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What is the type problem for random walks?

How often does a random walker on a denumerably infinite graph X
returns to its starting point?
It depends on X and on the law of jumps.
Typically a dichotomy

either almost surely infinitely often (recurrence),
or almost surely finitely many times (transience).
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Recall the case X = Zd

X = Zd is an Abelian group with generating set, e.g. the minimal
generating set

A = {e1,−e1, . . . , ed ,−ed}; cardA = 2d .

µ probability on A⇒ probability on X with suppµ = A.
Uniform: ∀x ∈ A : µ(x) ≡ 1

cardA = 1
2d .

Symmetric: ∀x ∈ A : µ(x) = µ(−x).
Zero mean:

∑
x∈A xµ(x) = 0.

ξ = (ξn)n∈N i.i.d. sequence with ξ1 ∼ µ.
Define X0 = x ∈ X and Xn+1 = Xn + ξn+1. Then

P(x , y) = P(Xn+1 = y |Xn = x) = P(ξn+1 = y − x) = µ(y − x).

Simple (=uniform on the minimal generating set) random walk on X
the X-valued Markov chain (Xn)n∈N of MC(X,P, εx)
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Recall the case X = Zd? (cont’d)

Theorem (Georg Pólyaa)

aÜber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im
Straßennetz, Ann. Math. (1921)

For X = Zd with uniform jumps on n.n.
d ≥ 3: transcience,

d = 1, 2: recurrence.

Proof by direct combinatorial and Fourier estimates.
Pn(x , y) :=

∑
x1,...xn−1

P(X0 = x ,X1 = x1, . . . ,Xn = y) =

µ∗n(y − x).
For ξ ∼ µ and µ uniform,
χ(t) = E exp(i〈 t | ξ 〉) =

∑
x exp(i〈 t | x 〉)µ(x) = 1

d

∑d
k=1 cos(tk).

P2n(0, 0) ∼ 1
(2π)d

∫
[−π,π]d

(
1
d

∑d
k=1 cos(tk)

)2n
dd t ∼ cd

nd/2 as
n→∞.
Conclude by Borel-Cantelli (d ≥ 3) or renewal theorem (d ≤ 2).
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Why simple random walk are studied?

Mathematical interest: simple models with three interwoven
structures:

low-level algebraic structure conveying combinatorial information,
high-level algebraic structure conveying geometric information,
stochastic structure adapted to the two previous structures.

Discretised (in time/space) versions of stochastic processes,
numerous interesting mathematical problems still open.
Modelling transport (of energy, information, charge, etc.)
phenomena

in crystals (metals, semiconductors, ionic conductors, etc.)
or on networks.

Intervening in models described by PDE’s involving a Laplacian
hence in harmonic analysis

classical electrodynamics,
statistical mechanics,
quantum mechanics, quantum field theory, etc
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Short algebraic reminder
Groups, groupoids and semigroupoids

Definition

Let Γ 6= ∅. (Γ, ·) is a

semigroup monoid group semigroupoid groupoid

if · : Γ× Γ→ Γ and ∀a, b, c ∈ Γ if ∃Γ2 ⊆ Γ× Γ and · : Γ2 → Γ

(cb)a = c(ba) (c, b), (b, a) ∈ Γ2 ⇒
(cb, a), (c, ba) ∈ Γ2 and (cb)a = c(ba)

∃!e ∈ Γ : ea = ae = a units not necessarily unique,

∃a−1 ∈ Γ : aa−1 = a−1a = e ∃a−1 : (a−1)−1 = a,
(a, a−1), (a−1, a) ∈ Γ2 and
(a, b) ∈ Γ2 ⇒ a−1(ab) = b;
(b, a) ∈ Γ2 ⇒ (ba)a−1 = b.
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Monoidal closure of A

A = {E ,N,W , S}; A∗ = ∪∞n=0An,

A0 = {ε}, An = {α = (α1, . . . , αn), αi ∈ A}

FA1 =

N

S

EW

Proposition

(A∗, ◦) is a monoid, the monoidal closure of A.

α ◦ ε = ε ◦ α = α. If α = EENNESW ;β = WSN then
α ◦ β = EENNESWWSN 6= WSNEENNESW = β ◦ α.

