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Abstract. We study the space of slice-torus invariants. In particular we

characterize the set of values that slice-torus invariants may take on a given

knot in terms of the stable smooth slice genus. Our study reveals that the
resolution of the local Thom conjecture implies the existence of slice torus

invariants without having to appeal to any explicit construction from a knot

homology theory.

1. Introduction

A fruitful approach to understanding a group is to construct homomorphisms
on it; the group of interest in this paper is the smooth concordance group C of
knots. A classical example of such homomorphisms is given by the Levine-Tristram
signatures C → R, which were used in Litherland’s proof that positive non-trivial
torus knots Tp,q are linearly independent in C [Lit79]. Signatures also provide lower
bounds for the smooth slice genus g4(K) ∈ Z≥0 of a knot K but, in the case of torus
knots, these bounds are not sufficient to determine g4(Tp,q). In fact, that we have
g4(Tp,q) = (|p| − 1)(|q| − 1)/2, which is known as the local Thom conjecture, was
first shown by Kronheimer and Mrowka, as a consequence of their resolution of the
Thom conjecture [KM93] using gauge theory. This article is concerned with a class
of homomorphisms C → R that is much younger than signatures, namely slice-torus
invariants, whose definition goes back to Livingston [Liv04] (see also [Lew14]).

Definition 1. A slice-torus invariant is a homomorphism ϕ : C → R satisfying two
conditions:

Slice: ϕ(K) ≤ g4(K) for all knots K and
Torus: ϕ(Tp,q) = g4(Tp,q) for all positive coprime integers p, q.

Note that it is quite non-trivial that such invariants do exist. Using suitable
normalizations, the first slice-torus invariant to be constructed was the τ invariant
coming from knot Floer homology [OS03, Ras03], followed by the Rasmussen in-
variant s coming from Khovanov homology [Ras10], and the sn invariants coming
from sln Khovanov-Rozansky homologies [Wu09, Lob09, Lob12]. We study the set
V ⊂ Hom(C,R) of all slice torus invariants. Note that V is non-empty and convex.
It follows that for each K ∈ C, the set V (K) := {ϕ(K) | ϕ ∈ V } ⊂ R is a nonempty
interval. The main result of this note provides a description of these intervals, in
terms of the stable smooth slice genus (compare [Liv10]) ĝ4(K) := lim

n→∞
g4(K

#n)/n.

Proposition 2. For every knot K, the sequence t1(K), t2(K), . . . defined as

tp(K) := ĝ4(Tp,p+1#K)− ĝ4(Tp,p+1)

is decreasing and convergent. Its limit ℓ(K) satisfies −ℓ(−K) ≤ ℓ(K).
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Theorem 3. For every knot K, the set V (K) = {ϕ(K) | ϕ ∈ V } ⊂ R of values
taken by all slice-torus invariants on K equals [−ℓ(−K), ℓ(K)].

Remark 4. Our proof of Theorem 3 uses the fact that g4(Tp,p+1) = p(p− 1)/2 for
all integers p ≥ 1 [KM93], but we do not use the a priori existence of any slice torus
invariant. Thus, it follows from our proof that the local Thom conjecture implies
the existence of slice torus invariants without the need of any explicit construction
of a slice torus invariant. However, we note that from our proof it is not clear that
there exist integer valued slice torus invariants such as s or τ (suitably normalized),
or even that [−ℓ(K), ℓ(−K)] contains an integer for all knots K.

Example 5. Let us explicitly calculate V (K) for K the (2,−3, 5) pretzel knot,
which is 10125 in the knot table. As above, let sn be the concordance invariant
coming from sln Khovanov-Rozansky homology. Then s̃n := sn/2(n − 1) is a
slice-torus invariant, and s2 is equal to the original Rasmussen invariant s2 = s.
One may calculate that s̃2(K) = 1 and furthermore, for all n ≥ 3, that s̃n(K) ∈
{0, 1/(n − 1)}; see [Lew14]. Since limn→∞ s̃n(K) = 0, it follows from Theorem 3
that [0, 1] ⊂ V (K).

