x) and
the process S;. We thus obtain, for X;(¢) := In(S,(t)), that

1 1

— (t)dt + ; 053 ()W () — % ; o, ()dt

= [Ni(t) - % > J?j(t)] dt -+ 0i;(t)dW;(1).
=1

j=1
Hence
Xl(t) — Xl(O) =1In Si(t) —1In Sl(t)
t 1" n t
:/0 |:m(s) - 2]210;@.(3)} ds+jzl/0 i (8)dW;(s).
And so
Si(t) = Si(0) exp {/0 |:/¢i(s) - %Zafj(s) ds + Z/O 0 dwj(s)} :

2. Using the same argument as before and in particular noticing that for each j the function
t— fot 0i;(s)dW;(s) is continuous for almost all w € 2 we get that ¢t — 5,(¢) is almost
surely continuous.
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2 Introduction to Stochastic Control

2.1 A motivating example from Merton’s problem

In this part we give a motivating example to introduce the problem of dynamic asset
allocation and stochastic optimization. We will not be particularly rigorous in these
calculations.

The market Consider an investor can invest in a two asset Black-Scholes market: a
risk-free asset (“bank” or “Bond”) with rate of return » > 0 and a risky asset (“stock”)
with mean rate of return p > r and constant volatility ¢ > 0. Suppose that the price
of the risk-free asset at time ¢, B;, satisfies

B
B _ Lt or By = Bpe™,  t>0.
By
The price of the stock evolves according to the following SDE:
d
a5 _ pdt 4+ o dWs,
St

where (WW;):>0 is a standard one-dimensional Brownian motion one the filtered prob-
ability space (2, F,F = (F¢)e>0, P).

The agent’s wealth process and investments Let X} denote the investor’s wealth
in the bank at time ¢ > 0. Let m; denote the wealth in the risky asset. Let X; = X} +m;
be the investor’s total wealth. The investor has some initial capital X = = > 0 to
invest. Moreover, we also assume that the investor saves / consumes wealth at rate
C; at time ¢t > 0.

There are three popular possibilities to describe the investment in the risky asset:

(i) Let & denote the number of units stocks held at time ¢ (allow to be fractional
and negative),

(i) the value in units of currency m; = & S; invested in the risky asset at time ¢,

(iii) the fraction v; = Zt of current wealth invested in the risky asset at time ¢.
X, Y

The investment in the bond is then determined by the accounting identity X? = X; —
m¢. The parametrizations are equivalent as long as we consider only positive wealth
processes (which we shall do). The gains/losses from the investment in the stock are
then given by

Ty Xy

d
St St7 St

& dSy, dSt .

The last two ways to describe the investment are especially convenient when the
model for S is of the exponential type, as is the Black-Scholes one. Using (ii),

tﬂ_s t st t
X = —dS; X — 7 — Csd
t x—|—/0 S, +/0( 7'[‘) B. /0 S
t

¢
:x—|—/ [Ws(u—r)+rXs—C’s]ds—|—/ wso dW
0 0
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or in differential form

dXy = [m(p —7) +7X; — Ct] dt + mo dW4, Xo=1z.

Alternatively, using (iii), the equation simplifies even further Recall m = v X.

d dB
dX; = Xtutﬁ + X (1—1y) 5t — Cydt
St By

= [Xt (Vt(ﬂ — 7’) + 7’) — Ct} dt + XtVtO' th

We can make a further simplification and obtain an SDE in “geometric Brownian mo-
tion” format if we assume that the consumption C; can be written as a fraction of the
total wealth, i.e. C; = k;X;. Then

dXt == Xt [I/t(,u - T‘) +7r— I{t] dt + XtVtO' th . (21)

Exercise 2.1. Assuming that all coefficients in SDE ([2.1) are integrable, solve the SDE
for X and hence show X > 0 when Xy =z > 0.

The optimization problem The investment allocation/consumption problem is to
choose the best investment possible in the stock, bond and at the same time consume
the wealth optimally. How to translate the words “best investment” into a mathemat-
ical criteria?

Classical modeling for describing the behavior and preferences of agents and investors
are: expected utility criterion and mean-variance criterion.

In the first criterion relying on the theory of choice in uncertainty, the agent compares
random incomes for which he knows the probability distributions. Under some con-
ditions on the preferences, Von Neumann and Morgenstern show that they can be
represented through the expectation of some function, called utility. Denoting it by
U, the utility function of the agent, the random income X is preferred to a random in-
come X' if E[U(X)] > E[U(X")]. The deterministic utility function U is nondecreasing
and concave, this last feature formulating the risk aversion of the agent.

Example 2.2 (Examples of utility functions). The most common utility functions are

e Exponential utility: U(z) = —e~“?, the parameter « > 0 is the risk aversion.
e Log utility: U(z) = In(z)
e Power utility: U(z) = (27 — 1)/ for v € (—o0,0) U (0, 1).
e Iso-elastic: U(x) = 2177/(1 — p) for p € (—o0,0) U (0, 1).
In this portfolio allocation context, the criterion consists of maximizing the expected

utility from consumption and from terminal wealth. In the the finite time-horizon
case: T < oo, this is

T
supE [/ U(Cy) dt + U(Xf’c) , where (2.1)) gives X;”C = X;. (2.2)
v,C 0

ZNote that, if ; expresses the fraction of the total wealth X invested in the stock, then the fraction
of wealth invested in the bank account is simply 1 — v.
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Without consumption, i.e. V¢ we have C(¢) = 0, the optimization problem could be
written as

supE [U(X/)] , where gives X/ = X;. (2.3)

Note that the maximization is done under the expectation.

In the infinite time-horizon case: 7" = co. In our context the optimization problem
is written as (recall that C; = k;X;"")

supE [/ e U (ke X,") dt, with (2-I) giving X; = X" 2.4)

H7V 0

Let us go back to the finite horizon case: 7' < oo. The second criterion for describing
the behavior and preferences of agents and investors, the mean-variance criterion,
relies on the assumption that the preferences of the agent depend only on the expec-
tation and variance of his random incomes. To formulate the feature that the agent
likes wealth and is risk-averse, the mean-variance criterion focuses on mean-variance-
efficient portfolios, i.e. minimizing the variance given an expectation.

In our context and assuming that there is no consumption, i.e. V¢ we have C; = 0,
then the optimization problem is written as

inf {Var(Xy) : E[Xf] =m, me (o,oo)}.

We shall see that this problem may be reduced to the resolution of a problem in the
form (2.2) for the quadratic utility function: U(z) = A — 22, A € R.

2.1.1 Basic elements of a stochastic control problem

The above investment-consumption problem and its variants (is the so-called “Merton
problem” and) is an example of a stochastic optimal control problem. Several key
elements, which are common to many stochastic control problems, can be seen.

These include:

Time horizon. The time horizon in the investment-consumption problem may be
finite or infinite, in the latter case we take the time index to be ¢ € [0, c0). We will also
consider problems with finite horizon: [0,7] for T' € (0, c0); and indefinite horizon:
[0, 7] for some stopping time 7 (for example, the first exit time from a certain set).

(Controlled) State process. The state process is a stochastic process which describes
the state of the physical system of interest. The state process is often given by the
solution of an SDE, and if the control process appears in the SDE’s coefficients it is
called a controlled stochastic differential equation. The evolution of the state process is
influenced by a control. The state process takes values in a set called the state space,
which is typically a subset of R?. In the investment-consumption problem, the state
process is the wealth process X in ([2.1).

Control process. The control process is a stochastic process, chosen by the “con-
troller” to influence the state of the system. For example, the controls in the investment-
consumption problem are the processes (v;); and (C); (see (2.1)).

We collect all the control parameters into one process denoted oo = (v, C). The control
process (at)ic[o,7] takes values in an action set A. The action set can be a complete
separable metric space but most commonly A € B(R™).
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For the control problem to be meaningful, it is clear that the choice of control must
allow for the state process to exist and be determined uniquely. More generally, the
control may be forced satisfy further constraints like “no short-selling” (i.e. 7(¢) > 0)
and or the control space varies with time. In the financial context, the control map
at time ¢ should be decided at time ¢ based on the available information F;. This
translates into requiring the control process to be adapted.

Admissible controls. Typically, only controls which satisfy certain “admissibility”
conditions can be considered by the controller. These conditions can be both tech-
nical, for example, integrability or smoothness requirements, and physical, for exam-
ple, constraints on the values of the state process or controls. For example, in the
investment-consumption problem we will only consider processes X*:* for which a
solution to exists. We will also require C; > 0 and that the investor have non-
negative wealth at all times, which places further restrictions on the class of allowable
controls.

Objective function. There is some cost/gain associated with the system, which may
depend on the system state itself and on the control used. The objective function con-
tains this information and is typically expressed as a function J(z, «) (or in finite-time
horizon case J(t, x, «)), representing the expected total cost/gain starting from system
state x (at time ¢ in finite-time horizon case) if control process « is implemented.

For example, in the setup of (2.3)) the objective functional (or gain/cost map) is
J(0,z,v) =E [U(X"(T))], (2.5)

as it denotes the reward associated with initial wealth 2 and portfolio process v. Note
that in the case of no-consumption, and given the remaining parameters of the prob-
lem (i.e. 1 and o), both x and v determine by themselves the value of the reward.

Value function. The value function describes the value of the maximum possible gain
of the system (or minimal possible loss). It is usually denoted by v and is obtained,
for initial state = (or (¢,x) in finite-time horizon case), by optimizing the cost over
all admissible controls. The goal of a stochastic control problem is to find the value
function v and find a control o* whose cost/gain attains the minimum/maximum
value: V(z) = J(z, ) for starting state z. For completeness sake, from and
@.9), if v* is the optimal control, then we have the value function

V(z) = sng U(X"(1))] = sup J(z,v) = J(z,v"). (2.6)

Typical questions of interest Typical questions of interest in Stochastic control
problems include:

e Is there an optimal control?

e Is there an optimal Markov control?
e How can we find an optimal control?
e How does the value function behave?

e Can we compute or approximate an optimal control numerically?

There are of course many more and, before we start, we need to review some concepts
of stochastic analysis that will help in the rigorous discussion of the material in this
section so far.
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2.2 Controlled diffusions

We now introduce controlled SDEs with a finite time horizon 7" > 0; the infinite-
horizon case is discussed later. Again, (2, F,P) is a probability space with filtration
(F:) and a d’-dimensional Wiener process W compatible with this filtration.

We are given an action set A (in general separable complete metric space) and let
Uy be the set of all A-valued progressively measurable processes, the controls. The
controlled state is defined through an SDE as follows. Let

b:[0,T] xRYx A—R? and o:[0,7] x RY x A — R>*?
be measurable functions satisfying the Lipschitz and linear growth conditionsﬂ

Assumption 2.3. There is a constant K and an integrable process x = k; such that
for any ¢, z, y, a we have

]b(t,m,a) - b(t’ Y, CL)‘ =+ ‘U(t737:a) - U(tvyva)‘ < K‘.’L‘ - y‘a (27)
|b(t, z,a)| + |o(t,z,a)] < k(14 |x]) 2.8)

and E [ k2 ds < o for any t.

