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Let G be a finite group and let P be a probability distribution on
G; that is, a function P: G — [0, 1] such that } . P(g) = 1.

For example, we could have G = S, the symmetric group on
{1,2,...,n}, and we could set

1 if g =1 is the identity
P(g) = % if g = (i,J) is a transposition
0

otherwise

A random walk on G is then a Markov chain X with transitions
governed by the distribution P. So we fix a starting point X, and

then set
P(Xty1 = hg | Xt = g) = P(h)



Distribution after repeated steps is given by

P(X2=glXo=1)=PxP(g)=) Plgh *)P(h)
h

As long as the probability distribution P isn't concentrated on a
subgroup, the stationary distribution 7 for X is the uniform
distribution; 7(g) = 1/|G| for all g € G. When X is ergodic, we're
interested in how long it takes for it to converge to equilibrium.



Distribution after repeated steps is given by convolution:

P(X2=glXo=1)=PxP(g)=) Plgh *)P(h)
h

As long as the probability distribution P isn't concentrated on a
subgroup, the stationary distribution 7 for X is the uniform
distribution; 7(g) = 1/|G| for all g € G. When X is ergodic, we're
interested in how long it takes for it to converge to equilibrium.

Definition

The mixing time of X is

7(e) = min{t: [P(X; € ) = 7()llpy < e}
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Cutoff phenomenon

We're often interested in a natural sequence of processes X(" on
groups G(" of increasing size: how does the mixing time 7(") scale
with n?

In lots of nice examples a cutoff phenomenon is exhibited:
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Related results

Chung, Diaconis and Graham (1987) study the process (used in
random number generation)

ax—1 w.p. %
X — < ax w.p.%
ax+1 w.p. %

o When a =1 there exist constants C and C’ such that:
e—Ct/n2 < HPE”) _ x(m e—C’t‘/n2

<
o When a =2 and n = 2™ — 1 there exist constants ¢ and ¢’
such that:

—0asn—
TV

for t, > clog nloglog n, HP,&:) — ("

>egasn—x0

for t, < c’'log nlog log n, HPE:) — v
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Back to our process...

General problem
The distribution of X; isn't given by convolution.

Xt - 2ItXt—1 + (1 - It)(Xt—]. + 1)

where [y ~ Bern(pp).

But for this relatively simple walk, we can get around this by
looking at the process subsampled at jump times. (Here we call
a +1 move a ‘step’and a %2 move a jump')

So consider (with Xp = Yy =0)

k
Yi = sz“—fsj (mod n), S; "5 Geom(p,) (mod n)
j=1

(i.e. Yy is the position of X immediately following the k* jump.)
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O Find lower bound for mixing time of Y;

Q Find upper bound for mixing time of Y/,
© Try to relate these back to the mixing time for X.

1
— 1).
2nOL,ozG(O, )

We expect things to happen (for Y') sometime around

Restrict attention to p, =

Tn = logy(npn) ~ (1 — ) logy n
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In fact:

Y exhibits a cutoff at time T,, with window size O(1).

To prove this, we need to show that (for n odd)

- () 1
liminf | P (X7, € ) —~ _z1-c0)
and
. (n) 1
imsup [|P (XT,,—',-H € ) - = <e(0),
n—o0 nilrv

where (0) — 0 as § — oo.



Lower bound

For a lower bound, we simply find a set A,(6) (of considerable
size) that Y has very little chance of hitting before time T, — 6,
for large 6 € N. (Recall the definition of total variation distance!)

Yo
O

An(0) Q E[Y7,-0]



o If An(0) is chosen as above then m(A,(0)) = 1/4 + 20.



o If A,(0) is chosen as above then 7(A,(0)) = 1/4 + 20.
@ Using Chebychev's inequality:

4179

B (Y70 € Anl0)) < 537557



o If A,(0) is chosen as above then 7(A,(0)) = 1/4 + 20.
@ Using Chebychev's inequality:

4179

P(YT,—0 € An(0)) < 57— -

@ Now choose § = 3(6) to make the difference between these
large. ..



o If A,(0) is chosen as above then 7(A,(0)) = 1/4 + 20.
@ Using Chebychev's inequality:

4179
P(YT,—0 € An(0)) < 57— -
@ Now choose § = 3(6) to make the difference between these

large. ..