To show the converse inclusion V (K) ⊂ [0, 1], let us use the sharpened slice-
Bennequin inequalities [Lob11, Lew14]. We will only need the braid version of the
inequalities as stated in (∗) below. Denote by σ1, . . . , σk−1 the standard generators
of the braid group Bk on k strands. For β a word in these generators, let

O±(β) = #{i ∈ {1, . . . , k − 1} | σ±1
i does not appear in β}.

Then for all slice-torus invariants ϕ ∈ V , we have that the value taken on the
closure cl(β) satisfies

(∗) 2ϕ(cl(β)) ∈ [1 + w(β)− k + 2O+(β), −1 + w(β) + k − 2O−(β)],

where w(β) denotes the writhe of β. The knot K = 10125 is the closure of β =
σ5
1σ

−1
2 σ−3

1 σ−1
2 ∈ B3. Since w(β) = 0, O+(β) = 1 and O−(β) = 0, (∗) implies that

ϕ(K) ∈ [0, 1] for all ϕ ∈ V , and thus V (K) ⊂ [0, 1]. All in all, we have shown that
V (K) = [0, 1].

This computation of V (K) yields further examples. Namely, for all a, b ∈ Z with
a ≥ 0 it immediately follows that

V (K#a#T#b
2,3 ) = [b, a+ b].

Hence we have the following result.

Proposition 6. Every nonempty compact interval with integral endpoints is real-
ized as V (J) for some knot J . □

Beyond Proposition 6, we do not know if any further intervals can be realized.
The following geography question thus remains open.

Question 7. Which nonempty compact intervals arise as V (J) for some knot J?
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Grant 181199. The second author gratefully acknowledges support by the DFG,
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2. Squeezed knots

Slice torus invariants all agree on the following class of knots.

Definition 8 ([FLL22]). A knot K is called squeezed if and only if there exists a
smooth oriented connected cobordism C+ between a positive torus knot T+ and K,
and a smooth oriented connected cobordism C− between K and a negative torus
knot T− such that C+∪C− is a smooth oriented connected cobordism between T+

and T− that is genus-minimizing.

The reader may wish to try to prove the following proposition directly from the
definitions. It says, roughly speaking, that squeezed knots are boring from the
point of view of slice-torus invariants.

Proposition 9 ([FLL22]). If ϕ1 and ϕ2 are slice-torus invariants and K is squeezed
then we have that ϕ1(K) = ϕ2(K). □

By Theorem 3, Proposition 9 also follows from the following.

Proposition 10. If a knot K is squeezed, then −ℓ(−K) = ℓ(K).

Proof. Let C± and T± be chosen as in the definition of squeezedness applied to K.
We may assume that for some large p > 0, the T± satisfy T+ = T := T (p, p + 1)
and T− = −T . This is because for any positive torus knot L there exists a p > 0
such there is a genus-minimizing slice surface for T (p, p+1) that factors through L
(see Lemma 14 (i)). Then, we have

ℓ(−K) + ℓ(K) ≤ tp(−K) + tp(K)

by the monotonicity of tp(K) shown in Proposition 2. By definition of tp this equals

= ĝ4(T#−K) + ĝ4(T#K)− 2ĝ4(T ).

It is well known (and we provide a proof in Lemma 14 (iv)) that slice genus and
stable slice genus of torus knots agree; therefore we find the equality

= ĝ4(T#−K) + ĝ4(T#K)− g4(T#T ).

Since ĝ4 ≤ g4 for all knots,

≤ g4(T#−K) + g4(T#K)− g4(T#T ).