Let U C Uy be the subset of control processes for which we have Assumption We
will refer to this set as admissible controls. Note that in most of our examples « € U if
and only if E [ o ds < co.

Given a fixed control « € U, we consider the SDE for 0 < ¢ < T < oo for s € [t, T

dX, :b(s,XS,as) ds—l—a(s,XS,as) dWs, X;=E&. (2.9)

With Assumption the SDE (2.9) is a special case of an SDE with random coef-
ficients, see (I.5). As discussed in Section and the results there, we have the
following result.

Proposition 2.4 (Existence and uniqueness). Let t € [0,T], ¢ € L%(F;) and o € Up.
Then SDE (2.9) has a unique (strong) Markov solution X = X on the interval [t,T]
such that

supE sup |Xs’2 <c(1 +E‘§|2)
acl  s€lt,T]

Moreover, the solution has the properties listed in Proposition |1.28

2.3 Formulation of stochastic control problems

In this section we revisit the ideas of the opening one and give a stronger mathematical
meaning to the general setup for optimal control problems. We distinguish the finite
time horizon 7' < oo and the infinite time horizon 7' = oo, the functional to optimize
must differ.

3 Note that the Lipschitz condition for a certain variable implies that the linear growth condition is
satisfied for that variable. One is not able to conclude anything about the (possibly) other variables. From
(2.7) one cannot conclude as the latter assumes linear growth in the a variable. In mathematical
terms, from on can only conclude that |b(¢, z,a)| + |0 (¢, z,a)| < Kt,qo(1 + |z|) with the associated
constant K depending on ¢ and a.

26



In general, texts either discuss maximization or a minimization problems. Using anal-
ysis results, it is easy to jump between minimization and maximization problems:
max, f(x) = —min, —f(z) and the z* that maximizes f is the same one that mini-
mizes —f (draw a picture to convince yourself).

Finite time horizon

Let
T
J(t,€, a) :Z]E[/ Fs, X0, ) ds + g(XP9) |
t

where X, ¢ solves (2.9) (with initial condition X (¢) = &£). The J here is called the
objective functional. We refer to f as the running gain (or, if minimizing, running cost)
and to g as the terminal gain (or terminal cost).

We will ensure the good behavior of J through the following assumption.

Assumption 2.5. There is K > 0 such that for all ¢, z, y, a we have

l9(z) —g(W)| + |f(t,z,a) = f(t,y,a)] < K|z —yl,
[f(t,0,a)] < K.
Note that this assumption is too restrictive for many of the problems we want to

consider. Indeed a typical g(z) = 2? is not covered by such assumption. However it
makes the proofs much simpler. For bigger generality consult e.g. [Kry80].

Exercise 2.6 (The objective functional J is well-defined). Let Assumptions[2.3|and [2.5]
hold. Show that there is ¢z > 0 such that |J(-, -, )| < er(1 + |z|) for any « € U[t, T].

The optimal control problem formulation We will focus on the following stochas-
tic control problem. Let ¢ € [0,7] and x € RY. Let

T
v(t,z) = sup J(t,z,a)= sup E [/ f(s, X3 a) ds + g(X;’t’x)
(P) aeUlt,T) a€U[t,T] t
and X solves ([2.9) with X" = z.
The solution to the problem (P), is the value function, denoted by v. One of the

mathematical difficulties in stochastic control theory is that we don’t even know at
this point whether v is measurable or not.

In many cases there is no optimal control process a* for which we would have v(t, z) =
J(t,z,a*). Recall that v is the value function of the problem (P). However there is
always an e-optimal control (simply by definition of supremum).

Definition 2.7 (c-optimal controls). Take ¢ € [0,7] and z € R™. Let € > 0. A control
af € Ugqlt, T) is said to be e-optimal if

v(t,x) <e+ J(t,xz,a%). (2.10)

Lemma 2.8 (Lipschitz continuity in z of the value function). If Assumptions[2.3|and[2.5]
hold then there exists C > 0 such that for all t € [0,T] and z,y € R% we have

vt x) —v(t,y)| < Crlz —yl.
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Proof. The first step is to show that there is C'r > 0 such that for any « € U/ we have
I:= |J(t,l’, a) - J(tvyaa)‘ < CfT|J3 - y| :

We note that due to Holder’s and Young’s inequalities

I’<E

T 2
2 (/ F(s, X55% ag) — (s, X592, ) d5> +2(g(X5") — g(X%y’a))Ql
t
T

<E [21’ / [F(s, XE™% ag) — (s, XE¥, o) ds + 2|g(Xp5) — g(Xéfﬁy’”)ﬂ :
t

Using Assumption (Lipschitz continuity in x of f and g) we get

T
I’ < 2TK2/ E|X§@’a _ quy,a
¢

2ds + 2K2E| Xbme — Xbve|?,

Then, using Proposition [1.28] we get
I? <2(T? + 1)K? sup E|XL%Y — X0¥22 < Cplz —y)?.
t<s<T

We now need to apply this property of J to the value function v. Let ¢ > 0 be
arbitrary and fixed. Then there is o € U such that v(¢,z) < e + J(t, z,a). Moreover
v(t,y) > J(t,y,a). Thus

’U(t,.%') - 'U(t,y) Se+ J<t7x7a5) - J(ta y7a€) Se+ CT“Z. - y‘ :
With ¢ > 0 still the same and fixed there would be 5° € U such that v(t,y) < ¢ +
J(t,y, B%). Moreover v(t,x) > J(t,z, ) and so

U(t’y) - U(t,ﬂj‘) <e+ J(t’yyﬁs) - ‘](ta 1:756) <e+ CT|3'5 - y‘ :

Hence —c — Cr|z — y| < v(t,z) —v(t,y) < e+ Crlr — y|. Letting ¢ — 0 concludes the
proof. O

An important consequence of this is that if we fix ¢ then = — v(¢, ) is measurable (as
continuous functions are measurable).

2.4 Exercises

Exercise 2.9 (Further moment bounds). Fix k& > 1. Assume that for all there is x;
2k

k—1
such that E(fOT ket dt) < oo and for any (¢, z,a)

b(t, z,a)| + |o(t, 2z, a)| < k(1 +[2]).
Let X be a solution to (2.9) for some ¢ € R?. Show that there is C' = Cp, 7 such that

sup E[|X,[*"] < Cr(1+[¢[).

s€[0,T7]
Exercise 2.10 (Bound on J). Assume that the conditions of Exercise hold. Show
that, if there exist constants M > 0 and k > 0, such that for any s € [0, 7], z € R?
anda € A,

|f(s,2,0)] + |g(x)] < M(1+ [2]*)
then there exists a constant C = C7yx  such that |J (¢, z,a)| < C(1 + |z|**) for any
a € U and any z € RY,
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2.5 Solutions to Exercises

Solution (to Exercise[2.9). Take absolute value in (2.9) and raise to power of 2k. Then

2k

s 2k
/ b(t, Xy, e ) dr|  + ¢
t

|Xs‘2k S ck’|§|2k + ¢k

/ o(t, X, a,) dW,
t

Taking expectation we get

2k 2k

= ¢+ I+ 1, .

E|Xs\2k < ck|§|2k+ckE‘/ b(t, X, o) dr
¢

+ciE / o(t, Xp, ) dW,
¢

We start by applying Holder’s inequality to /;:

s k
< Ck,TE</ b(t,Xr,aT)Fdr)
t

Then we need our growth assumption to see that

s 2k
I, = ckE‘/ b(t, X, o) dr
t

k

S k S
I < OME(/ |b(t,X,.,a,.)2dr> < ck,TE</ K214 |X7.|2)dr>
t t

We now consider I5: we use e.g. Burkholder-Davis—-Gundy inequality to see

s k
<CkIEI(/ |o(t7XT7aT)|2dr) :
t

Now we apply our growth assumption to see that

I < C’;JE(/ K2(1+ |XT2)dr)
t

With Holder’s inequality we see that
s o k—1 s
< ckE</ RET dr) E(/ (1+ |XT2k)dr)
t t

E(/ mf(1+Xr|2)dr)
t
< Ck,H,TE(/ (1+|Xr2k)dr>.
t

s 2k
I2 :CkE’/ J(t,XT,OzT)dWT
t

k

k

Altogether we now have
E|X % < exlé)® + Chr /8(1 +E|X,|*)dr.
t
Now take y(s) := E|X,|?* so that we have
Vo) < CunrlL+I62) + [ Cunrytrar.
With Gronwall’s inequality we see that y(s) < Cp .7 (1 + |€|?¥)e“ =75 and this is exactly

(after taking supremum)

sup E|X,|%F < O(1+ |¢*%).
t<s<T

Solution (to Exercise[2.10). We will write X; = X!**. Then

T
I(t,2,0)| <E / (5, Xor )] ds + g(X1)|

< (1 —|—T) t<S‘;l£TIE Hf(saXs,as)| + |g(Xs)|]

<MQA+T) sup E[1+ |Xs|2k] < C(1+ =),
t<s<T

where, in the last step, we used the conclusion of Exercise[2.9
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3 Dynamic Programming and Hamilton-Jacobi-Bellman Equa-
tions

3.1 Dynamic Programming Principle

Dynamic programming (DP) is one of the most popular approaches to study the
stochastic control problem (P). The main idea was originated from the so-called Bell-
man’s principle, which states

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

The following is the statement of Bellman’s principle / dynamic programming.

Theorem 3.1 (Bellman’s principle / Dynamic programming). For any 0 <t <t < T,
for any x € R™, we have

i
v(t,z) = sup E[ / F(5, X80 ag) ds +v(f, X07)
a€UIL,1] t

X = x] : (3.1)
The idea behind the dynamic programming principle is as follows. The expectation on
the RHS of represents the gain if we implement the time ¢ until time ¢ optimal
strategy and then implement the time # until 7' optimal strategy. Clearly, this gain will
be no larger than the gain associated with using the overall optimal strategy from the
start (since we can apply the overall optimal control in both scenarios and obtain the
LHS).

What equation says is that if we determine the optimal strategy separately on
each of the time intervals [t, ] and [£, T] we get the same answer as when we consider
the whole time interval [t, T'| at once. Underlying this statement, hides a deeper one:
that if one puts the optimal stategy over [t, 1) together with the optimal stategy over
[t, T this is still an optimal strategy.

Note that without Lemma [2.8] we would not even be allowed to write (3.1) since
we need v(t, Xio"t’x) to be a random variable (so that we are allowed to take the
expectation).

Let us now prove the Bellman principle.

Proof of Theorem We will start by showing that v(¢,z) < RHS of (3.1I). We note
that with a € U[t, T| we have

t T
Itw,a) =B | [ s, X8 a0ds+ [ (s, X2 ads + g(X5)
t t

Xta:x] .

We will use the tower property of conditional expectation and use the Markov property
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of the process. Let ]-}XQ =0(X2:t<s<t). Then

J(t,z, )

t T
:E[/ttf(s,Xg,as)ds—i—E{/i f(Sngvas)dS—i_g(X%)

ffxa} ’Xa = 3:]

t T
:E[/ttf(stg7aS)d8+E|:/i f(s,X?,as)ds—i—g(X%)

Xto‘} ’X X = :U] .
Now, because of the flow property of SDEs,

T
E [ [ 5 xet ads + g5
t

Xia,t,x] —J (f, Xf"t’$, (as)se[E,T}) <w (i, XE‘J,x) _

Hence

J(t,z,a) <supE
acU

t

Taking supremum over control processes « on the left shows that v(¢, ) < RHS of (3.1).

