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Fractals

A fractal is a set with some form of self-similarity.

Mathematical Examples:

Self-similar sets such as the Cantor set, Sierpinski gasket or carpet.

Random objects such as the sample paths of Brownian motion or
Levy processes.

Scaling limits of critical statistical mechanics models

Attractors from dynamical systems such as Julia sets.

Of course, according to Mandelbrot, they are ubiquitous in nature!
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Self-similar sets and trees

A self-similar set K is the fixed point of a family φi, i = 1, . . . , n of
contraction maps

K =
n
⋃

i=1

φi(K).

Each scaled copy of the whole has an address i = i1i2· · ·k so that
Ki = φi1 ◦ · · · ◦ φin(K). Each address is a point in the tree {1, . . . , n}N.
The Sierpinski gasket:

The fractal dimension log 3/ log 2 is given by the rate of growth of the tree.
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Random self-similar sets

Two possible simple randomizations of the Sierpinski gasket:

The LHS is a random recursive fractal, in that each triangle is randomly
subdivided into 3 or 6.

The RHS is a homogeneous random fractal, in that at each scale we
choose randomly to divide all triangles into 3 or 6.
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The homogeneous random tree

The first stages and the tree for a homogeneous random gasket where at
each level 2 or 3 is independently chosen with probability p, 1− p

F(2)

F(2) F(2) F(2)

F(3) F(3) F(3)

The growth rate is 3k6n−k where k is the number of 2s in the construction
sequence. The fractal dimension is

df =
p log 3 + (1− p) log 6

p log 2 + (1− p) log 3
.
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The random recursive tree

The first stages of a random recursive gasket where each 2, 3 is
independently chosen with probability p, 1− p within each triangle.

The tree of cell addresses is now a Galton-Watson branching process.

However we need a more sophisticated model to compute the dimension.
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General (CMJ) branching processes

To tackle a range of examples like this we use a branching process
description.

An individual x in a general branching process has

1. offspring whose birth times are a point process ξx on (0,∞),

2. a lifetime which is a non-negative random variable Lx,

3. a characteristic which is a (possibly random) càdlàg function φx on R.

We make no assumption on the joint distribution of (ξx, Lx, φx) and allow
φx to depend on the progeny of x. Each individual evolves independently.

Let

ξ(t) = ξ((0, t]), ν(dt) = Eξ(dt), ξγ(dt) = e−γtξ(dt), νγ(dt) = Eξγ(dt).
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We assume that the GBP is super-critical in that ν(∞) > 1.

Then there exists a Malthusian parameter γ ∈ (0,∞) such that

νγ(∞) = 1.

Let µ =
∫∞

0
tνγ(dt).

The individuals of the population are counted using the characteristic φ

through the characteristic counting process Zφ defined by

Zφ(t) =
∑

x∈T

φx(t− σx) = φ∅(t) +

ξ∅(∞)
∑

i=1

Zφ
i (t− σi),

where σx is the birth time of the individual x, T is the ancestral tree and
Zφ
i are i.i.d. copies of Zφ.
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Counting with characteristics

The population size:

φ(t) = I0≤t≤L,

then Zφ(t) corresponds to the number of individuals in the population
alive at time t.

For the calculation of the Minkowski dimension

φ(t) = ξ(∞)− ξ(t),

then φ(t) corresponds to the number of offspring born after time t to
parents born up to time t.

Later we will use characteristic functions whose corresponding
counting process contains information about the Minkowski content,
the spectral counting function or the heat content of the set.
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Random recursive fractals

A random recursive fractal is a compact subset K of Rd determined by a
random number N and random contracting similitudes Φ1, . . . ,ΦN , with
contraction ratios R1, . . . , RN . The set K is such that

K =

N
⋃

i=1

Φi(Ki), a.s.,

where K1, . . . ,KN are i.i.d. copies of K.

Theorem: Let K be a non-empty random recursive fractal with
int(Ki) ∩ int(Kj) = ∅ for all i, j. Write (N,R1, . . . , RN ) for the random
variable of number of similitudes and their ratios, then a.s.

dimK = α := inf

{

s : E

(

N
∑

i=1

Rs
i

)

≤ 1

}

.
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Connection with the GBP

The general branching process for a random recursive fractal has

ξx =

Nx
∑

i=1

δ− logRx,i .

For the first generation of offspring this means that

e−σi = Ri.

