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A simple SIS epidemic model

I Each individual in a population of size N is either infective or
susceptible.

I XN(t) represents the number of infectives at time t.

I Each infective encounters a random other member of the
population at rate λ (infection rate); if the other individual is
currently susceptible, they become infective.

I Each infective recovers at rate µ (recovery rate); once
recovered they become susceptible again.

I This model for the spread of an SIS epidemic in a population
is due to Feller (1939), Bartlett (1957) and Weiss and Dishon
(1971).

Malwina Luczak Extinction times in the stochastic logistic epidemic



The model
Extinction Time

Proofs

SIS epidemic model: the underlying Markov chain

I (XN(t))t≥0 evolves as a continuous-time Markov chain with
state space {0, . . . ,N}.

I The transitions are as follows:

x → x + 1 at rate λx(1− x/N),

x → x − 1 at rate µx .
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Other application areas

This is a very simple stochastic process, that also appears in the
contexts of:

I metapopulation models,

I spread of rumours,

I chemical reactions.
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Alternative interpretation: metapopulation model

I There are N patches, and XN(t) is the number of patches
occupied at time t, for t ≥ 0. Then XN(t) has the following
dynamics.

I The number XN(t) increases by 1 at rate
λXN(t)(N − XN(t))

N
: each occupied patch attempts to

“colonise” another patch at rate λ, and the probability that
the colonised patch is currently unoccupied is (N −XN(t))/N.

I The number XN(t) decreases by 1 at rate µXN(t): each
colony is wiped out at rate µ.
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How does the epidemic behave?

I We are interested in limiting behaviour as N →∞.

I One might expect the behaviour of this stochastic process to
be related to the solution of the differential equation

dz

dt
= λz(1− z)− µz z ∈ [0, 1].

Here z(t) represents the proportion of infectives at time t.

I For λ ≤ µ, the equation has a unique attractive fixed point at
z = 0.

I For λ > µ, the fixed point at 0 is repulsive, and there is an
attractive fixed point at z = 1− µ/λ.
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Basic reproduction number

I The behaviour of the Markov chain XN(t) also depends on
whether λ is greater than, equal to, or less than µ. In other
words, a key parameter is the ratio λ/µ, and whether it is
greater or less than 1.

I In the context of an epidemic, the ratio λ/µ is called the basic
reproduction number, and denoted R0. It means the average
number of cases one case generates over the course of its
infectious period.

I If R0 ≤ 1, then the probability of an epidemic becoming
established tends to 0 as the population size N →∞. If
R0 > 1, then this probability is asymptotically positive.

Malwina Luczak Extinction times in the stochastic logistic epidemic



The model
Extinction Time

Proofs

Long-term behaviour of the stochastic model

I The stochastic model we introduced is a continuous-time
Markov chain, with a finite state space {0, . . . ,N}.

I There is an absorbing state, namely 0. Once the Markov chain
enters this state, it stays there.

I With probability 1, the Markov chain will eventually enter the
absorbing state: the epidemic will die out, even when R0 > 1
(i.e. even when λ > µ, unlike the deterministic version).
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Extinction time: λ > µ

I For x0 = XN(0), let TXN

e (x0) be the time to extinction for
(XN

t ). i.e., the hitting time of the absorbing state 0.

I Whenever x0 = XN(0)→∞, we have

ETXN

e (x0) =
√

2π
λ

(λ− µ)2
eγN√
N

(1− o(1)),

as N →∞, where γ = log λ− logµ− λ−µ
λ > 0.

I Moreover, the time to extinction is asymptotically an
exponential random variable.

I See: Barbour (1976), Andersson and Djehiche (1998), Nåsell
(2011).
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λ > µ

I Conditioning on the event that the chain has not entered
state 0 by time t, one obtains a limiting distribution, called
the quasi-stationary distribution, centred around the attractive
fixed point of the differential equation.

I Starting from a fixed state, the chain converges (presumably
rapidly) to the quasi-stationary distribution.

I Moving from near the fixed point to 0 is a rare event. The
expected time until the rare event occurs can be estimated
very precisely, as above. The time to extinction is exactly
exponential if the chain is started in the quasi-stationary
distribution.
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Starting from a small state

If the chain starts in a fixed state x0, there is a positive probability
(asymptotically (µ/λ)x0) that the epidemic dies out in constant
time.

Conditioned on this not occurring, the extinction time is
distributed asymptotically as above.
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Extinction time: λ < µ

In this case, the time to extinction is approximately logN/(µ− λ).

This is the focus of our work, and more details will follow.
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Extinction time: λ = µ

If λ = µ, the time to extinction is somewhere in between
(time of order N1/2, it turns out).