Durham, 1 April 2014 Random walks on directed lattices



Generalities on random walks
Algebraic and probabilistic structures

Directed lattices
Sketch of proofs

Introduction and motivation
And when X is not a group?

Combinatorial information 6= geometric information

A∗ ' path space. Combinatorial information encoded into the finite
automaton FA. Paths define a regular language recognised by FA1.
Road map needed to translate into geometric information
E = a,W = a−1; N = b, S = b−1 and relations on reduced words.

Example

Z2 = 〈A|R1〉: R1 = {aba−1b−1 = e} (Abelian).
F2 = 〈A|R2〉: R2 = ∅ (free).
Z2 and F2 have same combinatorial description but are very different
groups.

Geometric information encoded into the group structure Γ = 〈A|R〉.
Natural surjection g : A∗ � Γ.
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The Cayley graph of finitely generated groups

Definition

Let Γ = 〈A |R 〉. The Cayley graph Cayley(Γ,A) is the graph
vertex set Γ and
edge set the pairs (x , y) ∈ Γ2 such that y = ax for some a ∈ A.

Remark
Since A symmetric, graph undirected.

Example

For A = {a, b, a−1, b−1},
Cayley(F2,A) is the homogeneous tree of degree 4,
Cayley(Z2,A) is the standard Z2 lattice with edges over n.n.
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The probabilistic structure

µ := (p1, . . . , pcardA) ∈M1(A) transforms FA into PFA.

Path space A∗ acquires natural probability Pµ({α}) =
∏|α|

i=1 pαi .
Due to the surjection g , PFA induces natural Markov chain (Xn):

P(Xn+1 = y |Xn = x) = µ({x−1y}) = px−1y , x , y ∈ Γ.

Probabilistic structure adapted to combinatorial/geometric structure
if suppµ = A.
When µ replaced by family (µx)x∈Γ not necessarily
suppµx = A,∀x ∈ Γ (i.e. ellipticity can fail).
Suppose there exist a ∈ A and x , y ∈ Γ, with x 6= y , such that

µx({a}) = 0 and µy ({a}) 6= 0.

Then combinatorial structure must be modified for (µx)x∈Γ to
remain adapted. The resulting Γ may not be a group any longer.
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How can we generalise?

Distinctive property of simple r.w. on Zd :
Abelian group of finite type generated by suppµ,
i.e. graph on which r.w. evolves = Cayley(Zd , suppµ).

Generalisation to non-commutative groups:
The three interwoven structures and harmonic analysis survive.

Very active domain (e.g. products of fixed size random matrices, random
dynamical systems, amenability issues, etc.).

Space inhomogeneity: family of probabilities (µx)x∈X, with
µx ∈M1(A) ' {p ∈ RcardA

+ :
∑

a∈A pa = 1}.

P(Xn+1 = y |Xn = x) = µx(y − x).

(e.g. i.i.d. random probabilities (µx)).
Combinatorial and geometric structures survive.
If uniform ellipticity, probabilistic structure remains adapted.
But harmonic analysis (if any) very cumbersome.
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And when the graph is not a group?
R.w. on quasi-periodic tilings of Rd of Penrose type: the groupoid case

Transport properties on quasi-periodic structures1.
Spectral properties of Schrödinger operators on quasi-periodic
structures.
Random walks on groupoids, non-random inhomogeneity.

1Introduced as mathematical curiosities by Sir Roger Penrose (1974–1976),
observed in nature as crystalline structures of Al-Mn alloys by Shechtman (1982) -
Nobel Prize in Chemistry 2011, obtained by an algorithmically much more efficient way
by Duneau-Katz (1985).
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And when the graph is not a group?
R.w. on directed graphs: the semi-groupoid case

Alternate lattice Half-plane one-way Random horizontal

Hydrodynamic dispersion in porous rocks Matheron and Marsily
(1980), numerical simulations Redner (1997).
Propagation of information on directed networks (pathway signalling
networks in genomics, neural system, world wide web, etc.)
Differential geometry, causal structures in quantum gravity.
Random walks on semi-groupoids (and their C∗-algebras), failure of
the reversibility condition.
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And when the graph is not a group?
R.w. on quadrants with reflecting boundaries

In the interior of the quadrant: zero drift, non-diagonal covariance matrix.