The offspring x born around time t correspond to compact sets Kx of size
around e−t. As

E

∫ ∞

0

e−sxξ(dx) = E

(

N
∑

i=1

Rs
i

)

,

the Malthusian parameter of the underlying general branching process is
equal to the almost sure Hausdorff/Minkowski dimension of the set K.
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Renewals and martingale

Two key ideas for the GBP:

1. The functions zφ(t) = e−γt
EZφ(t) and uφ(t) = e−γt

Eφ(t), satisfy the
renewal equation

zφ(t) = uφ(t) +

∫ ∞

0

zφ(t− s)νγ(ds).

2. Let Fx = σ({(ξy, Ly) : σy ≤ σx}), Ft = σ(Fx, σx ≤ t) and
Λt = {x ∈ T : x = yi for some y ∈ T , i ∈ N, and σy ≤ t < σx}. The
process M defined by

Mt =
∑

x∈Λt

e−γσx

is a non-negative càdlàg Ft-martingale and hence converges to M∞

a.s. which is non-degenerate under an x log x condition.
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A strong law for GBP

An analogue of the supercritical GW process convergence theorem:

Theorem (Nerman)
Let (ξx, Lx, φx)x be a general branching process with Malthusian
parameter γ, where φ ≥ 0 and φ(t) = 0 for t < 0. Assume that νγ is
non-lattice. Assume there exist non-increasing bounded positive
integrable càdlàg functions g and h on [0,∞) such that

E

[

sup
t≥0

ξγ(∞)− ξγ(t)

g(t)

]

< ∞ and E

[

sup
t≥0

e−γtφ(t)

h(t)

]

< ∞.

Then,

zφ(t) → zφ(∞) = µ−1

∫ ∞

0

uφ(s)ds,

and as t → ∞,

e−γtZφ(t) → zφ(∞)M∞, a.s.
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CLT for GBP

Centring and scaling:

Let Z̄ be a version of Zφ which satisfies

Z̄(t) =
∑

x∈T

ζ̄x(t− σx),

where the functions ζ̄x, which may depend on the progeny of x, are
chosen so that EZ̄(t) = 0.

Let Z̃ of Z̄, be

Z̃(t) = e−γt/2Z̄(t) = ζ̃∅(t) +

ξ(∞)
∑

i=1

e−γσi/2Z̃i(t− σi),

where ζ̃(t) = e−γt/2ζ̄(t).
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Variance

Define

V (t) = Z̄(t)2 = ρ∅(t) +

ξ(∞)
∑

i=1

Vi(t− σi),

where

ρ∅(t) = ζ̄∅(t)
2 + 2ζ̄∅(t)

ξ(∞)
∑

i=1

Z̄i(t− σi) + 2

ξ(∞)
∑

i=1

∑

j<i

Z̄i(t− σi)Z̄j(t− σj).

We will use the notation

v(t) = e−γt
EV (t) and r(t) = e−γt

Eρ(t).

As before, v and r satisfy the renewal equation

v(t) = r(t) +

∫ ∞

0

v(t− s)νγ(ds).
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Conditions

The central limit theorem requires two technical conditions.

Condition A:
There exists ǫ ∈ (0, 1/2) such that

e−γt/2
∑

σx≤ǫt

ζ̄x(t− σx) → 0, in probability,

as t → ∞.

Condition B:
There exists α ∈ (0,∞) such that

sup
t∈R

E{|Z̃(t)|2+α} < ∞.
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The CLT

Theorem:
Let (ξx, Lx, φx)x be a general branching process with Malthusian
parameter γ. Assume that v is bounded and that

v(t) → v(∞),

some finite constant, as t → ∞. Assume further that Conditions A and B
hold. Then,

Z̃(t) → Z̃∞, in distribution,

as t → ∞, where the distribution of Z̃∞ is characterised by

E

[

eiθZ̃∞

]

= E

[

e−
1

2
θ2v(∞)M∞

]

.
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Applictions

In applications, we generally have e−γtZφ(t) → zφ(∞)M∞, in probability,
as t → ∞. To understand the fluctuations around the limiting behaviour,
we study the expression

eγt/2
[

e−γtZφ(t)− zφ(∞)M∞

]

= e−γt/2
[

Zφ(t)− eγtzφ(t)M∞

]

+ eγt/2[zφ(t)− zφ(∞)]M∞. (1)