We now need to show that RHS of (3-1) < v(t,z). Fix ¢ > 0. Then there is of € U[t, ]
such that

i
RHS of (3.I) < e+ E / f(s’Xsaf,t,a:?ai) ds + U(ﬁ X,ga ,t,:z:)
t

€
Xoohr — x] .

We now have to be careful so that we can construct an e-optimal control which is
progressively measurable on the whole [t,T]. To that end consider 6 > 0 (which we
will fix in a moment) and take a collection of disjoint cubes Q; C R? each with a
centre z; € R?, such that Q; C Bs(z;) and such that U, Qi = R<. Then for each x;
there is o®% € U(t, T] such that v(, x;) < & + J (£, x5, a5%).

Let us write X, := X "" for brevity. If X; € Q; then |z; — X;| < 0 and due to
Lemma [2.8 we have

\v(f, X{) — U(f, xl)\ < CT|X£ — CCZ‘ < Crd,

where Cr > 0 is a constant of Lipschitz continuity which is independent of 7 and of «.
Furthermore (check the proof of Lemma [2.8))

| J(t, 24, 05" — J(E, X;, 05| < OF6.
Hence we get
v(t, X;) < v(t,2;) + Cid < e+ J(t,2i,0°") + Ord < e+ J(t, Xp, 05") + 2074 .
We now fix § so that 2C76 < € and so
v(t, X;) < 26 + J(t, Xp, a5
Therefore RHS of

i
< 3e+E / (s, X0 af) ds
t

T i ; £,1
5| [ ey agas e (v |1
t

e = X?E’t’x] ‘X?EW = x] .
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Regarding controls we now have the following: o° € U[t,] and for each i we have
a®% € U(t, T]. From these we build one control process 3° as follows:

. { o selti]

o' se(f,T) and thls’t’x € Q.

This process is progressively measurable with values in A and so 3¢ € U[t, T]. Due to
the flow property we may write that RHS of (3.1))

<3 +E

i T
/ f(S,XfE’t’“,ﬁz) ds+f f(s,XfE,Bi)ds—i—g <X§ ) ‘Xfit’x = :c] )
t t

Finally taking supremum over all possible control strategies we see that RHS of (3.1)) <
3¢ 4+ v(t, x). Letting ¢ — 0 completes the proof. O

Lemma 3.2 (%-Hélder continuity of value function in time). Let Assumptions
and [2.5| hold. Then there is a constant C > 0 such that for any x € R%, 0 < ¢, < T we
have

lu(t, z) —v(t,z)| < Cplt —i|Y/2.

Proof. We will write this proof in the simple case f = 0, the general case is left as an
exercise. From the Bellman principle we have that

v(t,z) = Slelzlx)lE {v(f, (thy’t’xﬂ .
(0%

Then for any € > 0 we have of such that

v(t,r) —e <E [v (f, thfm)} —E [v (E, X?it,x> —v (f, ng,tx) +o (z?, thfﬂf,x)]

<E HU (tA’ Xfaa,t,m) v (f, X?E,t,:p) } e (f,x) ,
since Xf‘s’t’x = x. We can now use Lemma giving Lipschitz continuity in x of the

value function to see that

'U(t,.’lf) — ’U(tA, $) — e < CrE HX?EJ,J: . Xg€7t,z

B

Holder’s inequality and stochastic continuity of solutions to SDEs leads to
97N\ 1/2 A
D < Cplt —iY/2.

We let ¢ — 0 to see that v(t, z) —v(f, z) < Cp|t—#|'/2. On the other hand we have, due
to Bellman principle and the Lipschitz continuity in = of the value function, Holder’s
inequality and finally stochastic continuity of solutions to SDEs, that

971\ 1/2 R
D < Cplt — |1/,

d

U(t,l’) — U(f, x) —e<Cr <E |:‘X§E,t7x . X?E,t,a:

v(t,z) —v(t,z) <v(t,z) - E {v (f, X?s’t’xﬂ <E Hfu(f,x) —0 ({7 X;‘EWC)

< CrE Hx — X?E’t’z

| < (&[o - x0
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Corollary 3.3. Let Assumptions [2.3|and [2.5| hold. Then there is a constant Cr > 0 such
that for any z,y € R%, 0 < s,t < T we have

[v(s,2) — vt ) < Cr (jt =12 + o~ y]) .
This means that the value function v is jointly measurable in (¢, z). With this we get
the following.

Theorem 3.4 (Bellman’s principle / Dynamic programming with stopping time). For
any stopping times t,t such that 0 < t < t < T, for any = € R™, we have (3.1)).

The proof uses the same arguments as before except that our cubes ); now have to
cover the whole [0,7] x R? and we need to use the %-Hélder continuity in time as
well.

Corollary 3.5 (Global optimality implies optimality from any time). Take x € R. A
control 5 € U[0,T] is optimal for (P) with the state process Xy = X209 for s € [0,T] if
and only if for any t € [0, T] we have

U(f, Xf) = J(tA, X{, ﬁ) .

Proof. To ease the notation we will take f = 0. The reader is encouraged to prove the
general case.

Due to the Bellman principle, Theorem (3.4}, we have

v(0,x) = Oées;l[poﬂ E [U (f, th%O,x)] >E [v (f, X?,O,x)} .

If 5 is an optimal control
E [v(£,X;)] <v(0,2) = J(0,2,8) =E[g(Xr)] .
Using the tower property of conditional expectation
v(0,2) <E[E[g(Xp)|F]] =E[J (£, X;,8)] <E[v(,X;)] <v(0,2).
Since the very left and very right of these inequalities are equal we get that
E[J (5 X5 0)] = E v (i X;)]

Moreover v > J and so we can conclude that v (¢, X;) = J (¢, X;, 3) a.s. The com-
pletes the first part of the proof. The “only if” part of the proof is clear because we can
take £ = 0 and get v(0, ) = J(0, x, 3) which means that 3 is an optimal control. [

From this observation we can prove the following description of optimality.

Theorem 3.6 (Martingale optimality). Let the assumptions required for Bellman’s prin-
ciple hold. Fix any initial state x at time t = 0 and let

t
M; = / f(s,X;l’O’m, a(s)) ds + v(t,Xto"O’z) . (3.2)
0

Then for any control oo € U[0, T the process (My),ejo 1) is an F7* := o(X&0"0< s <t)
super-martingale. Moreover « is optimal if and only if it is a martingale.
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When comparing the subsequent argument to the deterministic case, note how “super-
martingale” and “martingale” arise as the stochastic analogues of “decreasing” and
“constant”, respectively.

Proof. We have by, Theorem (the Bellman principle) that forany 0 <t <{ < T

i
v(t,X?’O’x) =supE / f(S,X?’O’w,as) ds ‘|‘U(£7 Xga’o’x> ]:tX] :
t

acl

Hence for any particular « € U we have

v(t, X{0") > E

i
/t f(s, xo0e, o) ds + ot th,o,a:)

FX ]

and so

t t
M, > / f(s, X§’0’$, a(s)) ds+E / f(s, Xg’o’z, ozs) ds + v(f, X?’O’m)
0 t

]-'tX]
=E [M;|FX] .

This means that M is a super-martingale. Moreover we see that if « is optimal then
the inequalities above are equalities and hence M is a martingale.

Now assume that M; = E[M;|F;X]. We want to ascertain that the control « driving
M is an optimal one. But the martingale property implies that J(0,z,a) = E[Mp]| =
E[My] = v(0,z) and so « is indeed an optimal control. O

One question you may ask yourself is: How can we use the dynamic programming
principle to compute an optimal control? Remember that the idea behind the DPP is
that it is not necessary to optimize the control « over the entire time interval [0, 7] at
once; we can partition the time interval into smaller sub-intervals and optimize over
each individually. We will see below that this idea becomes particularly powerful if we
let the partition size go to zero: the calculation of the optimal control then becomes a
pointwise minimization linked to certain PDEs (see Theorem [1.33). That is, for each
fixed state 2 we compute the optimal value of control, say a € A, to apply whenever
X(t) = =.

3.2 Hamilton-Jacobi-Bellman (HJB) and verification

If the value function v = v(¢,z) is smooth enough, then we can apply It6’s formula
to v and X in (3.2). Thus we get the Hamilton-Jacobi-Bellman (HJB) equation (also
know and the Dynamic Programming equation or Bellman equation).
For notational convenience we will write 0(¢, x) := o(¢t, x, a), b*(¢,x) := b(t, z,a) and
f(t,x) := f(t,z,a). We then define

1

L% = 50“(0“)*89”11 + b%0,v .

Theorem 3.7 (Hamilton-Jacobi-Bellman (HJB)). If the value function v for (P) is C12,
then it satisfies

Osv + sup (Lav + f“) =0 onl0,T) x RY

acA (33)

o(T,z) = g(z) Vo eRe.
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Proof. Letx € Randt € [0,7] and assume that v is a C'!:? value function for (P). Then
the condition v(7, z) = g(z) follows directly from the definition of v. Fix o € U[t, T]
and let M be given by (3.2)). Then, It&’s formula applied to v and X yields

dM; = [(@v + L%v + fo‘s> (s, Xsa’t’x)] ds + [((%U o) (s, Xsatx))} dWs.

For any (¢,z) € [0,T] x R take the stopping time 7 = 7% given by

t/
7 :=inf {t’ >t: / (Opv ) (s, Xg’t’$))2 ds > 1} .
t

We know from Theorem that A/ must be a supermartingale. On the other hand
the term given by the stochastic integral is a martingale (when cosidered stopped at
7). So (Myn+): can only be a supermartingale if

f (s, Xs) + (0w + Lv) (s, X5) < 0.
Since the starting point (¢, z) and control o were arbitrary we get that we must have
(Opv + L% + f*)(t,x) <0 Vt,z,a.
Taking the supremum over a € A we get

Owv(t,x) +sup[(L% + f*)(t, )] <0 Vi, .
acA

We now need to show that in fact the inequality cannot be strict. We proceed by
setting up a contradiction. Assume that there is (¢o, zo) such that

A (to, o) + S“g[(”v + f*)(to, 20)] < 0.
ac

We will show that this contradicts the Bellman principle and hence we must have
equality, thus completing the proof.

We must further assume that b and o are right-continuous in ¢ uniformly in the =
variabld¥ Now by continuity (recall that v € C'?) we get that there must be ¢ > 0
and an associated § > 0 such that

O + sup[(L% + f*)] < —e <0 on [ty + §) x Bs(xp).
acA

Let us fix a € U[ty, T] and let X, := X' We define the stopping time
Ti={s>1ty:|Xs—x0| >} A(to+9).