Many models in queuing theory.
No algebraic structure encoding the geometry survives.
Studied by Markov chain methods.
Thoroughly studied with Lyapunov functions: Fayolle, Malyshev,
Menshikov (1994), Asymont, Fayolle Menshikov (1995),
Aspiandiarov, Iasnogorodsli, Menshikov (1996), Menshikov, P.
(2002).

Durham, 1 April 2014 Random walks on directed lattices



Generalities on random walks
Algebraic and probabilistic structures

Directed lattices
Sketch of proofs

Introduction and motivation
And when X is not a group?

Results
For groupoids

Theorem (de Loynes, thm 3.1.2 in PhD thesis (2012)a)

aAvailable at http://tel.archives-ouvertes.fr/tel-00726483.

The simple random walk on (adjacent edges of) a generic Penrose tiling
of the d-dimensional space is

recurrent, if d ≤ 2, and
transient, if d ≥ 3.

Theorem (de Loynes (2014))

The asymptotic entropy of the simple random walk on generic
Penrose tiling vanishes,
hence, the tail and invariant σ-algebras are trivial.
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Results
For semi-groupoids

Theorem (Campanino and P., MPRF 2003)

The simple random walk
on the alternate 2-dimensional lattice is recurrent,
on the half-plane one-way 2-dimensional lattice is transient,
on the randomly horizontally directed 2-dimensional lattice, where
(εx2)x2∈Z is an i.i.d. {0, 1}-distributed sequence of average 1/2, is
transient for almost all realisations of the sequence.

Various subsequent developments in relation with this model: Guillotin
and Schott (2006), Guillotin and Le Ny (2007), Pete (2008), Pène
(2009), Devulder and Pène (2011), de Loynes (2012).
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Results (cont’d)
For semi-groupoids

Theorem (Campanino and P., JAP 2014, in press)

f : Z→ {−1, 1} a Q-periodic function (Q ≥ 2):
∑Q

y=1 f (y) = 0.
(ρy )y∈Z i.i.d. Rademacher sequence.
(λy )y∈Z i.i.d. {0, 1}-valued sequence such that P(λy = 1) = c

|y |β for
large |y |.
εy = (1− λy )f (y) + λyρy .

1 If β < 1 then the simple random walk is almost surely transient.
2 If β > 1 then the simple random walk is almost surely recurrent.

Remark

λ deterministic sequence with ‖λ‖1 <∞⇒ recurrence. Nevertheless,
there exist deterministic sequences with ‖λ‖1 =∞ leading to recurrence.
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FA2 =

even

oddW

E

NS

For alternate lattice, again a finite automaton, FA2, governs
combinatorics. E.g. starting at even, NSWWNW 6∈ language.
Vertical projection of walk = Markov chain on Z with transitions

. . . −2 −1 0 1 2

N N N N

SSSS

E E E

W W

. . .
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And when it is not a group? (cont’d)

For alternate lattice ⇒ path space generated by finite automaton ⇒
admissible paths form regular language.
For half-plane lattice ⇒ path space generated by push down
automaton ⇒ admissible paths form context-free language.
For randomly horizontally directed lattice ⇒ path space generated
by linear bounded Turing machine ⇒ admissible paths form
context-sensitive language.
Vertical projection of walk = Markov chain on Z with transitions

. . . −2 −1 0 1 2

N N N N

SSSS

E E

WW

E

. . .
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Two archetypal examples of (semi)groupoids
Directed graphs

Example

Directed graph: G = (G0,G1, s, t) with G0 and G1 denumerable
(finite or infinite) sets of vertices (paths of length 0) and edges
(paths of length 1) and s, t : G1 → G0 the source and terminal
maps.
For n ≥ 2 define

Gn = {α = αn . . . α1, αi ∈ G1, s(αi+1) = t(αi )} ⊆ (G1)n,

and PS(G) = ∪n≥0Gn the path space of G. Maps s, t extend
trivially to PS(G).
On defining Γ = PS(G), Γ2 = {(β, α) ∈ Γ× Γ : s(β) = t(α)} and
· : Γ2 → G the left admissible concatenation, (Γ, Γ2, ·) is a
semigroupoid with space of units G0.
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Two archetypal examples of (semi)groupoids
Admissible words on an alphabet

Example

A alphabet, A = (Ab,a)a,b∈A with Aa,b ∈ {0, 1}, A0 = {()},
An = {α = (αn · · ·α1), αi ∈ A},

set of words of arbitrary length A∗ = ∪n∈NAn equipped with left
concatenation is a monoid,
WA(A) = {α ∈ A∗ : A(αi+1, αi ) = 1, i = 1, . . . , |α|} (set of
A-admissible words) is a semigroupoid with (β, α) composable pair if
A(β1, α|α|) = 1.

