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Object of study

One-dimensional homogenous Markov chain on R+.

Xn, n = 0, 1, 2, . . .

Let ξ(x) be a random variable corresponding to a jump at point x , i.e.

P(ξ(x) ∈ B) = P(Xn+1 − Xn ∈ B | Xn = x).

Let
mk(x) := E[ξ(x)k ].

Main assumptions

Small drift:

m1(x) ∼ −µ
x
, x →∞;

Finite variance:
m2(x)→ b, x →∞.
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Questions

1 If
2xm1(x) + m2(x) ≤ −ε

then Xn is ergodic (Lamperti)

What can one say about the stationary distribution?

2 If
2xm1(x)−m2(x) ≥ ε

then Xn is transient .
What can one say about the renewal (Green) function

H(x) =
∞∑

n=0

P(Xn ≤ x), x →∞?
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Continuous time - Bessel-like diffusions
Let Xt be the solution to SDE

dXt =
−µ(Xt)

Xt
dt + σ(Xt)dWt , X0 = x > 0,

where µ(x)→ µ and σ(x)→ σ.
For Bessel processes µ(x) = const and σ(x) = const.

We can use forward Kolmogorov equations to find exact stationary density

0 =
d

dx

(
µ(x)

x
p(x)

)
+

1

2

d2

dx2

(
σ2(x)p(x)

)
to obtain

p(x) =
2c

σ2(x)
exp

{
−
∫ x

0

2µ(y)

yσ2(y)
dy

}
, c > 0.

Then,

p(x) ≈ C exp

{
−
∫ x

1

2µ

b

dy

y

}
∼ Cx−2µ/b

and

π(x ,+∞) =

∫ ∞
x

p(y)dy ≈ Cx−2µ/b+1
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Simple Markov chain

Markov chain on Z

Px(X1 = x + 1) = p+(x)

Px(X1 = x − 1) = p−(x).

Then the stationary probabilities π(x) satisfy

π(x) = π(x − 1)p+(x − 1) + π(x + 1)p−(x + 1),

with solution

π(x) = π(0)
x∏

k=1

p+(k − 1)

p−(k)
= π(0) exp

{
x∑

k=1

(log p+(k − 1)− log p−(k))

}
,
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Asymptotics for the tail of the stationary measure

Theorem

Suppose that, as x →∞,

m1(x) ∼ −µ
x
, m2(x)→ b and 2µ > b. (1)

Suppose some technical conditions and

m3(x)→ m3 ∈ (−∞,∞) as x →∞ (2)

and, for some A <∞,

E{ξ2µ/b+3+δ(x); ξ(x) > Ax} = O(x2µ/b). (3)

Then there exist a constant c > 0 such that

π(x ,∞) ∼ cxe−
R x
0 r(y)dy = cx−2µ/b+1`(x) as x →∞.



Known results

Menshikov and Popov (1995) investigated Markov Chains on Z+ with
bounded jumps and showed that

c−x−2µ/b−ε ≤ π({x}) ≤ c+x−2µ/b+ε.

Korshunov (2011) obtained the following estimate

π(x ,∞) ≤ c(ε)x−2µ/b+1+ε.
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General approach - random walk example

Consider a classical example, of Lindley recursion

Wn+1 = (Wn + ξn)+, n = 0, 2, . . . ,W0 = 0,

assuming that Eξ = −a < 0.

This is an ergodic Markov chain (Note drift is not small).
A classical approach consists of three key steps
Step 1: Reverse time and consider a random walk

Sn = ξ1 + · · ·+ ξn, n = 1, 2 . . . ,S0 = 0.

Then,

Wn
d→W = sup

n≥0
Sn.
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Random walks ctd.

Step 2: Exponential change of measure.
Assuming that there exists κ > 0 such that

E[eκξ] = 1, E[ξeκξ] <∞1

one can perform change of measure

P(ξ̂n ∈ dx) = eκxP(ξn ∈ dx), n = 1, 2, . . .

Under new measure Ŝn = ξ̂1 + · · ·+ ξ̂n and Eξ̂1 > 0

Ŝn → +∞, and Sn → −∞.
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Random walks ctd.