Since the process X has a.s. continuous sample paths we get E[7 — ] > 0. Let

t
Yii= | f%(s,Xs)ds+v(t, Xy).
to

Then

Y;: = v(to, o) + / fe (s, Xs)ds +v(1, X7) — v(to, Xt,)
to

= v(to, o) + /T [(&v + L%y + fa5> (s,XS)] ds + /

to to

T

Ogvo™® (S,XS) dW
[ }

< w(to,xo) — (T —to) + /T [vaaas (S,Xs)] dWs .

to

“Does this lead to loss of generality?
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Now we take conditional expectation Ey, 5, := E[-|F;] on both sides of the last in-
equality, to get

Eto,xo |:/ fOAg (S, Xs)dS + U(T, XT):| < ’U(to, 330) — €Et07$0 [7' — to]

to

We now can take the supremum over all controls v € U,q[to, 7| to get

sup Eq, 2, {/ f (s, Xs)ds + v(r, XT)] < v(to, x0) — €Eyy 00 [T — to]
aclU

to

which contradicts the Bellman principle:

.
v(to, o) = sup Ey 4, [/ fe (s, Xs)ds + v(r, XT)} .
acU to

O]

Theorem 3.8 (HJB verification). If on the other hand, some u in C'“? satisfies (3.3)
and we have that for all (t,x) € [0,T] x R there is some measurable

a(t,x) € arg max <(L u)(t,z) + f (t,:):)) , 3.4
and if
dX; =0b(s, X}, a(s, X}))ds+o(s, X}, a(s, X)) dW,, X; ==

admits a unique solution, and if the process
t/
t'»—>/ 8$u(s,X;‘)0(s,X;“,a(s,X;‘)) dW, (3.5)
¢

is a martingale in t' € [t,T), then
of i=a(s, X7) selt,T]
is optimal for problem (P) and v(t,z) = u(t, z).

Proof. From It0’s formula applied to v and X™* we can check that for M given by (3.2))
(with the control process a*) we get

dM; = (9,0 0%) (L, X7)] AW,

by using (3.3). This means that M} is a martingale in ¢ € [0,7]. Theorem then
implies that o* is optimal. O

Theorem is referred as the verification theorem. This is key for solving the control
problem: if we know the value function v, then the dynamic optimization problem
turns into a of static optimization problems at each point (¢,z). Recall that is
calculated pointwise over (¢, z).
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Exercise 3.9. Find the HJB equation for the following problem. Letd = 1, U =
[00,0] C (0,00), and k € R. The dynamics of X are given by

dXV?
T;:kd8+ydeS,
and the value function is
v(t,x) = sup Eek(t_T)g X2\ = ipf }E_ek(t—T)g XUty
(t.) veult,T) [ (X)) veult,T| [ (7))

This can be interpreted as the pricing equation for an uncertain volatility model with
constant interest rate k. The equation is called Black-Scholes-Barenblatt equation
and the usual way to present this problem is through a maximization problem.

3.3 Verification and the solving scheme by HJB equation
Theorem provides an approach to find optimal solutions:

1. Solve the HJB equation (3.3) (this is typically done by taking a lucky guess and
in fact is rarely possible with pen and paper).

2. Find the optimal Markovian control rule a(t, z) calculating (3.4).
3. Solve the optimal control and its state process (u*, X*).

4. Verify the martingale condition.

This approach may end up with failures. Step one is to solve a fully non-linear second
order PDE, that may not have a solution, may have a unique solution or many solu-
tions. If we can prove before hand that the value function for (P) is v is C'+?, then the
HJB equation admits at least one solution according to Theorem The question of
uniqueness remains.

In step two, given u that solves (3.3)), the problem is a static optimization problem.
This is generally much easier to solve.

If we can reach step three, then this step heavily depends on functions b and o, for
which we usually check case by case.

Example 3.10 (Merton problem with power utility and no consumption). This is the
classic finance application. The problem can be considered with multiple risky assets
but we focus on the situation from Section 2.11

Recall that we have risk-free asset By, risky asset S; and that our portfolio has wealth
given by
dXs = Xs(vs(p—71)+7)ds + XgvgodWs, se€[t,T], Xy =z >0.

Here v, is the control and it describes the fraction of our wealth invested in the risky
asset. This can be negative (we short the stock) and it can be more than one (we
borrow money from the bank and invest more than we have in the stock).

We take g(x) := z¥ with v € (0,1) a constant. Our aim is to maximize J"(t,z) :=
E* [g(X%)]. Thus our value function is

v(t,x) = sup J”(t, z) = supE** [g(XF)] .
veld vel
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This should satisfy the HJB equation (Bellman PDE)

Ov + sup BaQa2x28mv +z[(p—r)a+ r]azv] =0 on[0,7) x (0,00)
v(T,z) =g(z) =27 Vo >0.

At this point our best chance is to guess what form the solution may have. We try
v(t,x) = A(t)zY with A = A(¢) > 0 differentiable and A\(7") = 1. This way at least the
terminal condition holds. If this is indeed a solution then (using it in HJB) we have

1
N (t) + sup 502a27(7 -+ (pu—r)ya+ry| A(t)=0Vte[0,T), NT)=1.

since 27 > 0 for z > 0 and thus we were allowed to divide by this. Moreover we can
calculate the supremum by observing that it is quadratic in ¢ with negative leading

term (y — 1)y < 0. Thus it is maximized when a* = ﬁ The maximum itself is

B(t) = 50*(@ V(3 — 1) + (= r)a® + 7.

Thus .
N(t)=—=BHAE), MT)=1 == \(t) =exp (/t B(s) d5> )

Thus we think that the value function and the optimal control are

T —r
v(t,x) = exp (/t B(s) ds) 27 and o* = 02(/117_7”.

This now needs to be verified using Theorem First we note that the SDE for X*
always has a solution if ¢* is a constant.

Next we note that d,v(s, X}) = yA(s)(X?)"~L. From Itd’s formula

|
dX)71 = (v = DXJ72dX + (v = D(y - 2)X] P dXdX,

= X771 {(7 —Dfa*(p—r) +r]ds+ %(7 —1)(y — 2)a*c dW,| .

We can either solve this (like for geometric brownian motion) or appeal to Proposi-
tion to see that a solution will have all moments uniformly bounded in time on
[0, T]. Moreover A = A(t) is continuous on [0, 7] and thus bounded and so

T
/ E [\2(1)|(X2) a*o X7 |?] ds < oo
0

which means that the required expression is a true martingale. This completes verifi-
cation and Theorem gives the conclusion that v is indeed the value function and
a* is indeed the optimal control.

Example 3.11 (Linear-quadratic control problem). This example is a classic engineer-
ing application. Note that it can be considered in multiple spatial dimensions but here
we focus on the one-dimensional case for simplicity. The multi-dimensional version is
e.g. in [@ks00, Ch. 11].
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We consider
dXs=[H(s)Xs+ M(s)as]ds+ o(s)dWs,s € [t,T], X; = x.

Our aim is to maximize
T
J*(t,z) = EH" [/ (C(s)X2+ D(s)a?)ds + RX%| ,
t

where C = C(t) <0, R <0and D = D(t) < —§ < 0 are given and deterministic
and bounded in ¢ and § > 0 a constant. The interpretation is the following: since we
are losing money at rate C' proportionally to X2, our aim is to make X? as small as
possible as fast as we can. However controlling X costs us at a rate D proportionally
to the strength of control we apply.

The value function is v(t, z) := sup,, J“(¢, x).
Let us write down the Bellman PDE (HJB equation) we would expect the value func-
tion to satisfy:

1
Osv + sup 502851)—# [Hx+ Ma)dyw+Ca?+Da*| =0 on [0,T) xR,
v(T,z) = Rx® Vo € R.
Since the terminal condition is g(x) = Rx? let us try v(¢,x) = S(t)2? + b(t) for some

differentiable S and b. We re-write the HJB equation in terms of S and b: (omitting
time dependence in H, M, o,C and D), for (t,z) € [0,T) x R,

S'(t)a? + b (t) + o%S(t) + 2H S(t) 2* 4+ C x* + sup [2M (t)a S(t) = + Da2] =0,
S(T)=R and b(T)=0.
For fixed ¢t and x we can calculate sup,[2M (t)aS(t)x + D(t)a?] and hence write down

the optimal control function ¢* = a*(¢,z). Indeed since D < 0 and since the expres-
sion is quadratic in @ we know that the maximum is reached with

a*(t,x) = —(D*M S)(t)x.

We substitute a* back in to obtain ODEs for S = S(¢) and b = b(¢) from the HJB
equation.
[S'(t) +2H S(t) + C — D™'M2S?(t)] % + ¥/ (t) + o*S(t) = 0,
S(T)=R and b(T)=0.

We collect terms in z? and terms independent of = and conclude that this can hold
only if
S'(t) = D*M?S?*(t) —2H S(t) - C, S(T)=R

and
V(t) = —o?S(t), b(T)=0.

The ODE for S is the Riccati equation which has unique solution for S(7') = R. We
can obtain the expression for b = b(t) by simply integrating:

T
b(T) —b(t) = —/t o?(r)S(r) dr.
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Then
T
o (t,x) = —(D'MS)(t)x and v(t,x) = S(t)x> —i—/ o?(r)S(r) dr (3.6)
t
and we see that the control function is measurable. We will now check conditions of
Theorem The SDE with the optimal control is
dX: =p(s)Xids+o(s)dWs, se[t,T], X ==,

where p := H — D! M? S. This is deterministic and bounded in time. The SDE thus
satisfies the Lipschitz conditions and it has a unique strong solution for any ¢, x.

Since d,v(r, X)) = 25(r) X}, since sup,¢p 1 S2(r) is bounded (continuous function
on a closed interval) and since sup,¢p 1 E[|X}|?] < oo (moment estimate for SDEs
with Lipschitz coefficients) we get

T
E/%WMWW<%
t

and thus conclude that s — [;°S(r)Xo(r) dW, is a martingale. Thus Theorem
tells us that the value function and control given by are indeed optimal.

3.4 Exercises

Exercise 3.12 (Unattainable optimizer). Here is a simple example in which no op-
timal control exists, in a finite horizon setting, 7' € (0,00). Suppose that the state
equation is

dX; = ap dt + dWy, Xo=z €R.
A control « is admissible (a € U) if: « takes values in R, is F;-prog.-meas., there
exists a unique solution to the state equation and E fOT a?ds < .

The value function is v(t, x) := inf, ¢y 1,77 J (¢, 2, v). Clearly v(¢,z) > 0.

i) Show that J*(t,z) = E[X2] < oo.

ii) Show that if oy := —cX; for some constant ¢ € (0, c0) then a € U and
11— 2ca?
Tt _ JcX ¢ - - 720(T7t).
( ? x) ( ? x) 2C 2C €

Hint: with such an «, the process X is an Ornstein-Uhlenbeck process, see Exer-

cise
iii) Conclude that v(¢t,z) =0forallt € [0,7), z € R.

iv) Show that there is no o € U[t,T] such that J(t,z,a) = 0. Hint: Suppose that
there is such a a and show that this leads to a contradiction.

v) The associated HJB equation is
1
Oyv + inf {famv + a@xv} =0, on[0,7T)xR.
acR L2
o(T, x) = x2.

Show that there is no value a € R for which the infimum is attained.
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Conclusions from Exercise The value function v(t, z) = infaey J(t, x, o) satisfies
v(t,z) = 0 for all (¢,z) € [0, T] x R but there is no admissible control o which attains
the v (i.e. there is no a* € U such that v(¢,z) = J(t, z,a")).