Remark
A semigroupoid is not always a category. Consider, for example,

A = {a, b} and A =

(
1 1
1 0

)
.

Durham, 1 April 2014 Random walks on directed lattices



Generalities on random walks
Algebraic and probabilistic structures

Directed lattices
Sketch of proofs

Constrained Cayley graphs and semi-groupoids
Examples of semi-groupoids
Examples of groupoids

Constrained Cayley graphs

EW = WE = e, NS = SN = e,
E = a⇒W = a−1 and N = b ⇒ S = b−1.

A = {a, a−1, b, b−1}.

Definition

Let A finite be given (generating) and Γ = 〈A |R 〉. Let
c : Γ× A→ {0, 1} be a choice function. Define the constrained Cayley
graph G = (G0,G1) = Cayleyc(Γ,A,R) by

G0 = Γ,
G1 = {(x , xz) ∈ Γ× Γ : z ∈ A; c(x , z) = 1}.
d−x = card{y ∈ Γ : (x , y) ∈ G1}.
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Properties of constrained Cayley graphs

0 ≤ d−x ≤ cardA.
If d−x = 0 for some x , then x is a sink. All graphs considered here
have d−x > 0.
If c ≡ 1 then (G1)−1 = G1 (the graph is undirected).
The graph can fail to be transitive. All graphs considered here are
transitive i.e. for all x , y ∈ G0, there exists a finite sequence
(x0 = x , x1, . . . , xn = y) with (xi−1, xi ) ∈ G1 for all i = 1, . . . , n.
Algebraic structure of Cayleyc(Γ,A,R): a groupoid or a
semi-groupoid.
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Examples of semi-groupoids

Vertex set X = Z2, i.e. for all x ∈ X, we write x = (x1, x2); generating
set A = {e1,−e1, e2,−e2}.

Alternate lattice Half-plane one-way Random horizontal

c(x, e2) = c(x,−e2) = 1 c(x, e2) = c(x,−e2) = 1 c(x, e2) = c(x,−e2) = 1
c(x, e1) = 1, x2 ∈ 2Z c(x, e1) = 1, x2 < 0 c(x, e1) = θx2

c(x,−e1) = 1, x2 + 1 ∈ 2Z c(x,−e1) = 1, x2 ≥ 0 c(x,−e1) = 1− θx2

For all three lattices: ∀x ∈ Z2, d−
x = 3.

Here G1 ⊂ G0 ×G0. Hence maps s, t superfluous.
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Example of groupoid

Choose integer N ≥ 2; decompose RN = E ⊕ E⊥

with dimE = d and dimE⊥ = N − d , 1 ≤ d < N.

K the unit hypercube in RN .

π : RN → E and π⊥ : RN → E⊥ projections.

For generic orientation of E and t ∈ E⊥ let
Kt := {x ∈ ZN : π⊥(E + t) ∈ π⊥(K)}.
π(Kt) is a quasi-periodic tiling of E ∼= Rd (of
Penrose type).

For generic orientations of E , points in Kt are in
bijection with points of the tiling.

A = {±e1, . . . ,±eN}.
c(x , z) = 1Kt×Kt (x , x + z), z ∈ A.

Cayleyc(ZN ,A)

Cayleyc(ZN ,A) is
undirected (groupoid).
d−x can be made
arbitrarily large.
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Decomposition
into vertical skeleton and horizontally embedded process

Condition the Markov chain (Mn) on the directed version of Z2 to
perform vertical moves.
The so conditionned process is a simple random walk (Yn) on the
vertical Z. Denote ηn(y) its occupation measure.

Let (ξ
(y)
n )n∈N,y∈Z be a doubly infinite sequence of geometric r.v. of

parameter p = 1/3.

Xn =
∑

y∈Z εy
∑ηn−1(y)

i=1 ξ
(y)
i is the horizontally embedded walk,

where εy direction of level y .