For all J, J ′, g4(J#−J ′) equals the cobordism distance between J and J ′, and so

≤ g(C+) + g(C−)− g4(T#T ),

which equals 0 because of the assumption that C+ ∪ C− is a genus-minimizing
cobordism between T and −T . □

The proof of Proposition 10 shows that if K is squeezed, then the sequence tp(K)
is constant for sufficiently large p. We do not know whether this is the case for all
knots:

Question 11. We ask the following.

(i) Is ℓ(K) an integer for all knots K?
(ii) (Stronger) Does the sequence ĝ4(Tp,p+1#K) have only finitely many non-

integer values for every fixed knot K?
(iii) (Strongest) Does ĝ4(Tp,p+1#K) = g4(Tp,p+1#K) hold for all but finitely

many p for every fixed knot?
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Remark 12. If (i) can be answered positively, then Question 7 is resolved: the
intervals that occur as V (J) for some knot are [a, b] with a ≤ b integers.

If (iii) can be answered positively, then K satisfying −ℓ(−K) = ℓ(K) implies
that K is squeezed. This is seen as follows. If a knot K satisfies −ℓ(−K) = ℓ(K),
then we have for some p > 0

g4(Tp,p+1#K)− g4(Tp,p+1) = ℓ(K) = −ℓ(−K) = g4(Tp,p+1)− g4(Tp,p+1#−K)

and hence

g4(Tp,p+1#K) + g4(Tp,p+1#−K) = 2g4(Tp,p+1).

The left hand side of the equation is the genus of a cobordism from Tp,p+1 to
−Tp,p+1 that factors through K. On the other hand, the right hand side is the
minimal genus of a cobordism from Tp,p+1 to −Tp,p+1. Thus we see that K must
be squeezed.

In light of this, we conjecture the converse of Proposition 10.

Conjecture 13. For all knots K, K is squeezed if and only if −ℓ(K) = ℓ(−K).

3. Proof of the main theorem

The stable 4-genus ĝ4 induces a seminorm on the vector space C⊗R, as discussed
by Livingston [Liv10] (Livingston states the result for the vector space C ⊗Q, but
it easily extends to C ⊗ R). Moreover, every slice torus invariant y gives rise to
homomorphism y : C ⊗ R → R, with y ≤ ĝ4. Here, our slightly abusive notation
does not differentiate between ĝ4 and the induced seminorm, y and the induced
homomorphism, nor between knots and the vectors they represent in C ⊗ R.

In what follows, let T be the real subspace of C⊗R generated by torus knots, and
let T+ ⊂ T be the closed convex cone consisting of linear combinations of positive
torus knots with non-negative coefficients.

Let us emphasize, as mentioned in Remark 4, that we only use the fact that
g4(Tp,p+1) = p(p − 1)/2. The realization that this fact is enough to determine
g4 for much larger classes of knots is due to Rudolph [Rud93]. For the sake of
self-containedness, we include a short proof.

Lemma 14. We have the following.

(i) For all knots K ∈ T+, there is an integer p ≥ 1 and a smooth cobordism C
between K and Tp,p+1 such that g(C) = g4(Tp,p+1)− g4(K).

(ii) For all integers p ≥ 2, there is a smooth cobordism C between Tp−1,p and
Tp,p+1 of genus p− 1.

(iii) For all knots K,K ′ ∈ T+, we have g4(K#K ′) = g4(K) + g4(K
′).

(iv) For all knots K ∈ T+, we have ĝ4(K) = g4(K).

Proof. (i) Since K is a connected sum of positive torus knots, it may in particular
be written as closure of a positive braid word β ∈ Bk for some k. Assume that
β is the product of l generators. Replace each σi in β with σ1 · · ·σk−1 to find a
cobordism (consisting of l(k − 2) 1-handles) from K to the torus link T (k, l). Set
p = max{k, l − 1}. Compose this first cobordism with a cobordism from T (k, l) to
T (k, p+1) given by (p+1− l)(k− 1) 1-handles, and then with a further cobordism
from T (k, p + 1) to T (p, p + 1) given by (p − k)p 1-handles. In total, this yields a
cobordism C of genus g(C) = p(p − 1)/2 − (1 + l − k)/2. The triangle inequality
implies g4(K) ≥ g4(Tp,p+1) − g(C) = (1 + l − k)/2. On the other hand, Seifert’s
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algorithm applied to β results in a Seifert surface of genus (1+ l−k)/2 for K. Thus,
g4(K) = (1 + l − k)/2, and g(C) = g4(Tp,p+1)− g4(K) as desired.