The goal in this problem is to bring the state process as close as possible to zero at the
terminal time 7. However, as defined above, there is no cost of actually controlling
the system. We can set « arbitrarily large without any negative consequences. From
a modelling standpoint, there is often a trade-off between costs incurred in applying
control and our overall objective. Compare this with Example

Exercise 3.13 (Merton problem with exponential utility). We return to the portfolio
optimization problem, see Section[2.1} Unlike in Example[3.10]we consider the utility
function g(z) := —e™7*, v > 0 a constant. We will also take » = 0 for simplicity and
assume there is no consumption (C' = 0). With X, denoting the wealth at time time ¢
we have the value function given by

v(t,x) = supE [g (X;’t’m’ﬂ .
weld

i) Write down the expression for the wealth process in terms of m, the amount of
wealth invested in the risky asset and with » = 0, C' = 0.

ii) Write down the HJB equation associated to the optimal control problem. Solve
the HJB equation by inspecting the terminal condition and thus suggesting a
possible form for the solution. Write down the optimal control explicitly.

iii) Use verification theorem to show that the solution and control obtained in previ-
ous step are indeed the value function and optimal control.

Exercise 3.14 ([Sei09, p252, Prob. 4.8]). Solve the problem

maxE[ — /T V(1) e dt + eX(T)]
0 2 ’

v

where v takes values in R, subject to dX (t) = v(t)e~X®) dt+o dW (t), X(0) = z¢ € R,
o € (0,00), o,z are fixed numbers.

Hint: Try a solution of the HJB equation of the form v(¢, z) = ¢(t)e* + 1 (t).

For more exercises, see [Sei09, Exercise 4.13, 4.14, 4.15].
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3.5 Solutions to Exercises

Solution (to Exercise|3.12)).

i)

i)

iii)

iv)

v)

We use the fact that E [ a? dr < oo for admissible control. We also use that (a + b)* < 2a® + 2b.
Then for, any s € [¢, 7],

s 2
E[X?] < 42® + 4E (/ o dr) + 2E(W, — W;)?.
t
With Holder’s inequality we get

s T
E[X?] < 42® + 4(s — t)l/QIE/ aZdr+2(s—t)<er (1 + 2° +IE/ ol dr) < 00. 3.7
0

t

Substitute as = —cXs. The Ornstein-Uhlenbeck SDE, see Exercise [1.41} has solution

T
Xy =e T8 4 / e T qw,. .

t

We square this, take expectation (noting that the integrand in the stochastic integral is deterministic
and square integrable):

T 2
EXZ = 2T"92 L K (/ e eIt dWr) :
t
With It0’s isometry we get
T
EX2 — ¢ 2T, +/ o 2(T—) g
t

Now we just need to integrate to obtain J(t,z) = J¥ (t,z) = EX7.

We know that v(¢, z) > 0 already. Moreover

0.

t,x) = inf J(t,z) < lim J¥(t,2) = li
o= o s e S0 = 00 20T

[1 1—2c2” _our—p
e =
c oo

Assume that an optimal o™ € U exists so that E[X;*’t’x] = J (t,z) = 0 for any t < T and any .
We will show this leads to contradiction.

First of all, we can calculate using It6 formula that
dX; =2Xa.ds+2X,dWs +ds.
Hence

T T
0 =E[(X})?] :x2+2E/ (Xial +1)ds+E/ X dws.
t t

But since o™ is admissible we have ftT E(XZ)?ds < oo due to (3.7). This means that the stochastic
integral is a martingale and hence its expectation is zero. We now use Fatou’s lemma and take the
limitas ¢ , T. Then

T T
—1:2:21imianE/ (X;a:+l)d522E|:liminf/ (X:a:#—l)ds} =0.
t AT . AT,

So —z? > 0. This cannot hold for all z € R and so we have contradiction.

If 0,v(t,z) # 0, then a = +oo. If 9,V (¢,z) = 0, then a is undefined. One way or another there is
no real number attaining the infimum.

Solution (to Exercise[3.13). The wealth process (with the control expressed as 7, the amount of wealth
invested in the risky asset and with » = 0, C' = 0), is given by

dXs =mspds +msodWs, s€[t,T], Xe=2>0. (3.8)

The associated HJB equation is

1
v + sup | =p2 2 0pav +pudzv| =0 on[0,T) X R,
peR 2

v(T,z) = g(z) Vx € R.
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We make a guess that v(¢,z) = A(t)g(z) = —A(¢)e™?® for some differentiable function A = A(¢) > 0.
Then, since we can divide by —e™?® # 0 and since we can factor out the non-negative \(t), the HJB
equation will hold provided that

1
X () +sup | —5p%0%) +ppa| MB) =0 on 0.7), A7) = 1.
P

The supremum is attained for p* = UTHW since the expression we are maximizing is quadratic in p with
negative leading order term. Thus X' (¢) + 8(¢)A(t) = 0 and A\(T) = 1 with

2

1, .2 2 2 * 1 1
t) = —= == =
B(t) 5(P) Y+ Py ST+ 5
We can solve the ODE for )\ to obtain -
i) = ele B(r)dr
and hence our candidate value function and control are
T
t,x) = elt PO and p* = 2.
o(t,) =e o(w) and p" = L

We now need to use Theorem [3.8] to be able to confirm that these are indeed the value function and
optimal control.

First of all the solution for optimal X* always exists since we just need to integrate in the expression (3.8]
taking 7; := p*. We note that the resulting process is Gaussian.

Now 8,v(s, XZ) = A(t) ve 7% . We can now use what we know about moment generating functions of
normal random variables to conclude that

T
/ A(s)? e %5 ds < oo
¢

The process
£
L / A(s) e 7= AW,
t
is thus a true martingale and the verification is complete.

Solution (to Exercise(3.14).

0_2

_ _ 2\ —o2T/2
—m, C—(].""O' )6 .

Y(t) =0, o)

43



4 Maximum Principle and Backward Stochastic Differential
Equations 17h14, 29/04/2018

In the previous part, we developed the dynamic programming theory for the stochastic
control problem with Markovian system.

We introduce another approach called maximum principle, originally due to Pontrya-
gin in the deterministic case. We will also study this approach to study the control
problem (P).

4.1 Backward Stochastic Differential Equations (BSDEs)

For a deterministic differential equation

dz(t)
dt

= b(t,z(t) t€[0,T], =(T)=a

we can reverse the time by changing variables. Let 7 := T — ¢t and y(7) = z(t). Then
we have
dy(7)

dr
So the backward ODE is equivalent to a forward ODE.

=-bT —-1,y(1)) 7€[0,T7], y(0)=a.

The same argument would fail for SDEs since the time-reversed SDE would not be
adapted to the appropriate filtration and the stochastic integrals will not be well de-
fined.

Recall the martingale representation theorem (see Theorem [1.25), which says any
& e L}T can be uniquely represented by

T
f—E[SH/O b AW, .

If we define M; = E[¢] + fot ¢sdWy, then M; satisfies
dM = ¢¢ dWy, Mrp =¢.

This leads to the idea that a solution to a backward SDE must consist of two processes
(in the case above M and ¢).

Consider the backward SDE (BSDE)
dYy = g:(Ys, Zy) dt + Zy AWy, Y(T)=¢.
We shall give a few examples when this has explicit solution.

Example 4.1. Assume that ¢ = 0. In this case, Y; = E[¢|F;] and Z is the process given
by the martingale representation theorem.

Example 4.2. Assume that g;(y, z) = ;. In this case, take Ei=¢— fOT ~: dt. We get
the solution (Y, Z) to X
dYy = ZydWy, Yp=¢

as

Vi =E [47] =E[§—/0Tvtdt

7
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and we get Z from the martingale representation theorem. Then with V; := Y; +
fot vs ds, Zy := Z; we have a solution (Y, Z) so in particular

T t T
}Q:E[S—/ %dt‘]—}]—l—/%d.s:lﬁl[f—/ Vs ds
0 0 t

Example 4.3. Assume that g;(y,2) = oy + ez + v and a = oy, B = B, v = 1
are adapted processes that satisfy certain integrability conditions (those will become
clear). We will construct a solution using an exponential transform and a change of
measure.

7.

Consider a new measure Q given by the Radon—-Nikodym derivative

d@_ 1 T ) T
dIP_eXp<_2/0 Bsds—/o Bdes>

and assume that E[%} = 1. Then, due to Girsanov’s Theorem , the process given
by WtQ =W+ fg Bs ds is a Q-Wiener process. Consider the BSDE

dY, =3, dt + Z dW2, Yp =€, (4.1)

where 7; := v exp (— fg a ds) and £ := £exp (— fOT Qs ds). We know from Exam-
ple |4.2| that this BSDE has a solution (Y, Z) and in fact we know that

T
)_/%:]EQ |:£ef0Tasds_/ ’)/seifd ardr‘ds
t

]-"t] |
We let Y; := Y exp (fg Qs ds) and Z; :== Z; exp (f(f Qs ds). Now using the It6 product
rule with (4.1)) and the equation for W@ we can check that

dY, = d (Ve @45 = oY, dt + eJo @ s gy, = Q
t = teé =z Yy dt 4+ elo ClY;—OétY'tdt‘i‘")/tdt—FthWt
= (OétY;f + 515215 + ’}/t) dt + Zt th

and moreover Yy = £. In particular we get

T
t

}'t] . (4.2)

To get the solution as an expression in the original measure we need to use the Bayes
formula for conditional expectation, see Proposition We obtain

E |:<€e_ ftT asds _ ftT ee™ S ardr ds) ef%foTﬁg dsffOTﬁs dWs

7

Proposition 4.4 (Boundedness of solutions to linear BSDESs). Consider the linear back-
ward SDE with g;(y, z) = aqy+ ez +y. If o, B,y and € are all bounded then the process
Y in the solution pair (Y, Z) is bounded.

7

Y, =
E [e—; JE 82 ds— [T o W,

Proof. This proof is left as exercise. O
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Example 4.5 (BSDE and replication in the Black-Scholes market). In a standard
Black-Scholes market model we have a risk-free asset dB; = rB; dt and risky assets

dSt = dlag(,u)St dt + O'St th .

Here p is the drift vector of the risky asset rate, o is the volatility matrix.

Let 7 denote the cash amount invested in the risky asset and X the replicating portfo-
lio value (so X — =S is invested in the risk-free asset). Then the self-financing property
says that (interpreting 1/S to be (1/51,...,1/S,)")

1 Xt—ﬂ'tSt
dX; =mp—dS; + ———— dt
t 7Ttst t+ B,

i.e.

dX; = [rXe +m(p—r)] dt + T o dW(t).

We can define Z; = o/ 7; and if 0! exists then 7; = (0" )7'Z; = (67 1) T Z,
dX; = [rXt + ('uT — T‘)(O'_I)TZt] dt + Zy dW;.

For any payoff ¢ at time 7, the replication problem is to solve the BSDE given by this
differential coupled with X = . If € € L%T the equation admits a unique square-
integrable solution (X, Z). Hence the cash amount invested in the risky asset, required
in the replicating portfolio is 7; = (c—1) Z;, and the replication cost (contingent claim
price) at time ¢ is X;.