Lemma (Lower bound for Y)

For 6 > 3,

IP(YT,—0 € -) = Ta()llpy 21— 4173,




Upper bound

Let P be a probability on a group G. A (complex) representation p
is a group homomorphism p : G — GL4(C), where GL4(C)
denotes the group of d x d invertible complex matrices. We write

P(p) =" P(g)p(e)

geG

for the Fourier transform of P at p.



Upper bound

Let P be a probability on a group G. A (complex) representation p
is a group homomorphism p : G — GL4(C), where GL4(C)
denotes the group of d x d invertible complex matrices. We write

P(p) =" P(g)p(e)

geG

for the Fourier transform of P at p.

This behaves very nicely with respect to convolution:

P« P(p) = P(p)P(p)



A basic but extremely useful result is the following:

Lemma (Diaconis and Shahshahani, 1981)

IP-rldv<g X i (PLIPGY)
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(Here A* = (3jj) denotes the complex conjugate transpose of the matrix A = (aj),

and tr denotes the trace function on square matrices)



A basic but extremely useful result is the following:

Lemma (Diaconis and Shahshahani, 1981)

IP-rldv<g X i (PLIPGY)

non—triv
irr p

(Here A* = (3jj) denotes the complex conjugate transpose of the matrix A = (aj),

and tr denotes the trace function on square matrices)

Our subsampled walk Y is a random walk on the group (Z,,+),
whose n irreducible (one-dimensional) representations are
determined by

P2ms

ps(l):=e'"n  for0<s<n-—1



The Upper Bound Lemma becomes

1 n—1 N

2

1P =iy < 3 D 1P(os)?
s=1

where P(ps) is now just a complex number.



The Upper Bound Lemma becomes

1 n—1 N

2

1P =iy < 3 D 1P(os)?
s=1

where P(ps) is now just a complex number.

Substituting the correct distribution for Y; leads us to the
following upper bound:

|60 P — 7T||Tv < -

t
Pn
4~ kl_[l 1—2(1 — py) cos(222ks) + (1 — pp)?

s=




Lemma (Upper bound for Y)
Let p, =1/2n%, with o € (0,1]. For 6 € N,

Iim_>sup IP(YT,46 € ) = ma(-) Iy = O(47°).




Lemma (Upper bound for Y)
Let p, =1/2n%, with o € (0,1]. For 6 € N,

imsup [P (Y740 € ) = 7o)y = O(47).

Careful analysis of the right-hand side!

(Identify which terms really contribute to the sum (s = (n+1)/2
accounts for nearly everything), deal with these, and show that
nothing else really matters.) Ol

This completes our proof of a cutoff for Y.
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Moving from Y to X

We've seen that Y mixes in an interval of length O(1) around
T, = log,(nps): what does this tell us about the mixing time for
X7

For p, = 1/2n%, with a € (0,1), X exhibits a cutoff at time

T = Ta/pn=2(1 — a)n"logy n

with window size \/ Tp/pn.

Essentially follows from the observation that the number of jumps
by time TX + c\/T,/pn concentrates (in an interval of order v/T,)
around T, + ¢/ Tp. ]




And finally: open problems

@ We can deal with more interesting steps in our walk, but not
yet with more interesting jumps, e.g. consider

x+1 w.p. 1 —py

X — ¢ 2x W.p. pn/2

(%1) X W.p. pp/2

or more general rules, such as x — x2. ..



And finally: open problems

@ We can deal with more interesting steps in our walk, but not
yet with more interesting jumps, e.g. consider

x+1 w.p. 1 —py
X — ¢ 2x W.p. pn/2

(%1) X W.p. pp/2

or more general rules, such as x — x2. ..

Q@ Or how about this process?

1 p.1-
L Xt we 1-p,
ax W.p. Pn

where multiplication by a is not invertible? (Stationary
distribution won't even be uniform. . .)
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