(ii) Note that Tp−1,p is the closure of the braid β = (σ1 · · ·σp−1)
p−1 ∈ Bp. The

desired cobordism C consists of 2(p − 1) 1-handles and may be constructed by
appending (σ1 · · ·σp−1)

2 to β, thus obtaining the braid (σ1 · · ·σp−1)
p+1, whose

closure is Tp,p+1. The existence of C is also implicit in [Baa12, Proof of Theorem 2],
[Fel16, Example 20], or follows from [Fel14, Theorem 2].

(iii) As in (i), K and K ′ may be written as closures of positive braid words β ∈
Bk, β

′ ∈ Bk′ that are the product of l and l′ generators, respectively. Then, K#K ′

is the closure of a positive braid word β′′ ∈ Bk+k′−1 that is the product of l + l′

generators. As shown in (i), this implies that

g4(K#K ′) =
1 + l + l′ − (k + k′ − 1)− 1

2

=
1 + l − k

2
+

1 + l′ − k′

2
= g4(K) + g4(K

′).

(iv) This directly follows from (iii) and the definition of ĝ4. □

We are now ready to proceed to prove Proposition 2 and Theorem 3.

Proof of Proposition 2. Let us first show that tp(K) is monotonically decreasing.
By Lemma 14 (ii), for p ≥ 2 there exists a smooth cobordism C of genus g4(Tp,p+1)−
g4(Tp−1,p) = p−1 between Tp−1,p and Tp,p+1. Let F be a genus-minimizing slice sur-
face of (Tp−1,p#K)#n. Gluing F to C#n gives a slice surface F ′ of (Tp,p+1#K)#n

of genus g(F ′) = g(F ) + n(p− 1). Thus

g4((Tp,p+1#K)#n) ≤ g4((Tp−1,p#K)#n) + n(p− 1) ⇒

g4((Tp,p+1#K)#n)

n
− p(p− 1)

2
≤ g4((Tp−1,p#K)#n)

n
− (p− 1)(p− 2)

2
⇒

tp(K) ≤ tp−1(K).

Next, we observe that tp(K) is bounded below, and thus converges. Indeed,

tp(K) + tp(−K) = ĝ4(Tp,p+1#K) + ĝ4(Tp,p+1#−K)− 2g4(Tp,p+1)

≥ ĝ4(Tp,p+1#K#Tp,p+1#−K)− 2g4(Tp,p+1)

= 2ĝ4(Tp,p+1)− 2g4(Tp,p+1),

which is zero by Lemma 14 (iv). Hence we have tp(K) ≥ −tp(−K) ≥ −t1(−K).
Finally, taking the limit p → ∞ of tp(K)+tp(−K) ≥ 0 also yields ℓ(K)+ℓ(−K) ≥ 0,
as desired. □

Proof of Theorem 3. We first check that ϕ(K) ∈ [−ℓ(−K), ℓ(K)] for every slice-
torus invariant ϕ. For every p, we have

ϕ(−K) = ϕ(Tp,p+1#−K) + ϕ(−Tp,p+1)

= ϕ(Tp,p+1#−K)− ĝ4(Tp,p+1)

≤ ĝ4(Tp,p+1#−K)− ĝ4(Tp,p+1)

= tp(−K),
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where we used that ϕ(J) ≤ ĝ4(J) for all knots J . Taking the limit gives −ϕ(K) =
ϕ(−K) ≤ ℓ(−K), and, by replacing K by −K, we find ϕ(K) ≤ ℓ(K). Hence, we
have ϕ(K) ∈ [−ℓ(−K), ℓ(K)] as desired.