We see that this is a BSDE with linear driver and so from Example we have,
see that

X; =EQ [ﬁe_T(T_t)‘}_t} ;

where
dAQ _ djo (a7 (0T ) (o) T Wy
dP
In other words we see that Q is the usual risk-neutral measure we get in Black—Scholes
pricing.
A standard backward SDE (BSDE) is formulated as
dYy = g (Ys, Z¢) dt + Zy AWy, Y(T) =&, (4.3)

where g = ¢;(w, y, z) must be such that ¢;(y, z) is at least F;-measurable for any fixed
t,y,z. We will refer to g is called as the generator or driver of the Backward SDE.

Definition 4.6. Given { € L*(Fr) and a generator g, a pair of (F;)c(o)-adapted
processes (Y, Z) is called as a solution for (4.3) if

T T
Yi=¢ —/ 9s(Ys, Zs) ds —/ ZsdWs, Yt e [0,T)].
t t
Theorem 4.7 (Existence and uniqueness for BSDEs). Suppose g = g:(y, z) satisfies

(i) We have ¢(0,0) € H.
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(ii) There exists a constant L > 0 such that
96y, 2) = 9:(,2)| < L(ly =yl + 2 = Z|) ,as. VE € [0,T],Vy, 2,3, 2.
Then for any £ € L2T , there exists a unique (Y, Z) € ‘H x H solving the BSDE (4.3).
Recall that # is the space introduced in Definition|1.18

Proof. We consider the map & = ®(U, V) for (U, V) in H x H. Given (U, V') we define
(Y,Z) = ®(U,V) as follows. Let £ := € — [ g(Us, Vi) ds. Then

T T
E / 9s(Uns V)2 ds < E / 215(Us, Vi) — 95(0,0) 2 + 210, 0)[?] s
0 0 (4.4)

T
<E / RL2(ULJ2 + [Va[?) + 20g4(0,0) ] ds < o,
0

since U and V and g(0,0) are in H. So { € L*(Fr) and we know that for Y := E[£[F]
there is Z such that . ) .
dYy = Z; dWy, Yr=¢.

Take Y; :=Y; + fot gs(Us, Vi) ds. Then

T T
Ytzg—/ gs<Us,Vs>d8—/ ZydW,. 4.5)
t t

The next step is to show that (U, V) — ®(U, V') = (Y, Z) described above is a contrac-
tion on an appropriate Banach space.

We will assume, for now, that || < N and that |g] < N. We consider (U,V) and
(U',V'). From these we obtain (Y, 7) = ®(U,V) and (Y',Z’) = ®(U’",V’). We will
write

U, V)=U-U,v-V, Y,2)=Y~-Y',Z2-27), g:=g(UV)—-gU, V).

Then
dYs = gy ds + ZdW,

and with It6 formula we see that
dY? = 2Y,gsds + 2Ys Z, dW, + Z2ds .
Hence, for some 8 > 0,
d(ePY2) = eP* 2Y,gs ds + 2V, Z, AW, + Z2 ds + BY ds] .
Noting that, due to (4.5), we have Y, = Y7 — Y. = 0, we get
T T
0=Y5+ /0 e’ [2Y.gs + Z2 + BYY] ds + /0 2e75Y, Zs dW .

Since Z € ‘H we have

T T
E/ 4€2P31Y, || Z,)? ds < e2PTaN?(1 +T)2E/ |Z|? ds < oo
0 0
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and so, the stochastic integral being a martingale, we get

T T T
IE/ P’ [Zz —I—ﬂffsz] ds = —EY{ — IE/ P52V, g, ds < QE/ P51V, ||gs| ds .
0 0 0

Using the Lipschitz continuity of ¢ and Young’s inequality (with ¢ = 1/4) we have
_ _ _ _ _ 1 _ _
e |Vil|gs| < eVl L(Us| + |Val) < 202 [Vi[* + e (U] + |Vi])”
_ 1 _ _
< 2L |V[* + e (U + V).

We can now take 5 = 1 + 4L? and we obtain

T serm2 o 1 (7 a _
B[ (22 42 ds< 5B [ (0P + Vi) ds. (4.6)
0 0

We now need to remove the assumption that || < N and |g| < N. To that end
consider £V := ~-NA¢V N and gV := —~N AgV N (so |¢V] < N and [gV| < N). We
obtain Y, ZV as before. Note that

-2 5] - g

due to Lebesgue’s dominated convergence for conditional expectations. Indeed, we
have [¢V] < |€] + fOT lgs(Us, Vs)| ds and this is in L? due to (4.4). Moreover

T T 2
E/ |Z§V—Zt|2dt:E</ (ZtN—Zt)th> =E (Y - Yr+ Y, - v)”
0 0

<R|YE — V7> + 2BV — YV - 0 as N — oo

due to Lebesgue’s dominated convergence theorem. Then from be have, for each
N,

T T
_ _ 1 _ _
B[ 2P+ VY] ds < 5B [ (0P + TP ds.
0 0

But since the RHS is independent of NV, we obtain but now without the assump-
tion that |{| < N and |g| < N. Consider now the Banach space (H x H, || - ||), with

I(Y,2)| =E /O "8 (2242 ds.
From we have
12U, V) — (U, V)| < %H((ﬁ V) = (U, VIl
So the map ® : H x H — H x H is a contraction and due to Banach’s Fixed Point

Theorem there is a unique (Y*, Z*) which solves the equation ®(Y*, Z*) = (Y*, Z*).
Hence

T T
Y;*zs—/ gsm*,z;)ds—/ 7w,
t t

due to (4.5). O
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Theorem 4.8. Let (Y1, Z') and (Y2, Z?) be solutions to BSDEs with generators and
terminal conditions g', &' and g2, &2 respectively. Assume that £' < €2 a.s. and that
g (Y2, 722) < gt (Y}, Z}) ace. on Q x (0,T). Assume finally that the generators satisfy
the assumption of Theorem[4.7jand ¢', &% € L?(Fr). Then Y < Y2
Proof. We note that the BSDE satisfied by Y := Y2 — Y, 7 := 72 — Z'is
dﬁ = [th(Y?aZtg) _glfl()/;1>Z151)]dt+thWt> YT :g:: 52 _51 .

This is
4y, =[g} (Y2, Z7) — gi (', Z0) + 6 (V) Z0) — gt (V' 20) + gi (V) Z)) — g (i 2] dt

+ Zt th ; YT = é-

which we can re-write as

dYy = (s + B2y + i dt + Zy dWy, Yr =¢,

where
o — gg(Yt27 Z1€2) - 9152(}/1517 ZtQ)]l B L g?(Y;fl’ ZtQ) - th(Y;flv Ztl)]l
t= Y2 Y] YAV Pte= 72— 71 Z}#2}
and where

V= th(Y;flvztl) - gtl(y;flaZtl)

Due to the Lipschitz assumption on g2 we get that o and 3 are bounded and since
Y? Z' are in H we get that v € H. Thus we have an affine BSDE for (Y, Z) and the
conclusion follows from (4.2) since we get

T
Yt:}EQ gefftTanS_ ’Yseift ardeS ft] ZO
H/_/ t
>0
<0
from the assumptions that ¢! < ¢2 a.s. and that g2 (Y2, Z?) < g} (Y}, Z}) a.e. O

4.2 Pontryagin’s Maximum Principle

We now return to the optimal control problem (P). Recall that given running gain f
and terminal gain g our aim is to optimally control

dXta = bt(Xt, O[t) dt =+ O't(Xt, Oét) th, t S [O,T] s Xg =,

where o € U and we assume that Assumption holds. Recall that by optimally
controlling the process we mean a control which will maximize

T
J(a) = [/0 £t X2 ) dt + g(X3)

over a« € U. Unlike in Chapter [3| we can consider the process starting from time
0 (because we won’t be exploiting the Markov property of the SDE) and unlike in
Chapter [3| we will assume that A is a subset of R™.

We define the Hamiltonian H : [0,T] x R? x A x R? x R¥% — R of the system as

Hy(x,a,y,2) = b(z,a)y + tr[o] (z,a) 2] + fi(z,a).
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Assumption 4.9. Assume that x — H(x,a,y, z) is differentiable for all a, ¢, y, z with
derivative bounded uniformly in a, ¢, y, z. Assume that g is differentiable in = with the
derivative having at most linear growth (in x).

Consider the adjoint BSDEs (one for each « € U)
dYS = =0, He(t, Xy, 00, Y., Z7) dt + Zy AWy, Y = 0,9(XT) .
Note that under Assumption 4.9] and
Ef0xg(X7)[*] < E[(K (1 + |X7])?] < oo,

Hence, due to Theorem 4.7} the adjoint BSDEs have unique solutions (Y%, Z).

We will now see that it is possible to formulate a sufficient optimality criteria based
on the properties of the Hamiltonian and based on the adjoint BSDEs. This is what
is known as the Pontryagin’s Maximum Principle. Consider two control processes,
a, 8 € U and the two associated controlled diffusions, both starting from the same
initial value, labelled X®, X?. Then

T
J(B)—J(a)—E[ / 76,7, 8) = F(8. X7 o) dt+g<X5>—g<X%>].

We will need to assume that g is concave (equivalently assume —g is convex). Then
g(x) — g(y) > 0zg9(z)(x — y) and so (recalling what the terminal condition in our
adjoint equation is)

E [9(xX7) - 9(X)] > E |(X] - XP).g(X7)| = E[(x] - X5)¥F] .
We use It&’s product rule and the fact that X§ = XéB . Let us write Ab; := bt(Xtﬁ ,Bt) —
b (X5, ay) and Aoy = at(Xf, Bt) — o (X, ). Then we see that
T
B (0] - xp)v7] 2 B| [ —(xF - x00u(] .Y 2
0

T T
+/ AthfdtJr/ tr [AatT Zﬂ dt].
0 0

Note that we are missing some details here, because the second stochastic integral
term that we dropped isn’t necessarily a martingale. However with a stopping time
argument and Fatou’s Lemma the details can be filled in (and this is why we have an
inequality). We also have that for all y, z,

Ft, X2, 8) = HU(XP, By, 2) — b(X7, By — oy (X7, Br)2],

f(thtfl7at) = Ht(Xfé?atayvz) - bt(Xta7at)y - tr[O-tT(Xtaaat)z]

and so
Ft,XP B — f(t, XP o) = AHy — AbY, — (Ao, Z))
where
AHy = Hy(X] BV, 2)) — H(X{, 00, Y], Z)).
Thus

E [/OT [f(t,Xf,ﬁt) - f(t7Xf,at)} dt] —E [/OT [AHt ~ ALY — (Ao, Zf)} dt} .
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Altogether
T
J(8) = J(a) > E U Al - (X[ - XPo.H(x], 6, 7)) dt}
0

If we now assume that (z,a) — Hy(z, a, Ytﬁ , Zf ) is differentiable and concave for any
t,y, z then

AH, > (X] = XP)0:HU(X], B Y], Z7) + (B — a)0uHU( X, B, Y/, Z7)
and so .
90) = 3(@) = B | [ (5 000t 50 ¥ 20)
Finally we assume that 3; is a control process which satisfies

Ht(Xtﬁ,Bt,Y;ﬁ, Ztﬁ) = Teacht(Xf,a,Y;ﬁ, Ztﬁ) < oo a.s. for almost all . 4.7)

Then J(B8) > J(«) for arbitrary a. In other words, such control 5 is optimal. Hence
we have proved the following theorem.