The first term on the right hand side suggests centring Z using

Z̄(t) = Zφ(t)− eγtzφ(t)M∞ = ζ̄∅(t) +

ξ(∞)
∑

i=1

Z̄i(t− σi), (2)

where

ζ̄∅(t) = φ∅(t) +

ξ(∞)
∑

i=1

eγ(t−σi)[zφ(t− σi)− zφ(t)]Mi(∞). (3)
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Drums

A vibrating membrane, fixed on its boundary, satisfies the wave equation

δD

u=0

D

2
ttu =c    u∆

We can find the pure tones of the drum by substituting u(x, t) = F (x)eiωt

into the wave equation. This gives, setting c2 = 1,

∆F = −ω2F.
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Spectral asymptotics

The standard Laplacian on a bounded domain D ⊆ R
d with Dirichlet

boundary conditions has a discrete spectrum consisting of
eigenvalues 0 < λD

1 < λD
2 ≤ . . . . That is λi satisfies for some u







−∆u = λiu in D

u = 0 on ∂D
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Spectral asymptotics

The standard Laplacian on a bounded domain D ⊆ R
d with Dirichlet

boundary conditions has a discrete spectrum consisting of
eigenvalues 0 < λD

1 < λD
2 ≤ . . . . That is λi satisfies for some u







−∆u = λiu in D

u = 0 on ∂D

Weyl’s Theorem of 1912 states that the eigenvalue counting function

N(λ) = |{λi : λi ≤ λ}|

satisfies

lim
λ→∞

N(λ)

λd/2
=

Bd

(2π)d
|D|

where |D| is the Lebesgue measure of D. and Bd the volume of the
unit ball in R

d.
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A heuristic proof

Consider the Dirichlet heat kernel on the domain. Mercer’s theorem gives

pat (x, y) =
∞
∑

i=1

e−λitφi(x)φi(y),

where φi are an orthonormal set of eigenfunctions, eigenvalue λi.

The trace of the heat semigroup, or the partition function, satisfies

∫

D

pat (x, x)dx =
∞
∑

i=1

e−λit =

∫ ∞

0

e−stN(ds).

Thus information about the spectrum can be recovered from Tauberian
theorems, if we understand the short time heat kernel asymptotics, and
vice versa.
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In D the heat kernel with Dirichlet or Neumann boundary conditions will
be like the free space heat kernel for small times - The ‘principle of not
feeling the boundary’;

∫

D

pt(x, x)dx ≈

∫

D

pFt (x, x)dx =
|D|

(4πt)d/2
.

Thus
∫ ∞

0

e−stN(ds) ≈
|D|

(4π)d/2
t−d/2,

and a standard Tauberian theorem gives

N(λ) ≍
Bd|D|

(2π)d
λd/2, λ → ∞.
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The Weyl-Berry conjecture

In the case where D is a manifold with a smooth boundary ∂D (under
a billiard condition) we have

N(λ) =
Bd

(2π)d
|D|λd/2 −

1

4

Bd−1

(2π)d−1
|∂D|λ(d−1)/2 + o(λ(d−1)/2).

1979 Berry conjectured that if the boundary was fractal, then the
second term would have as exponent the Hausdorff dimension of the
boundary.

Brossard and Carmona showed this was not true - the Hausdorff
dimension should be replaced by the Minkowski dimension.

This led to a modified Weyl-Berry conjecture.
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The modified Weyl-Berry conjecture was that

N(λ) =
Bd

(2π)d
|D|λd/2 − cd,dm

M(dm, ∂D)λdm/2 + o(λdm/2).

where the (upper) Minkowski dimension of the boundary

dm = inf{α : M∗(α, ∂D) = lim sup
ǫ→0

ǫ−(d−α)|∂Dǫ ∩D| < ∞}.

The Minkowski content M(dM , ∂D) exists if the limit in the definition
of M∗(α, ∂D) exists.
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The modified Weyl-Berry conjecture was that

N(λ) =
Bd

(2π)d
|D|λd/2 − cd,dm

M(dm, ∂D)λdm/2 + o(λdm/2).

where the (upper) Minkowski dimension of the boundary

dm = inf{α : M∗(α, ∂D) = lim sup
ǫ→0

ǫ−(d−α)|∂Dǫ ∩D| < ∞}.