Step 3: Use renewal theorem for Ŝn.

This step uses ladder heights construction and represents

P(M ∈ dx) = CH(dx) = Ce−κx Ĥ(dx).

Now one can apply standard renewal theorem to Ĥ(dy) ∼ dy/c to obtain

P(M ∈ dx) ∼ ce−κx , x →∞.
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Asymptotically homogeneous Markov chains

One can repeat this programme for asymptotically homogenous Markov
chains. Namely, assume

ξ(x)
d→ ξ, x →∞,

where
E[eκξ] = 1, and E[ξeκξ] <∞

Borovkov and Korshunov (1996) showed that if

sup
x

Eeκξ(x) <∞,
∫ ∞

0

(∫
R

eκt |P(ξ(x) < t)− P(ξ < t)|dt

)
dx

then
π(x ,∞) ∼ Ce−κx , x →∞, x →∞.
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Problems in our case

Problem 1 (easier) In our case drift

Eξ(x)→ 0, x →∞.

Hence, for
1 = E exp{κξ(x)} ≈ 1 + κEξ(x), x →∞

to hold we need

κ = κ(x)→∞, x →∞.

Hence, exponential change of measure does not work.
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Problems in our case

Problem 2 Suppose we managed to make a change of measure. As a result

X̂n
a.s→ +∞

and
Eξ̂(x)→ 0.

Then, there is no renewal theorem about

Ĥ(x) =
∞∑

n=0

P(Xn ≤ x).

Main reason for that
X̂n

nc

d→ Gamma(α, β)

which makes the problem difficult.
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Harmonic function

Step 1 Change of measure via a harmonic function.

Let B be a Borel set in R+ with π(B) > 0, in our case B = [0, x0]. Let

τB := min{n ≥ 1 : Xn ∈ B}.

Note ExτB <∞ for every x .
V (x) is a harmonic function for Xn killed at the time of the first visit to B,
if

V (x) = Ex{V (X1); τB > 1} = Ex{V (X1); X1 /∈ B}

If V is harmonic then

V (x) = Ex{V (Xn); τB > n} for every n. (4)

If V (x) is harmonic for every x /∈ B then Xn∧τB is a martingale.

1 It is not clear that such a (positive) function V (x) exists

2 Some estimates on V (x) are required for further analysis.
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Construction of the harmonic function
We start with a harmonic function (scale function) for the corresponding
diffusion.

dXt =
−µ(Xt)

Xt
dt + σ(Xt)dWt , X0 = x > 0.

For the diffusion this function solves

0 =
−µ(x)

x

d

dx
U(x) +

σ(x)2

2

d2

dx2
U(x), x /∈ B

0 = U(x), x ∈ B = [0, x0].

Namely the corresponding stopped process Xt∧τB is a martingale.
The solution is given by

U(x) :=

∫ x

x0

eR(y)dy for x ≥ x0, where R(y) =

∫ y

x0

r(z)dz , r(z) =
2µ(z)

σ2(z)
.
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Construction of the harmonic function ctd.

Note that

r(z) =
2µ

b

1

z
+
ε(z)

z
.

Hence

U(x) ∼ x2µ/b+1l(x), x →∞, l(x)− slowly varying.

U is not harmonic for the initial Markov chain Xn. However if the
correction

u(x) = EU(X1)− u(x), is small x →∞,

then

V (x) := U(x) + Ex

τB−1∑
n=0

u(Xn)

is well-defined, non-negative and harmonic for Xn .
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Construction of the harmonic function ctd.

Function u(x) by the Taylor expansion

u(x) = EU(X1)− u(x)

= U ′(x)EX (X1 − x) +
1

2
U ′′(x)EX (X1 − x)2

+
1

6
U ′′′(x + θ(x))EX (X1 − x)3.

Now the first 2 terms disappear since U(x) is harmonic for the diffusion.
Hence,

u(x) ∼ CU ′′′(x) ∼ C
U(x)

x3
.