Lemma

Let Tn = n +
∑

y∈Z
∑ηn−1(y)

i=1 ξ
(y)
i the instant after nth vertical move.

Then
MTn = (Xn,Yn).
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Comparison

Lemma

Let (σn) sequence of successive returns to 0 for (Yn).
If (Xσn ) is transient then (Mn) is transient.
If
∑∞

n=0 P0(Xσn = 0|F ∨ G) =∞ then∑∞
l=0 P(Ml = (0, 0)|F ∨ G) =∞.
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χ(θ) = E exp(iθξ) =
q

1− p exp(iθ)
= r(θ) exp(iα(θ)), θ ∈ [−π, π],

where

r(θ) = |χ(θ)| =
q√

q2 + 2p(1− cos θ)
= r(−θ);

α(θ) = arctan
p sin θ

1− p cos θ
= −α(−θ).

Notice that r(θ) < 1 for θ ∈ [−π, π] \ {0}.

Lemma

E exp(iθXσn ) = E

∏
y∈Z

χ(θεy )ησn−1(y)


= E

r(θ)σn exp

α(θ)(
∑
y∈Z

εyησn−1(y))

 .
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Alternate and half-plane lattices

For alternate lattice:∑
n∈N P(Xσn = 0) = limε→0 2

∫ π
ε

1√
1−r(θ)2

dθ =∞.

For half-plane lattice:∑
n∈N P(Mσn = (0, 0)) = limε→0

∫ π
ε

[2Reχ(θ) 1
1−g(θ) ]dθ = C <∞.

Notice that (Xσn )n are heavy-tailed symmetric R-valued variables.
Quid for randomly horizontally directed lattice? Very technical.
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Randomly horizontally directed lattices
Proof of transience (β < 1)

Introduce An = An,1 ∩ An2 and Bn with

An,1 =

{
ω ∈ Ω : max

0≤k≤2n
|Yk | < n

1
2 +δ1

}
An,2 =

{
ω ∈ Ω : max

y∈Z
η2n−1(y) < n

1
2 +δ2

}
,

Bn =

ω ∈ An :

∣∣∣∣∣∣
∑
y∈Z

εyη2n−1(y)

∣∣∣∣∣∣ > n
1
2 +δ3

 .

Estimate separately

pn,1 = P(X2n = 0,Y2n = 0; Bn)

pn,2 = P(X2n = 0,Y2n = 0; An \ Bn)

pn,3 = P(X2n = 0,Y2n = 0; Ac
n).

Establish that
∑

n pn,1 <∞;
∑

n pn,3 <∞ and for β < 1 also∑
n pn,2 <∞.
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Randomly horizontally directed lattices
Proof of recurrence (β > 1)

τ0 ≡ 0 and τn+1 = inf{k : k > τn, |Yk − Yτn | = Q} for n ≥ 0.

0 τ1

R

−Q

+Q

0
0 τ1

R

−Q

+Q

0

Periodise the lattice ZQ = Z/QZ = {0, 1, . . . ,Q − 1} and define
Nn(y) := ητn−1,τn−1(y) =

∑τn−1
k=τn−1

1 y (Y k).

E0N1(y) = E0 (N1(y) | Yτ1 = Q) = E0 (N1(y) | Yτ1 = −Q) = E0τ1
Q .
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Randomly horizontally directed lattices
Proof of recurrence (β > 1) cont’d

If β > 1 then
∑

y P(λy = 1) <∞.
Hence ∃L := L(ω) <∞ s.t. λy = 0 for |y | ≥ L.

FL,2n(ω) =
{

k : 0 ≤ k ≤ 2n − 1; |Yτk (ω)(ω)| ≤ L(ω)Q; |Yτk+1(ω)(ω)| ≤ L(ω)Q
}

GL,2n(ω) =
{

k : 0 ≤ k ≤ 2n − 1; |Yτk (ω)(ω)| ≥ L(ω)Q; |Yτk+1(ω)(ω)| ≥ L(ω)Q
}
.

Write θk = Xτk+1 − Xτk and observe that

Xτ2n =
2n−1∑
k=0

θk =
∑

k∈FL,2n

θk +
∑

k∈GL,2n

θk ,

Finally prove
∑

k∈N P0
(
Xσk = 0,Yσk = 0

∣∣ G) =∞ a.s.

Durham, 1 April 2014 Random walks on directed lattices
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