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Object of study
One-dimensional homogenous Markov chain on R*.
Xn,n=0,1,2,...
Let £(x) be a random variable corresponding to a jump at point x, i.e.
P(¢{(x) € B) =P(Xp41 — Xn € B| X, = x).

Let

my(x) = E[€(x)"].
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Main assumptions
o Small drift:

@ Finite variance:
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Questions

o If
2xmy(x) + ma(x) < —¢
then X, is ergodic (Lamperti)
What can one say about the stationary distribution?
QIf
2xmy(x) — ma(x) > ¢

then X, is transient .
What can one say about the renewal (Green) function

Hx) =Y P(Xa <x), x—00?
n=0



Continuous time - Bessel-like diffusions

Let X; be the solution to SDE
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Continuous time - Bessel-like diffusions
Let X; be the solution to SDE

dXt = )(< )dt + (Xt)th, XO =X > 0,
t

where p(x) — p and o(x) — o.
For Bessel processes ju(x) = const and o(x) = const.
We can use forward Kolmogorov equations to find exact stationary density

X 2
0= 5 ("0 + 5 g2 (20000

X

to obtain
p(x) = xp{ 2,u,(y) y} , c>0.
Then, 0
~ Cexp { / 2u dy} Cx—2m/b
and 1

o
m(x, +00) / p(y)dy ~ Cx—2#/b+1
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Then the stationary probabilities 7(x) satisfy

7(x) = T(x — D)p (x — 1) + 7 + L)p_(x + 1),



Simple Markov chain

Markov chain on Z

Then the stationary probabilities 7(x) satisfy
7(x) = m(x — Dy (x — 1) + 7(x + Dp_(x + 1),

with solution

() = n(0) [T 225 = n(0)exp {Z(Iog pi(k — 1)~ log p_(k»} ,
k=1 N

k=1



Asymptotics for the tail of the stationary measure
Theorem
Suppose that, as x — o0,

ma(x) ~ £

, mp(x)— b and 2u > b.
Suppose some technical conditions and

m3(x) — m3 € (—00,00) asx — o0
and, for some A < oo,

E{2/PH3H0(x). ¢(x) > Ax} = O(x**P).

Then there exist a constant ¢ > 0 such that

m(x,00) ~ cxe”Jo TN — ox=2/b+1y(x) a5 x — 0.
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@ Menshikov and Popov (1995) investigated Markov Chains on Z* with
bounded jumps and showed that
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Known results

@ Menshikov and Popov (1995) investigated Markov Chains on Z* with
bounded jumps and showed that

cx2P7E < m({x}) < cpx2H/bTE,
e Korshunov (2011) obtained the following estimate

7(x,00) < c(e)x 2/ bF1te,
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General approach - random walk example

Consider a classical example, of Lindley recursion
W1 = (Wh+ &) ,n=0,2,..., Wy =0,

assuming that E§€ = —a < 0.

This is an ergodic Markov chain (Note drift is not small).
A classical approach consists of three key steps

Step 1: Reverse time and consider a random walk

Si=&+--+&,n=1,2...,5 =0.

Then,
W, 4w = sup S,.

n>0
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Random walks ctd.

Step 2: Exponential change of measure.
Assuming that there exists s¢ > 0 such that

E[e*] =1, E[¢e™] < ool

one can perform change of measure
P(&y € dx) = e®P(n e dx), n=1,2, ...
Under new measure g,, = fAl 4+ 4+ E,, and Eé\l >0

g,, — 400, and S, — —oo.



Random walks ctd.

Step 3: Use renewal theorem for g,,.



Random walks ctd.

Step 3: Use renewal theorem for g,,.
This step uses ladder heights construction and represents

P(M € dx) = CH(dx) = Ce™**H(dx).
Now one can apply standard renewal theorem to Itl(dy) ~ dy/c to obtain

P(M € dx) ~ ce™, x — 0.
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Asymptotically homogeneous Markov chains

One can repeat this programme for asymptotically homogenous Markov
chains. Namely, assume

where
E[e**] = 1, and E[¢e™*] < 0

Borovkov and Korshunov (1996) showed that if
sup Ee* () < oo,/ </ e |IP(E(x) < t) —P(£< t)|dt> dx
X 0 R

then
(x,00) ~ Ce™ >, x— 00, x— 0.
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Problems in our case

Problem 1 (easier) In our case drift
E{(x) — 0, x — oo.

Hence, for
1 =Eexp{sx{(x)} = 1+ »E{(x), x — o0

to hold we need

7 = x(x) — 00, Xx— 00.

Hence, exponential change of measure does not work.
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Problems in our case
Problem 2 Suppose we managed to make a change of measure. As a result
;(n 22 400
and
E¢(x) — 0.

Then, there is no renewal theorem about

H(x) =Y P(X, < x).
n=0

Main reason for that
4, Gamma(a, )

2|30

which makes the problem difficult.
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Harmonic function

Step 1 Change of measure via a harmonic function.
Let B be a Borel set in R with 7(B) > 0, in our case B = [0, xo]. Let
g :=min{n >1: X, € B}.

Note E, 75 < oo for every x.
V(x) is a harmonic function for X, killed at the time of the first visit to B,
if

V(x) = Ex{V(X1); 78 > 1} = Ex.{V(X1); X1 ¢ B}

If V is harmonic then

V(x) = Ex{V(X,); 78 > n} for every n. (4)

If V(x) is harmonic for every x ¢ B then X, is a martingale.

@ It is not clear that such a (positive) function V/(x) exists

@ Some estimates on V/(x) are required for further analysis.