This is sufficient to ensure the finiteness

Ex

τB−1∑
n=0

|u(Xn)| <∞.
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Change of measure

As V is well-defined we can perform the change of measure (Doob’s
h-transform).
Let X̂n be a Markov Chain with the following transition kernel

Pz{X̂1 ∈ dy} =
V (y)

V (z)
Pz{X1 ∈ dy ; τB > 1}

Since V is harmonic, then we also have

Pz{X̂n ∈ dy} =
V (y)

V (z)
Pz{Xn ∈ dy ; τB > n} for all n.

Note V (x) ∼ U(x) ∼ x2µ/b+1. Hence, this change of measure is
non-exponential.
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Change of measure for stationary distribution
Balance equation for π

π(dy) =

∫
B
π(dz)

∞∑
n=0

Pz{Xn ∈ dy ; τB > n}.

Changing the measure

π(dy) =
1

V (y)

∫
B
π(dz)V (z)

∞∑
n=0

Pz{X̂n ∈ dy}

=
Ĥ(dy)

V (y)

∫
B
π(dz)V (z),

where Ĥ is the renewal measure generated by the chain X̂n with initial
distribution

P{X̂0 ∈ dz} = ĉπ(dz)V (z), z ∈ B and ĉ :=
(∫

B
π(dz)V (z)

)−1
.



Renewal theorem

Therefore,

π(x ,∞) = ĉ

∫ ∞
x

1

V (y)
dĤ(y)

∼ ĉ

∫ ∞
x

1

U(y)
dĤ(y) as x →∞,

as V (x) ∼ U(x).

We are facing second problem now - what is the asymptotics for

Ĥ(x) =
∞∑

n=1

P(X̂n ≤ x), x →∞.
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n=1

P(X̂n ≤ x), x →∞.



Renewal theorem

First, the change of measure gives X̂n of the same type, but now transient

Small drift:

m̂(x) = E
[
X̂1 − X̂0 | X̂0 = x

]
∼ µ

x
, x →∞;

Finite variance:

σ̂2(x) = E
[
(X̂1 − X̂0)2 | X̂0 = x

]
→ b, x →∞.



Lower bound for the renewal theorem
Lower bound follows from weak convergence

X̂ 2
n

n
d→ Γ

with mean 2µ+ b and variance (2µ+ b)2b.

Then,

Ĥ(x) ≥
[Bx2]∑
n=0

Py{Xn ≤ x}

=

[Bx2]∑
n=0

(Γ(x2/n) + o(1))

= x2

∫ B

0
Γ(1/z)dz + o(x2).

and ∫ B

0
Γ(1/z)dz → 1

2µ− b
as B →∞,

we conclude the lower bound
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Renewal theorem (Asymptotics for the Green function)

Theorem

Consider a transient Markov chain Xn. If m(x) ∼ µ/x and σ2(x)→ b > 0
as x →∞, and 2µ > b, then, for any initial distribution of the chain X ,

H(x) ∼ x2

2µ− b
as x →∞,

where H(x) =
∑∞

n=0 P(Xn ≤ x).



Stationary measure

We can continue with stationary measure

π(x ,∞) ∼ ĉ

∫ ∞
x

1

U(y)
dĤ(y)

∼ ĉ

∫ ∞
x

1

y2µ/b+1
l(y)d

y2

(2µ− b)

∼ 2
ĉ

2µ− b

∫ ∞
x

1

y2µ/b+1
l(y)dy

∼ C

x2µ/b+1
l(x).

To apply integral renewal theorem we integrate by parts



Harmonic functions vs Lyapunov functions

Lyapunov functions We choose an explicit function xa, ehx .
Therefore, there are no problems with regularity properties. One can
use Taylor expansion to obtain a submartingale ot supermartingale
and hence bounds.

Harmonic functions Explicit expressions are rarely known. Special
properties should be derived. Harmonic functions lead to martingales
and more accurate estimates.



Further developments

We plan to consider a problem with the following decay of the drift

m(x) = E [X1 − X0 | X0 = x ] ∼ −µ
xa
, x →∞,

where a ∈ (0, 1).
One can expect the following decay

π(x ,+∞) ∼ exp{−x1−a}, x →∞..
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