The Minkowski content M(dM , ∂D) exists if the limit in the definition
of M∗(α, ∂D) exists.

Lapidus and Pomerance showed the modified Weyl-Berry conjecture
was false in R

d for d > 1.
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The modified Weyl-Berry conjecture was that

N(λ) =
Bd

(2π)d
|D|λd/2 − cd,dm

M(dm, ∂D)λdm/2 + o(λdm/2).

where the (upper) Minkowski dimension of the boundary

dm = inf{α : M∗(α, ∂D) = lim sup
ǫ→0

ǫ−(d−α)|∂Dǫ ∩D| < ∞}.

The Minkowski content M(dM , ∂D) exists if the limit in the definition
of M∗(α, ∂D) exists.

Lapidus and Pomerance showed the modified Weyl-Berry conjecture
was false in R

d for d > 1.

It does hold for d = 1 and the inverse spectral problem is related to the
Riemann hypothesis.
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The snowflake domain

In the case of the snowflake domain

using the self-similarty gives the existence of a periodic function such that

N(λ) =
B2

(2π)2
|D|λ− p(lnλ)λlog 4/2 log 3 + o(λlog 4/2 log 3).

In fact the higher order term can be expressed more explicitly.

It has still not been proven that the periodic function p is not constant.

Subsequent work has focused on the heat content for different snowflake
domains (van den Berg and den Hollander).
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Heat content

We can consider the heat content of a domain. That is we let u(t, x) be
the solution to the heat equation in the domain with unit boundary
condition and 0 initial condition;

ut = ∆u, x ∈ D, u(t, x) = 1, x ∈ ∂D,

with u(0, x) = 0 for all x ∈ D. The heat content is

E(t) =

∫

D

u(t, x)dx.

This quantity does not have the leading order term of the partition
function. Instead, for small times, it is determined by the behaviour of the
solution to the heat equation at the boundary.

This has a nice probabilistic representation as u(t, x) = P
x(τD < t), where

τD is the exit time from the domain.
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Fractal drums

What happens if the set itself is fractal? For example the Sierpinski
gasket.

This is not a domain and the set itself is self-similar.
1. There is a Laplace operator defined as a renormalized limit of discrete
Laplacians which has a discrete spectrum.
2. The spectral dimension is the exponent describing the growth of the
eigenvalue counting function

ds = 2 lim
λ→∞

logN(λ)

log λ
=

2 log 3

log 5
6= df =

log 3

log 2
.
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For the Sierpinski gasket (and other nested fractals) we have

N(λ) = λdS/2(G(lnλ) + o(1)), as λ → ∞,

where G is a periodic function (Fukushima-Shima, Barlow-Kigami).

This is due to the symmetry and exact self-similarity of the set.

We can construct strictly localized eigenfunctions on this set and use the
self-similarity and symmetry to construct other eigenfunctions. Thus there
are eigenvalues with very high multiplicity.

For self-similar sets with less symmetry but finite ramification (p.c.f
fractals), if the logarithms of the scaling ratios are not rationally related,
then (Kigami-Lapidus)

lim
λ→∞

N(λ)

λds/2
= C.
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Spectral asymptotics for random gaskets

For the random recursive Sierpinski gasket, where each 2, 3 is
independently chosen with probability p, 1− p for each triangle

lim
λ→∞

N(λ)

λds/2
= W, a.s.

where ds = 2α/(α+ 1) and α satisfies p3( 35 )
α + (1− p)6( 7

15 )
α = 1.

For the homogeneous random gasket, where each 2, 3 is independently
chosen with probability p, 1− p for each scale there are constants s.t.

0 < lim sup
λ→∞

N(λ)

λds/2φ(λ)c1
lim sup
λ→∞

N(λ)

λds/2φ(λ)c2
< ∞, a.s.

where

ds
2

=
p log 3 + (1− p) log 6

p log 5 + (1− p) log 90/7
, φ(t) = exp(

√

log λ log log log λ).
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The Brownian string

A natural random fractal string can be generated by Brownian motion.

Take Brownian motion started from 0 in R run for unit time. The path can
be viewed as a sequence of excursions away from 0. The zero set is a
Cantor set (perfect and nowhere dense) and so divides the time axis into
a countable number of intervals. Thus we have a decomposition of the
unit interval - a fractal string.

