
RW on a group Random walk on a ring Problems

Mixing time for a random walk on a ring

Stephen Connor

Joint work with Michael Bate

Aspects of Random Walks
Durham, April 2014

http://maths.york.ac.uk/www/sbc502


RW on a group Random walk on a ring Problems

Random walks on groups

Let G be a finite group and let P be a probability distribution on
G ; that is, a function P : G → [0, 1] such that

∑
g∈G P(g) = 1.

For example, we could have G = Sn, the symmetric group on
{1, 2, . . . , n}, and we could set

P(g) =


1
n if g = 1 is the identity
2
n2

if g = (i , j) is a transposition

0 otherwise

A random walk on G is then a Markov chain X with transitions
governed by the distribution P. So we fix a starting point X0, and
then set

P (Xt+1 = hg | Xt = g) = P(h)
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Distribution after repeated steps is given by convolution:

P (X2 = g |X0 = 1) = P ∗ P(g) =
∑
h

P(gh−1)P(h)

As long as the probability distribution P isn’t concentrated on a
subgroup, the stationary distribution π for X is the uniform
distribution; π(g) = 1/|G | for all g ∈ G . When X is ergodic, we’re
interested in how long it takes for it to converge to equilibrium.

Definition

The mixing time of X is

τ(ε) = min {t : ‖P (Xt ∈ ·)− π(·)‖TV ≤ ε} .
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Cutoff phenomenon

We’re often interested in a natural sequence of processes X (n) on
groups G (n) of increasing size: how does the mixing time τ (n) scale
with n?

In lots of nice examples a cutoff phenomenon is exhibited:

for all ε > 0, lim
n→∞

τ (n)(ε)

τ (n)(1− ε)
= 1
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Random walk on a ring

What if we add some additional structure, and try to move from a
walk on a group to a walk on a ring?

For example: random walk on Zn (n odd) with

x →

{
x + 1 w.p. 1− pn

2x w.p. pn
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Related results

Chung, Diaconis and Graham (1987) study the process (used in
random number generation)

x →


ax − 1 w.p. 1

3

ax w.p. 1
3

ax + 1 w.p. 1
3

When a = 1 there exist constants C and C ′ such that:

e−Ct/n
2
<
∥∥∥P

(n)
t − π(n)

∥∥∥
TV

< e−C
′t/n2

When a = 2 and n = 2m − 1 there exist constants c and c ′

such that:

for tn ≥ c log n log log n,
∥∥∥P

(n)
tn − π

(n)
∥∥∥
TV
→ 0 as n→∞

for tn ≤ c ′ log n log log n,
∥∥∥P

(n)
tn − π

(n)
∥∥∥
TV

> ε as n→∞
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Back to our process...

General problem

The distribution of Xt isn’t given by convolution.

Xt = 2ItXt−1 + (1− It)(Xt−1 + 1)

where It ∼ Bern(pn).

But for this relatively simple walk, we can get around this by
looking at the process subsampled at jump times. (Here we call
a +1 move a ‘step’ and a ×2 move a ‘jump’.)

So consider (with X0 = Y0 = 0)

Yk =
k∑

j=1

2k+1−jSj (mod n), Sj
i.i.d.∼ Geom(pn) (mod n)

(i.e. Yk is the position of X immediately following the kth jump.)
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Plan

1 Find lower bound for mixing time of Y ;

2 Find upper bound for mixing time of Y ;

3 Try to relate these back to the mixing time for X .

Restrict attention to pn =
1

2nα
, α ∈ (0, 1).

We expect things to happen (for Y ) sometime around

Tn := log2(npn) ∼ (1− α) log2 n
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In fact:

Theorem

Y exhibits a cutoff at time Tn, with window size O(1).