As last step of the proof, for a given knot K and a given real number λ ∈
[−ℓ(K), ℓ(−K)], we need to construct a slice-torus invariant ϕ with ϕ(K) = λ.
Positive non-trivial torus knots have linearly independent Levine-Tristram signa-
tures [Lit79]. Therefore they are linearly independent in C ⊗ R and form a basis
of T . Thus there is a unique homomorphism ϕ′′ : T → R with ϕ′′(Tp,q) = g4(Tp,q)
for all coprime positive p, q. We claim that

(†) ϕ′′(P ) = ĝ4(P )

holds for all vectors P ∈ T+. If P is a knot, then (†) is true by Lemma 14 (iii).
Since ϕ′′(ξP ) = ξϕ′′(P ) = ξĝ4(P ) = ĝ4(ξP ) for all positive rationals ξ, (†) also
holds for P equal to a rational multiple of a knot. Thus we have that

ϕ′′|T+∩C⊗Q = ĝ4|T+∩C⊗Q,

but T+ ∩ C ⊗ Q is a dense subset of T+ endowed with the subspace topology aris-
ing from the colimit topology of the Euclidean topologies on all finite-dimensional
subspaces of T . The colimit topology is the finest topology such that for all finite-
dimensional subspaces of T , equipped with the Euclidean topology, the inclusion
homomorphism into T is continuous. Moreover, ϕ′′ and the restriction of ĝ4 to T
are continuous functions with respect to the colimit topology since their restrictions
to all finite dimensional subspaces are continuous. Thus (†) holds for all P ∈ T+.

Now, all T ∈ T can be written as P − P ′ with P, P ′ ∈ T+.

ϕ′′(T ) = ĝ4(P )− ĝ4(P
′) ≤ ĝ4(P − P ′) = ĝ4(T ).

So the homomorphism ϕ′′ is dominated by ĝ4, i.e. ϕ
′′(T ) ≤ ĝ4(T ) for all T ∈ T .

We now proceed to construct the desired slice-torus invariant ϕ. Let us first
consider the case that the given knotK lies in T . Then it follows from Lemma 14 (i)
that K is squeezed, and so −ℓ(−K) = ℓ(K) by Proposition 10. Therefore λ =
ℓ(K) = ϕ(K) for all slice-torus invariants ϕ. So it is enough to show the existence
of any slice-torus invariant. The Hahn-Banach theorem implies that ϕ′′ extends to
a homomorphism ϕ : C ⊗R → R that satisfies ϕ ≤ ĝ4 on all of C ⊗R. Precomposing
ϕ with the canonical map C → C ⊗ R,K 7→ K ⊗ 1, gives a slice-torus invariant.

Now, let us take care of the case that K ̸∈ T . Consider the space TK = T + ⟨K⟩.
Set ϕ′(T + µK) = ϕ′′(T ) + µ · λ for all vectors T ∈ T and reals µ ∈ R. This is
clearly a homomorphism TK → R. Let us check that it is dominated by ĝ4, i.e.
ϕ′(T + µK) ≤ ĝ4(T + µK) for all T ∈ T and µ ∈ R. We claim that the case µ = 1
quickly implies the general case. Indeed, for µ > 0, assuming the case µ = 1, we
have

ϕ′(T + µK) = µϕ′(T/µ+K) ≤ µĝ4(T/µ+K) = ĝ4(T + µK).

The case µ < 0 follows from the case µ > 0 since T + µK = T + (−µ)(−K). So let
us now show the case µ = 1, i.e. that for all T ∈ T we have

(‡) ϕ′(T +K) ≤ ĝ4(T +K).