Theorem 4.10 (Pontryagin’s Maximum Principle). Let Assumptions [2.3|and 4.9 holds,
let ¢ R™. Let g be concave. Let 3 € U and let X? be the associated controlled diffusion
and (Y?, ZP) the solution of the adjoint BDSE. If 3 € U is such that [@.7) holds and if

(x,a) — Hy(z,a, Y;ﬁ,Ztﬁ)
is differentiable and concave then J(f) = sup, J(«) i.e. ( is an optimal control.

We can see that the Pontryagin maximum principle gives us a sufficient condition for
optimality.

Example 4.11 (Minimum variance for given expected return). We consider the sim-
plest possible model for optimal investment: we have a risk-free asset B with evo-
lution given by dB;, = rB,dt and By = 1 and a risky asset S with evolution given
by dS; = pS;dt + 0S¢ dW; with Sy given. For simplicity we assume that o, u,r are
given constants, o # 0 and p > r. The value of a portfolio with no asset injections /
consumption is given by Xy = = and

X, —
AXp = 5 S, + =

dBy ,
where o, represents the amount invested in the risky asset. Then
dXP = (rXe+o(p—r)) dt+ oo dWs. (4.8)

Given a desired return m > 0 we aim to find a trading strategy which would minimize
the variance of the return (in other words a strategy that gets as close to the desired
return as possible). We restrict ourselves to « such that E fOT a? dt < co. Thus we seek

V(m) = igf {Var(X3) : EXF =m} . (4.9)

See Exercise to convince yourself that the set over which we wish to take infimum
is non-empty. Conveniently, if, for A € R, we can calculate

v(A) == infE [|X¢ — A
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then [Pha09, Proposition 6.6.5] tells us that

V(im) = ilelg [v(A) = (m — A)Q] .

Furthermore
v(A) = —supE [—|X¢ — \*] .

Thus our aim is to maximize
I(a) :=E[g(XF)] with g(x) = —(x — /\)2.

Since g is concave and differentiable we will try to apply Pontryagin’s maximum prin-
ciple. As there is no running gain (i.e. f = 0) and since X“ is given by we have
the Hamiltonian
Hi(z,a,y,2) =[re +alp—r)y+oaz.
This, being affine in (a, ), is certainly differentiable and concave. Moreover, if there
is an optimal control 3 and if the solution of the adjoint BSDE is denoted (Y#, Z%)
then
mngt(Xf,a, Ytﬂ,Ztﬂ) = max rXfY;B +a(p — r)Y;B + UaZtB} .

The quantity being maximized is linear in a and thus it will be finite if and only if the
solution to the adjoint equation satisfies

(1 — r)YtB + aZtB =0 a.s. fora.at. (4.10)
From now on we omit the superscript 3 everywhere. Recalling the adjoint equation:
dY, = —rYydt + Z, dW, and Yp = 0,9(X71) = —2(X7 — A). (4.11)

To proceed we will need to make a guess at what the solution to the adjoint BSDE
will look like. Since the terminal condition is linear in X, we will try the ansatz
Y; = o(t) Xy + 1(t) for some C! functions ¢ and 1. Notice that this is rather different
to the situation in Example since there we obtain a solution but only in terms of
an unknown process arising from the martingale representation theorem. With this
ansatz we have, substituting the expression for Y on the r.h.s. of (4.11)), that

dY; = —T(P(t)Xt dt — T¢(t) dt + Z; dW; (412)

and on the other hand we can use the ansatz for Y and product rule on the l.h.s.

of (4.11)) to see

dY; = o(t) dX; + Xep' (t) dt + ' (t) dt

4.13
= o) X+ Bl — )] dt P AW+ Xed (B dt 4By ar. D

The second equality above came from (4.8) with § as the control. Then (4.12]
and (4.13) can simultaneously hold only if Z; = ¢(t)o5; and if

p(t) [rXe + Be(p — )] + Xeg' (1) + ¥/ (1) = —r(t) Xe — rp(2) .
This in turn will hold as long as

_ 2re(t) Xy +rp(t) + ' () Xy + ' (1)
@(t)(r — )

By . (4.14)
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On the other hand from the Pontryagin maximum principle we conculded (4.10)
which, with Y; = ¢(t) Xy + ¢ (t) and Z; = ¢(t)o3; says
(1= )lp) Xe + 9 (1)) + ¢ (t) B = 0,

ie. P G C R R 0)
t o?p(t) '

But (4.14) and (4.15) can both hold only if (collecting terms with X; and without)
)2

(1) = (= —2r) lt), o(T) = —2
r—p)2

W) = (S =) u), w(@) =22,

Note that the terminal conditions arose from Y (rather than from the equations for
B3). Also note that 1 clearly depends on A but for now we omit this in our notation.
Clearly

(4.15)

(4.16)

o(t) = _26_( o’ >(T_t) and ¥(t) = 2)\6_( o (4.17)

We note that from (4.15) we can write the control as Markov control
(1 =)o)z + P(t)]
2o (t) |
Thus X driven by this control is square integrable. Indeed /3 is a linear function in x

and together with (4.8)) and Proposition|1.28/we can conclude the square integrability.
Thus we also have E fOT 32 dt < oo and so the control is admissable.

,B(t,:li) ==

We still need to know
v(\) = =J(8) =E[|Xr - AP] .

We cannot calculate this by solving for X as in Exercise (try it). Instead we note
that

1
E| Xy —A?=E —§¢(T)X% —p(T) X7 + N2 .
From Itd’s formula for & := — () X7 — ¢(t) X, we get that
—d& = (3¢' (X7 + ¢/ ()Xe) dt + [p(t) Xe + ¥(1)] dXe + 500(8) dX (£)dX (t) .

And we have that
dXt = (rXt—Fﬂt(u—r)) dt‘l‘(fﬁtth.

Hence
T
—Eér = & +E /0 (éso’(t)XE + (1) Xe

+ 7"(;7(75)Xt2 + rp(t) Xy
+ Bl — 1)) Xe + (2]

+ %(p(t)a%’tz) dt.
From the optimality condition (1 — 7)B:[0(t) X; + ¥¢] + o2p(t) 52 = 0 we get
30°0(8)B; = =5 (1 —1)Belp(t) Xe + ]
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and so
T
—Eér = & + E/O (;w’(t)Xf + ' (t) X,
+ ro(t) X7 + rp(t) Xy
+ 58t — ) () X + ¢(t)]> dt .
This is

r— 2 T 2y2 2
Ber = o+ R [ (L7 4y, - A

So

Lo [T w2

Eé&r =& + 572 /0 oy dt-
Due to (4.17) we have
T r— 2
Eér = & — A2 / e—%@ at.

7 0

Hence

(r—p)*
Eép = & — A2 [1—6— o? T] .

But E| X7 — \|? = E&r + A2 and so

(r—p)?
ElXr— A2 =& +Ne o T,

Moreover & = —1p(0)z? — (z)z and so

2
& = xQe_((Tz’ig)Q_%)T — Zer_((T;g)Q _T)T )

Finally

PR = UL T | 32 NG T2
EXr— A" =e o7 * [z7e® —2zX™ + N =¢ o7 T (A—ze)".

which means that )
v(N) = -k (A — ze™)”,
(=
where Kk := e~ o2 > 0. We thus get

V(m) = sup [—fi (/\2 —2ze + x2e2TT) — X2 422m — mﬂ .
AER

This is achieved when
0= —rs\+rze™l — X+ m

i.e. when \ = fze’4m
€. e tm,

4.3 Exercises

Exercise 4.12 (To complement Example [4.11). Show that, under the assumptions of
Example(4.11] the set {Var(X%) : EX$ = m} is nonempty.
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4.4 Solutions to the exercises

Solution (to Exercise [4.12)). We start by solving (4.8) for some o, = a constant. Note
that (with X = X¢)

d(efrtXt) — Tt [dXt —rX; dt] —e "t [a('u — T) dt + oa th] .

Thus
T T
e T Xp =2+ / e "alpu —r)dt + / cae "t dW;.
0 0

Since the stochastic integral is a true martingale
T 1
EXy =eTa+eTa(u—r) / edt=eTr+a(u—r)- (e —1).
0 T

Thus with
T

(n—r)(er’ =1)

we see that EX = m and so the set is non-empty.

a=r
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A Appendix

A.1 Useful Results from Other Courses

The aim of this section is to collect, mostly without proofs, results that are needed or
useful for this course but that cannot be covered in the lectures i.e. prerequisites. You
are expected to be able to use the results given here.

A.1.1 Linear Algebra

The inverse of a square real matrix A exists if and only if det(A) # 0.

The inverse of square real matricies A and B exists if and only if the inverse of AB
exists and moreover (AB)~! = B~1A~1,

The inverse of a square real matrix A exists if and only if the inverse of AT exists and
(AT)—I — (A—l)T_
If x is a vector in RY then diag(x) denotes the matrix in R?*?¢ with the entries of =

on its diagonal and zeros everywhere else. The inverse of diag(x) exists if and only if
x; Z0foralli =1,..., d and moreover

diag(z)~! = diag(1/z1,1/x2,...,1/x4).

A.1.2 Real Analysis and Measure Theory

Let (X, X, 1) be a measure space (i.e. X is a set, X’ a o-algebra and p a measure).

Lemma A.1 (Fatou’s Lemma). Let f1, fo, ... be a sequence of non-negative and measur-
able functions. Then the function defined point-wise as

f(x) = lim inf £y (=)

is X-measurable and
/ fdu < liminf/ frdu.
X k—o0 X

Consider sets X and Y with o-algebras X and ). By X’ x ) we denote the collection
of sets C = A x Bwhere A € XY¥and B € Y. By XY ® Y = o(X x )), which is the
o-algebra generated by X' x ).

Theorem A.2. Let f : X x Y — R be a measurable function, i.e. measurable with
respect to the o-algebras X ® Y and B(R). Then for each x € X the function y — f(z,y)
is measurable with respecto to Y and B(R). Similarly for each y € Y the function
x +— f(x,y) is measurable with respecto to X and B(R).

The proof is short and so it’s easiest to just include it here.

Proof. We first consider functions of the form f = 1o with C € X ® ). Let

H={CeX®)Y:y— 1lc(x,y) is F — measurable for each fixed x € E}.
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It is easy to check that # is a o-algebra. Moreover if C = A x B with A € X and
B € Y then

y = le(z,y) = La(x)1p(y).

As z is fixed 1 4(x) is just a constant and since B € ) the function y — 1 4(z)15(y)
must be measurable. Hence X x Y C Handthus ¥ ® Y C H. But X C X ® Y and so
H =X ® Y. Hence if f is a simple function then the conclusion of the theorem holds.