For the Dirichlet counting function

N(λ) =
1

π
λ1/2 − Lζ(1/2)λ1/4 + o(λ1/8+ǫ).

where L is the local time at 0 of the Brownian motion and ζ is the
Riemann zeta function (H-Lapidus).

Our aim is to understand higher order terms for some random fractal
strings and the continuum random tree.
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Random strings

Let K0 = [0, 1], let T1, . . . , Tn be non-negative random variables such that
T1 + · · ·+ Tn = 1 and let γ ∈ (0, 1). Now put

K(1) = [a1, b1] ∪ · · · ∪ [an, bn],

where a1 = 0, bn = 1, bi − ai = T
1/γ
i and ai+1 − bi = ai+2 − bi+1.

Iterating and putting

K =
⋂

n∈N

K(n)

produces a random Cantor type subset of [0, 1].

Letting Ri = T
1/γ
i , the Malthusian parameter of the branching process

associated with K is γ. The martingale M ≡ 1.

We consider one simple example from this collection.
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The geometry

Let n = 3 and (T1, T2, T3) follow a Dirichlet-(1/2, 1/2, 1/2) distribution.
We write S = S1 ∪ J1 ∪ S2 ∪ J2 ∪ S3, so the intervals forming the string are
J1, J2.
The Hausdorff and Minkowski dimensions of S, the boundary of the string,
are both γ almost surely.
We now use the general branching process to look at the volume of the
inner-ǫ-neighbourhood µ(ǫ) of ∂S.

Theorem:
For the fractal string S, we have

ǫγ−1µ(ǫ) → M, a.s.,

as ǫ → 0, for some positive constant M.
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Proof idea

Notice that

µ(ǫ) =

2
∑

i=1

µJi(ǫ) +

3
∑

i=1

µSi(ǫ).

Putting

Zφ(t) = etµ(e−t) and φ(t) = et[µJ1
(e−t) + µJ2

(e−t)],

by scaling µSi
(ǫ) = Riµi(R

−1
i ǫ), with µi = µ in distribution,

Zφ(t) = φ(t) +

3
∑

i=1

Zφ
i (t− σi),

where the Zφ
i are i.i.d. copies of Zφ and φ is bounded.

Now apply the LLN for the GBP.
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The CLT

Theorem:
For the string, we have

ǫ−γ/2
[

ǫγ−1µ(ǫ)−M
]

→ N(0, σ2
1), in distribution,

as ǫ → 0, for some strictly positive constant σ1

The proof uses the explicit form of the Laplace transform of the offspring
distribution. This enables us to control |zφ(t)− zφ(∞)|.
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The counting function

For the boundary term in the asymptotics

Theorem:
For the fractal string S, we have

λ−γ/2
[

π−1λ1/2 −N(λ)
]

→ C, a.s.,

as λ → ∞, for some positive constant C
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Proof set up

Let N̄D(λ) = π−1vol(D)λ1/2 −ND(λ) for an interval D. By scaling
N̄rD(λ) = N̄D(rλ).

Thus we have if X = (1−R1 −R2 −R3)/2

N̄S(λ) = 2N̄X[0,1](λ) +

3
∑

i=1

N̄RiSi(λ).

Putting φ(t) = 2e−γt/2N̄[0,1])(X
2et) and Zφ(t) = e−γt/2N̄(et) we have

Zφ(t) = φ(t) +

ξ(∞)
∑

i=1

Zφ
i (t− σi),

where the Zφ
i are i.i.d. copies of Zφ.
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The CLT

For the second term

Theorem:
For the string S, we have

λγ/4{λ−γ/2

[

1

π
λ1/2 −N(λ)

]

− C} → N(0, σ2), in distribution,

as λ → ∞, for some positive constant σ.
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The continuum random tree

The continuum random tree, initially constructed by Aldous, arises as

the scaling limit of uniform random trees on n vertices.

a random real tree defined as the contour process of Brownian
excursion.

A third view is that it is a random recursive self-similar set.