Construction of the harmonic function

We start with a harmonic function (scale function) for the corresponding
diffusion.

dX; = —H(X)

—————=dt + o(Xp)dW;, Xo=x>0.
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Construction of the harmonic function

We start with a harmonic function (scale function) for the corresponding
diffusion.

X
dXt )(< t) dt =+ (Xt)th, XO =X > 0

t

For the diffusion this function solves

—ulx 2

0=U(x), xeB= [O,XO].

Namely the corresponding stopped process X:x-, is a martingale.
The solution is given by

x y
U(x) = / R0 dy for x > xo, where R(y) = / D)z, r(z) — 212,

X0 X0 02(2)



Construction of the harmonic function ctd.

Note that o1 ()
_cpr 22
r(z) = b7 + .

z
Hence

U(x) ~ x®521(x),  x — 00, I(x) — slowly varying.



Construction of the harmonic function ctd.

Note that o1
H(z)= 2L 2@)

bz z
Hence

U(x) ~ x®521(x),  x — 00, I(x) — slowly varying.

U is not harmonic for the initial Markov chain X,. However if the
correction

u(x) = EU(X1) — u(x), issmall x — oo,

then

TB—].

V(x) = U(x) + Ex > u(Xp)
n=0

is well-defined, non-negative and harmonic for X, .



Construction of the harmonic function ctd.
Function u(x) by the Taylor expansion
u(x) = EU(Xy) — u(x)
= U(Bx(X —x) + 5 U"()Ex (X1 — x)

U+ 00)Ex(X — x)”
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Construction of the harmonic function ctd.
Function u(x) by the Taylor expansion
u(x) = EU(Xy) — u(x)
= U(Bx(X —x) + 5 U"()Ex (X1 — x)

1
+ 6U’”(x + 6(x))Ex (X1 — x)3.
Now the first 2 terms disappear since U(x) is harmonic for the diffusion.
Hence,
U(x)

x3

u(x) ~ CU"(x) ~ C
This is sufficient to ensure the finiteness

T8—1

EZ\ )| < oo.



Change of measure

As V is well-defined we can perform the change of measure (Doob's
h-transform).

Let )A(,, be a Markov Chain with the following transition kernel

I:)2{521 € d)/} = \\;E}Z/;PZ{X;[ € dy; g > 1}

Since V is harmonic, then we also have

S %4
P.{X,edy}= VE)Z/;PZ{X,, € dy;7g > n} for all n.



Change of measure

As V is well-defined we can perform the change of measure (Doob's
h-transform).

Let )A(,, be a Markov Chain with the following transition kernel

I:)2{521 € d)/} = \\;E}Z/;PZ{X;[ € dy; g > 1}

Since V is harmonic, then we also have

S %4
P.{X,edy}= VE)Z/;PZ{X,, € dy;7g > n} for all n.

Note V/(x) ~ U(x) ~ x?/P+1_Hence, this change of measure is
non-exponential.



Change of measure for stationary distribution
Balance equation for w

m(dy) = /Bﬂ(dz) Z P.{X, € dy; T8 > n}.

n=0

Changing the measure

1 © —~
W) = o /B @V Pl < o)
H(dy)

where H is the renewal measure generated by the chain )A<,, with initial
distribution

P{Xo € dz} = en(d2)V(z), z€ B and € := (/
B

7(dz) V(z)) _1.



Renewal theorem

Therefore,
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Renewal theorem

Therefore,

B e
m(x,00) = C/X WdH(y)

as V(x) ~ U(x).
We are facing second problem now - what is the asymptotics for

o0

ITI(X) = Z P()A(,, <x), x— o0.

n=1



Renewal theorem

First, the change of measure gives X, of the same type, but now transient
o Small drift:
fﬁ(x):E[)?l—j\(o ] )?Ozx} NH, X — 00;
X

o Finite variance:

32(x):E[(>?1—>?0)2 | )?o:x} — b, x— .



Lower bound for the renewal theorem

Lower bound follows from weak convergence
32
Xo 4
n

with mean 2u + b and variance (2u + b)2b.



Lower bound for the renewal theorem
Lower bound follows from weak convergence

X2
Zndr
n

with mean 2u + b and variance (2u + b)2b.
Then,

(Bx?]
x) > Z Py{Xn < x}
[BX
= Z (x®/n) + o(1))
B
= x? z)dz x2).
- /0 [(1/2)dz + o(x?)

and

as B — oo,

B 1
/O r(1/2)dz — 5

uw—>b

wie ~oncliide +he lawnwer harinAd



Renewal theorem (Asymptotics for the Green function)

Theorem

Consider a transient Markov chain X,. If m(x) ~ u/x and 0?(x) — b >0
as x — 00, and 2u > b, then, for any initial distribution of the chain X,
X2
2u—b
where H(x) = Y 72 o P(X, < x).

H(x) ~

as x — 0o,




Stationary measure

We can continue with stationary measure

7(x, 00) / o)

Yy
| S0

c < 1

C
™ S 2n/bil ().

To apply integral renewal theorem we integrate by parts



Harmonic functions vs Lyapunov functions

@ Lyapunov functions We choose an explicit function x2, e"*.

Therefore, there are no problems with regularity properties. One can
use Taylor expansion to obtain a submartingale ot supermartingale
and hence bounds.

@ Harmonic functions Explicit expressions are rarely known. Special
properties should be derived. Harmonic functions lead to martingales
and more accurate estimates.



Further developments

We plan to consider a problem with the following decay of the drift

m(x)=E[X; — Xo | XOZX]N;J X — 00,

a’

where a € (0,1).
One can expect the following decay

m(x, +00) ~ exp{—x17?}, x — ..
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