To prove this, we need to show that (for n odd)

lim inf
n→∞

∥∥∥∥P(X
(n)
Tn−θ ∈ ·

)
− 1

n

∥∥∥∥
TV

≥ 1− ε(θ)

and

lim sup
n→∞

∥∥∥∥P(X
(n)
Tn+θ

∈ ·
)
− 1

n

∥∥∥∥
TV

≤ ε(θ) ,

where ε(θ)→ 0 as θ →∞.
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Lower bound

For a lower bound, we simply find a set An(θ) (of considerable
size) that Y has very little chance of hitting before time Tn − θ,
for large θ ∈ N. (Recall the definition of total variation distance!)

(3/8− β)n

Y0

E [YTn−θ]An(θ)



RW on a group Random walk on a ring Problems

If An(θ) is chosen as above then π(An(θ)) = 1/4 + 2β.

Using Chebychev’s inequality:

P (YTn−θ ∈ An(θ)) ≤ 41−θ

3(3/8− β)2
.

Now choose β = β(θ) to make the difference between these
large. . .

Lemma (Lower bound for Y )

For θ ≥ 3,

‖P (YTn−θ ∈ ·)− πn(·)‖TV ≥ 1− 41−θ/3 .
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Upper bound

Let P be a probability on a group G . A (complex) representation ρ
is a group homomorphism ρ : G → GLd(C), where GLd(C)
denotes the group of d × d invertible complex matrices. We write

P̂(ρ) =
∑
g∈G

P(g)ρ(g)

for the Fourier transform of P at ρ.

This behaves very nicely with respect to convolution:

P̂ ∗ P(ρ) = P̂(ρ)P̂(ρ)
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A basic but extremely useful result is the following:

Lemma (Diaconis and Shahshahani, 1981)

‖P − π‖2TV ≤
1

4

∑
non−triv

irr ρ

dρtr
(

P̂(ρ)P̂(ρ)∗
)

(Here A∗ = (aji ) denotes the complex conjugate transpose of the matrix A = (aij ),

and tr denotes the trace function on square matrices)

Our subsampled walk Y is a random walk on the group (Zn,+),
whose n irreducible (one-dimensional) representations are
determined by

ρs(1) := e i
2πs
n for 0 ≤ s ≤ n − 1
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The Upper Bound Lemma becomes

‖P − π‖2TV ≤
1

4

n−1∑
s=1

|P̂(ρs)|2

where P̂(ρs) is now just a complex number.

Substituting the correct distribution for Yt leads us to the
following upper bound:

‖δ0Pt − π‖2TV ≤
1

4

n−1∑
s=1

t∏
k=1

p2
n

1− 2(1− pn) cos(2πn 2ks) + (1− pn)2
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Lemma (Upper bound for Y )

Let pn = 1/2nα, with α ∈ (0, 1]. For θ ∈ N,

lim sup
n→∞

‖P (YTn+θ ∈ ·)− πn(·)‖TV = O(4−θ) .

Proof.

Careful analysis of the right-hand side!
(Identify which terms really contribute to the sum (s = (n ± 1)/2
accounts for nearly everything), deal with these, and show that
nothing else really matters.)

This completes our proof of a cutoff for Y .
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Moving from Y to X

We’ve seen that Y mixes in an interval of length O(1) around
Tn = log2(npn): what does this tell us about the mixing time for
X ?

Corollary

For pn = 1/2nα, with α ∈ (0, 1), X exhibits a cutoff at time

TX
n = Tn/pn = 2(1− α)nα log2 n

with window size
√

Tn/pn.

Proof.

Essentially follows from the observation that the number of jumps
by time TX

n + c
√

Tn/pn concentrates (in an interval of order
√

Tn)
around Tn + c

√
Tn.
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And finally: open problems

1 We can deal with more interesting steps in our walk, but not
yet with more interesting jumps, e.g. consider

x →


x + 1 w.p. 1− pn

2x w.p. pn/2(
n+1
2

)
x w.p. pn/2

or more general rules, such as x → x2. . .

2 Or how about this process?

x →

{
x + 1 w.p. 1− pn

ax w.p. pn

where multiplication by a is not invertible? (Stationary
distribution won’t even be uniform. . . )
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