It is closely related to mean field limits for critical percolation on graphs, in
particular high dimensional critical percolation on Z

d and limit models
arising in the critical window of the random graph model.
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Self-similar decomposition

Let Z1, Z2 be two µT -random vertices of T . There exists a unique
branch-point bT (ρ, Z1, Z2) ∈ T of these three vertices. Let T1, T2 and T3
the components containing ρ, Z1 and Z2. For i = 1, 2, 3, we define a
metric dTi and probability measure µTi on Ti by setting

dTi := ∆
−1/2
i dT |Ti×Ti , µTi(·) := ∆−1

i µ(· ∩ Ti),

where ∆i := µT (Ti).
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Random recursive fractal

Lemma
The collections (Ti, dTi

, µTi
, ρi, Z

1
i , Z

2
i ), i = 1, 2, 3, are independent copies

of (T , dT , µT , ρ, Z
1, Z2), and moreover, the entire family of random

variables is independent of (∆i)
3
i=1, which has a Dirichlet-( 12 ,

1
2 ,

1
2 )

distribution.

The CRT is isomorphic to a deterministic self-similar set with a random
metric
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The Dirichlet form

The natural Laplace operator on T is defined via its Dirichlet form.

P-a.s. there exists a local regular Dirichlet form (ET ,FT ) on L2(T , µ),
which is associated with the Laplace operator LT via for f, g ∈ FT

ET (f, g) = −(LT f, g).

and the metric dT through, for every x 6= y,

dT (x, y)
−1 = inf{ET (f, f) : f ∈ FT , f(x) = 0, f(y) = 1}.

A Neumann eigenvalue λ with eigenfunction u satisfies ET (f, u) = λ(f, u)

for all f ∈ FT .

We work with the eigenvalue counting function defined from (ET ,FT , µ).
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CRT results

Theorem
Suppose (NT (λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the continuum random tree. As λ → ∞:

ENT (λ) = C0λ
2/3 +O(1).
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CRT results

Theorem
Suppose (NT (λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the continuum random tree. As λ → ∞:

ENT (λ) = C0λ
2/3 +O(1).

P-a.s., for ǫ > 0,

NT (λ) = C0λ
2/3 + o(λ1/3+ǫ).
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CRT results

Theorem
Suppose (NT (λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the continuum random tree. As λ → ∞:

ENT (λ) = C0λ
2/3 +O(1).

P-a.s., for ǫ > 0,

NT (λ) = C0λ
2/3 + o(λ1/3+ǫ).

NT (λ)− C0λ
2/3

λ1/3
→ N(0, y(∞)), in distribution.
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CRT results

Theorem
Suppose (NT (λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the continuum random tree. As λ → ∞:

ENT (λ) = C0λ
2/3 +O(1).

P-a.s., for ǫ > 0,

NT (λ) = C0λ
2/3 + o(λ1/3+ǫ).

NT (λ)− C0λ
2/3

λ1/3
→ N(0, y(∞)), in distribution.

Health warning... we have not yet proved y(∞) > 0!
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Percolation

For percolation clusters in high dimensions the Alexander-Orbach
conjecture has been proved by Kozma and Nachmias. This shows that for
random walk on the incipient infinite cluster at criticality we have ds = 4/3.
This is established for the on-diagonal decay of the heat kernel on the
graph.

This scaling is observed in other mean field models including the critical
random graph.

The question of the spectral asymptotics for the CRG will be determined
by the spectral asymptotics for random self-similar trees.
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Scaling limit of the CRG

Let G(N, p) be the Erdös-Renyi random graph. The critical window is
p = N−1 + νN−4/3 for a fixed ν ∈ (−∞,∞).

Addario-Berry, Broutin and Goldschmidt construct the scaling limit:
Conditioned on the number of connections J = j we have (for j ≥ 2) that
M is constructed by

taking a random 3 regular graph on 2(j − 1) vertices

generate (α1, . . . , α3(j−1)) according to a Dirichlet ( 12 , . . . ,
1
2 )

distribution.

construct 3(j − 1) size αj CRTs with root plus a randomly chosen
vertex.

replace the edges in the graph with the trees linked at the roots and
randomly chosen vertices.
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Dirichlet-Neumann bracketing allows us to compare eigenvalues of M, T .

Theorem

Suppose (NM(λ))λ∈R is the eigenvalue counting function for the natural
Laplacian on the scaling limit of the giant component of the critical random
graph M, and Z1 is the mass of M with respect to its canonical measure
µM. Then, as λ → ∞:

ENM(λ) = C0EZ1λ
2/3 +O(1).

λ−2/3NM(λ) → C0Z1. P− a.s.

NM(λ)−aZ1λ
2/3

Z
1/2
1

λ1/3
→ N(0, y(∞)) in distribution.
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