Let us first consider the case that T is a knot in T+. Then by Lemma 14 (i), there
exists a cobordism C from T to some Tp,p+1 with genus g(C) = ĝ4(Tp,p+1)− ĝ4(T ).
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We then have

ϕ′(T +K) = ĝ4(T ) + λ

≤ ĝ4(T ) + ℓ(K)

≤ ĝ4(T ) + tp(K)

= ĝ4(T ) + ĝ4(Tp,p+1#K)− ĝ4(Tp,p+1)

≤ ĝ4(T ) + ĝ4(Tp,p+1#−T ) + ĝ4(T#K)− ĝ4(Tp,p+1)

≤ ĝ4(T ) + g(C) + ĝ4(T#K)− ĝ4(Tp,p+1)

= ĝ4(T#K).

So, we have shown (‡) in case that T is a knot in T+. If T ∈ T+ such that nT is a
knot for some positive integer n, then

ϕ′(T +K) = 1
nϕ

′(nT +K#n) ≤ 1
n ĝ4(nT +K#n) = ĝ4(T +K).

Thus (‡) holds for all T in T+∩C⊗Q. Similarly as in the proof of (†), the denseness
of T+ ∩ C ⊗ Q in T+ and the continuity of ϕ′ and ĝ4 now imply that (‡) holds for
all T ∈ T+. In the general case that T ∈ T , we may again write T as P − P ′ with
P, P ′ ∈ T+. Applying linearity of ϕ′ and the triangle inequality for ĝ4, we find

ϕ′(T +K) = ϕ′(−P ′) + ϕ′(P +K)

≤ −ĝ4(P
′) + ĝ4(P +K)

≤ ĝ4(T +K).

This concludes the proof that ϕ′ is dominated by ĝ4 on TK . By the Hahn-Banach
theorem, ϕ′ extends to a homomorphism ϕ : C ⊗ R → R that is dominated on all
of its domain by ĝ4. Precomposing ϕ with C → C ⊗ R gives the desired slice-torus
invariant. □
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Topol. 8 (2004), 735–742. MR2057779, arXiv:math/0311036.

[Liv10] : The stable 4-genus of knots, Algebr. Geom. Topol. 10 (2010), no. 4, 2191–2202.
MR2745668, arXiv:0904.3054.

[Lob09] A. Lobb: A slice-genus lower bound from sl(n) Khovanov-Rozansky homology, Adv.
Math. 222 (2009), no. 4, 1220–1276. MR2554935, arXiv:math/0702393.

[Lob11] : Computable bounds for Rasmussen’s concordance invariant, Compos. Math.

147 (2011), 661–668. MR2776617, arXiv:0908.2745.
[Lob12] : A note on Gornik’s perturbation of Khovanov-Rozansky homology, Algebr.

Geom. Topol. 12 (2012), 293–305. MR2916277, arXiv:1012.2802.

http://www.ams.org/mathscinet-getitem?mr=2975163
http://arxiv.org/abs/1011.0876
http://www.ams.org/mathscinet-getitem?mr=3159969
http://arxiv.org/abs/1301.5248
http://www.ams.org/mathscinet-getitem?mr=3622312
http://arxiv.org/abs/1501.00483
http://arxiv.org/abs/2202.12289
http://www.ams.org/mathscinet-getitem?mr=1241873
http://www.ams.org/mathscinet-getitem?mr=3209349
http://arxiv.org/abs/1310.3100
http://www.ams.org/mathscinet-getitem?mr=547456
http://www.ams.org/mathscinet-getitem?mr=2057779
http://arxiv.org/abs/math/0311036
http://www.ams.org/mathscinet-getitem?mr=2745668
http://arxiv.org/abs/0904.3054
http://www.ams.org/mathscinet-getitem?mr=2554935
http://arxiv.org/abs/math/0702393
http://www.ams.org/mathscinet-getitem?mr=2776617
http://arxiv.org/abs/0908.2745
http://www.ams.org/mathscinet-getitem?mr=2916277
http://arxiv.org/abs/1012.2802


8 PETER FELLER, LUKAS LEWARK, AND ANDREW LOBB
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