Now consider f > 0 and let f,, be a sequence of simple functions increasing to f. Then
for a fixed x the function y — ¢, (y) = fn(z,y) is measurable. Moreover since g(y) =
lim,, 00 gn(y) = f(z,y) and since the limit of measurable functions is measurable
we get the result for f > 0. For general f = fT — f~ the result follows using the
result for f* > 0, f~ > 0 and noting that the difference of measurable functions is
measurable. O

Consider measure spaces (X, X, u1,), (Y,V, 1y). Thatis, X and Y are sets, X and )
are o-algebras and p, and p, are measures on X’ and ) respectively. For all details on
Fubini’s Theorem we refer to Kolmogorov and Fomin [[?7kolmogorov:fomin:reall.

Theorem A.3 (Fubini). Let 1 be the Lebesgue extension of fi, ® j1,. Let A € X @ Y. and
let f : A — R be a measurable function (considering B(R), the Borel o-algebra on R). If
f is integrable i.e. if

/ |f(z,y)|dp < oo
A

then

/Af(fv,y)duz /X [ N f(x,y)duy] iz :/y [ N f(xvy)dﬂx] dpuy,

where A, :=={y €Y :(z,y) € Aand A, :={z € X : (z,y) € A}.

Remark A.4. The conclusion of Fubini’s theorem implies that for u,-almost all z the
integral | 4, f (@, y)dpy exists which in turn implies that the function f(z,-) : A, = R
must be measurable. This statement also holds if we exchange x for .

A.1.3 Conditional Expectation
Let (Q2, F,P) be given.

Theorem A.5. Let X be an integrable random variable. If G C F is a o-algebra then
there exists a unique G measurable random variable Z such that

VG eg /XdIP:/ZdIP’.
€] €]

The proof can be found in xxxx XxxX.

Definition A.6. Let X be an integrable random variable. If G C F is a o-algebra then
G-random variable from Theorem is called the conditional expectation of X given
G and write E(X|G) := Z.

Conditional expectations are rather abstract notion so two examples might help.

57



Example A.7. Consider G := {),}. So G is just the trivial o-algebra. For a random
variable X we then have, by definition, that Z is the conditional expectation (denoted

E[X|G]), if and only if
/ZdIP—/Xd]P’.
Q Q

The right hand side of the above expression is in fact just EX and so the equality
would be satisfied if we set Z = EX (just a constant). Indeed then (going right to

left)
EX:/Xd]P’:/ZdIP’:/IEXdIP’:EX/dIP’:EX.
0 0 Q Q

Example A.8. Let X ~ N(0,1). Let G = {0,{X < 0},{X > 0},Q}. One can (and
should) check that this is a o-algebra. By definition the conditional expectation is a
unique random variable that satisfies

/Q 1 x <o) ZdP = /Q 1 x <0 X dP, (A1)

/ZdIPz/Xd]P.
Q Q

It is a matter of integrating with respect to normal density to find out that

ee 1 /2 1 /2

Since Z must be G measurable it can only take two values:

z_ [ =2 on {X >0},
| 22 on {X <0},

for some real constants z; and z; to be yet determined. But (A.I) and (A.2) taken
together imply that

1 /2 1
2\/; = /QH{X>O}ZdP = /Q]I{X>O}Zldp = ZﬂP(X > 0) = 521.

Hence z; = /2/7. Similarly we calculate that zo = —/2/7. Finally we check that
the third equation in (A.I)) holds. Thus

E[X|G] = 7 — \/g on {X >0},
on {X <0}.

e

Here are some further important properties of conditional expectations which we
present without proof.

Theorem A.9 (Properties of conditional expectations). Let X and Y be random vari-
ables. Let G be a sub-c-algebra of F.

1. If G = {0,Q} then E(X|G) = EX.

2. If X =z a. s. for some constant x € R then E(X|G) = x a.s..
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3. Forany o, € R
E(aX + BY[G) = aE(X|G) + BE(Y]G).
This is called linearity.
4. If X <Y almost surely then E(X|G) < E(Y|G)a.s. .
5. [E(X]G)| <E(|X]19).

6. If X,, » X a. s. and |X,,| < Z for some integrable Z then E(X,|G) — E(X|G) a.
s. . This is the “dominated convergence theorem for conditional expectation”.

7. If Y is G measurable then E(XY|G) = YE(X|G).
8. Let H be a sub-o-algebra of G. Then
E(X|H) = E(E(X|9)[H).
This is called the tower property. A special case is EX = E(E(X|G)).
9. If 0(X) is independent of G then E(X|G) = EX.

Definition A.10. Let X and Y be two random variables. The conditional expectation of
X given 'Y is defined as E(X|Y) := E(X|o(Y)), that s, it is the conditional expectation
of X given the o-algebra generated by Y.

Definition A.11. Let X a random variables and A € F an event. The conditional
expectation of X given A is defined as E(X|A) := E(X|o(A)). This means it is the
conditional expectation of X given the sigma algebra generated by A i.e. E(X|A) :=
E(X|{0, A, Ac,Q}).

We can immediately see that E(X|A) = E(X|14).

Recall that if X and Y are jointly continuous random variables with joint density
(z,y) — f(z,y) then for any measurable function p : R? — R such that E|p(X,Y)| <
oo we have

Ep(X,Y) = /R /R p(z, ) f (. y)dydz.

Moreover the marginal density of X is

g(x) = /Rf(%y)dy

while the marginal density of YV is

h(y) = /Rf(axy)dw-

Theorem A.12. Let X and Y be jointly continuous random variables with joint density
(z,y) — f(x,y). Then for any measurable function ¢ : R — R such that E|p(Y)| < oo
the conditional expectation of p(Y') given X is

E(p(Y)|X) = ¢(X)
where 1) : R — R is given by

r,y)d
)
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Proof. Every A in o(X) must be of the form A = {w € Q : X(w) € B} for some B in
B(R). We need to show that for any such A

/Aq/J(X)d]P’:/Aap(Y)d]P’.

But since E|p(Y)| < oo we can use Fubini’s theorem to show that
[ 508 = BLw(X) =Bl xeny(X) = [ dlalg(o)iz
A B
— [ [ewrmayis= | [ ta@e@sa)dody
BJR R JR
=E1 Y)= Y)dP
xemeV) = [ o)
O

Let on (2, F) be a measurable space. Recall that we say that a measure Q is absolutely
continuous with respect to a measure P if P(E) = 0 implies that Q(E) = 0. We write
Q<< P

Proposition A.13. Take two probability measures P and Q such that Q << P with
dQ = AdP.

Let G be a sub-o-algebra of F. Then Q almost surely E[A|G] > 0. Moreover for any
F-random variable X we have

E[XA|G]

EQ[X|g] = TG

(A.3)

Proof. Let S := {w : E[A|G](w) = 0}. Then S € G and so by definition of conditional
expectation

Q(S) = /SdQ - /SAdIP’ - /SIE[A|g]dIP> _ /S()dIP’ 0.
Thus Q-a.s. we have E[A|G](w) > 0.

To prove the second claim assume first that X > 0. We note that by definition of
conditional expectation, for all G € G:

/G]E[XA|g]dIP’:/GXAdIP’:/GXdQ:/GIEQ[X|Q]dQ:/GIEQ[X|g]AdP.

Now we use the definition of conditional expectation to take another conditional ex-
pectation with respect to G. Since G € G:

/ EQ[X|G]AdP = / E [E@[X\Q]A\g} dP,
a a
But E?[X|G] is G-measurable and so

/GIE[E@[X|Q]AQ] dP:/GIE@[X\g]E[A\g]dP.
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Thus, since in particular 2 € G, we get
/QE[XAyg]dIP = /QE@[X\Q]E [A|G] dPP.
Since X > 0 (and A > 0) this means that P-a.s. and hence Q-a.s. we have (A.3).
E[XA|G] = E*[X|G]E [A|G].

For a general X write X = X* — X, where X" = T;y>¢X > 0 and X~ =
—]l{X<0}X > 0. Then

_ o E[XTAIG] E[X“A|G] E[XT - X A|G]
ESXT - X7 = E[AIG]  E[AG] E[A[G]

A.1.4 Multivariate normal distribution

There are a number of ways how to define a multivariate normal distribution. See
e.g. [?7gut:intermediate, Chapter 5] for a more definite treatment. We will define a
multivariate normal distribution as follows. Let 1 € R? be given and let 3 be a given
symmetric, invertible, positive definite d x d matrix (it is also possible to consider
positive semi-definite matrix ¥ but for simplicity we ignore that situation here).

A matrix is positive definite if, for any = € R? such that = # 0, the inequality 27 Sz > 0
holds. From linear algebra we know that this is equivalent to:

1. The eigenvalues of the matrix X are all positive.

2. There is a unique (up to multiplication by —1) matrix B such that BB = ¥..

Let B be a d x k matrix such that BBT = X..

Let (X;)L, be independent random variables with N(0,1) distribution. Let X =
(X1,...,Xy)" and Z := + BX. We then say Z ~ N(u,Y) and call ¥ the covariance
matrix of Z.

Exercise A.14. Show that COV(Zi, Zj) = E((Zz — EZZ)(Z] — EZ]» = Ez] This justiﬁes
the name “covariance matrix” for X.

It is possible to show that the density function of N(u,X) is

= ! X _1 r— )T (e —
fz) = (2472 det(E)e p< 2(( ) S M))) (A.4)

Note that if ¥ is symmetric and invertible then ¥~! is also symmetric.

Exercise A.15. You will show that Z = BX defined above has the density f given
by (A.4) if 4 = 0.

i) Show that the characteristic function of Y ~ N (0, 1) is t + exp(—t2/2). In other
words, show that E(e®) = exp(—t2/2). Hint. complete the squares.
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ii) Show that the characteristic function of a random variable Y with density f given
by (A.4) is
i(1HTY) _1 Ty—1
E(e ) exp< ¢T3 g).

By taking y = ¥~ !¢ conclude that

, 1
E (ezyTY) = exp <—2yTEly> .

Hint. use a similar trick to completing squares. You can use the fact that since
¥~ 1 is symmetric (TS 1r = (2716 T,

iii) Recall that two distributions are identiacal if and only if their characteristic func-
tions are identical. Compute E (einZ ) for Z=BX and X = (Xy,..., Xy)" with

(X;)L, independent random variables such that X; ~ N(0,1). Hence conclude
that Z has density given by (A.4)) with = 0.

You can now also try to show that all this works with p £ 0.

A.1.5 Stochastic Analysis Details

The aim of this section is to collect technical details in stochastic analysis needed to
make the main part of the notes correct but perhaps too technical to be of interest to
many readers.

Definition A.16. We say that a process X is called progressively measurable if the
function (w,t) — X (w, t) is measurable with respect to F; ® B([0,t]) for all ¢ € [0, T.

We will use Prog, to denote the o-algebra generated by all the progressively measur-
able processes on 2 x [0, 7.

If X is progressively measurable then the processes ( fg X (s)ds)t o and (X(¢t A
S El

7))elo,r) are adapted (provided the paths of X are Lebesgue integrable and provided
T is a stopping time). The important thing for us is that any left (or right) continuous
adapted process is progressively measurable.

A.1.6 More Exercises
Exercise A.17. Say f : R — R is smooth and W = (W (t)),c[o,7] is @ Wiener process.

Calculate
E [f(W(T)W(T)].
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