Doering, Sargsyan and Sander (2005) give a formula for the
expectation of the extinction time, starting from a state x0 of order
N:

ETXN

e (x0) =
(π

2

)3/2√
N + log x0 + O(1).
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A critical window

I Suppose λ = λ(N) and µ = µ(N).

I There is a “critical window” where |µ− λ| = O(N−1/2).

I If (µ− λ)N1/2 → C (−∞ < C <∞) and x0N
−1/2 → b

(b > 0), then the expected time to extinction is asymptotically
f (C , b)N1/2, for some function f , and the time to extinction is
not well-concentrated. See Dolgoarshinnyk and Lalley (2006).
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Inside the critical window

I Nåsell (2011, and earlier papers) shows that, within the
window, the expected time to extinction starting from a state
of order

√
N is of order

√
N, whereas the expected extinction

time starting from state 1 is of order logN.

I It follows via our methods that the time to extinction is of
order

√
N, even if the starting state is of order larger than√

N.
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Scaling window

Thinking of a scaling window gives a more sophisticated picture.
Suppose again λ = λ(N) and µ = µ(N).

I If λ− µ→ 0, and (λ− µ)
√
N →∞ (sufficiently fast), the

epidemic takes a long time to die out
(time of order roughly exp(N(λ− µ)2/2λ2)). See work of
Nåsell.

I If (µ− λ)
√
N →∞, the epidemic dies out quickly (time of

order 1
µ−λ log[N(µ− λ)2] if we start from a state of order N).

More details will follow later in the talk.
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λ < µ

I The following formula appears in two papers from the
literature. Here the chain starts in state x0 = z0N, it is
assumed that λ and µ are constants with λ < µ, and
Te = TXN

e (x0) is the (random) time to extinction.

(µ−λ(1−z0))Te−(logN+log z0+log(µ−λ+λz0)−logµ)→W ,

in distribution, where W has the standard Gumbel
distribution: P(W ≤ w) = e−e

−w
.

I Unfortunately, this formula is incorrect.
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What is wrong?

Formula in the literature:

(µ−λ(1−z0))Te−(logN +log z0 +log(µ−λ+λz0)− logµ)→W .

I The first-order asymptotics are TXN

e (z0N) ' logN

µ− λ(1− z0)
.

I But the constant in front of the logN surely should not
depend on z0.

I The formula appears to say that TXN

e (z0N) = O(logN) in the
case µ = λ, which cannot be right.

I Moreover, the term
(

logN + · · ·
)

does not behave as it
should as µ− λ decreases to 0.
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Previous results and open problems

I Doering, Sargsyan and Sander (2005) give an asymptotic
formula for the mean extinction time, in the case where λ < µ
are fixed constants, in the form 1

µ−λ(logN + log z0) + O(1),
and note that “our formulas do not agree with... but they do
agree with the numerical results.”

I Nåsell (2011) leaves as an open problem the asymptotic
estimation of the expected time to extinction in the cases
where (a) µ− λ is bounded away from zero, or tends to zero
slowly (”subcritical regime”), (b) |µ− λ| = O(N−1/2)
(”critical regime”).
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Theorem [B. & Luczak, 2014+]

Suppose λ = λ(N) and µ = µ(N), and

I (µ− λ)N1/2 →∞,

I XN(0)/N → z0, with z0 ∈ (0, 1].

Then Te = TXN

e (z0N) satisfies

(µ−λ)Te−
(

logN+log z0+2 log(µ−λ)−log(µ−λ+λz0)−logµ
)
→W ,

in distribution, where W has the standard Gumbel distribution.

This formula seems not to have previously appeared in the
literature, even in the case where λ and µ are constants.

Our result gives the asymptotic distribution of the extinction time
throughout the entire subcritical regime.
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Consequences

Formula for distribution of extinction time:

(µ−λ)Te−
(

logN+log z0+2 log(µ−λ)−log(µ−λ+λz0)−logµ
)
→W .

I Te = TXN

e (z0N) is sharply concentrated around
logN + 2 log(µ− λ)

µ− λ
, throughout this regime.

I We can easily derive an asymptotic formula for ETXN

e (z0N).

I The formula “runs out” when µ− λ is of order about N−1/2,
at the transition into the critical regime.
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Other starting states

I We do not need to assume that the starting state x0 is of
order N.

I Whenever (µ− λ)
√
N →∞, and x0(µ− λ)→∞,

(µ−λ)Te−
(

log x0+log(µ−λ)−log
(
1+

λx0
(µ− λ)N

)
−logµ

)
→W ,

in distribution, where W has the standard Gumbel
distribution.
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Simpler formulae

I The formula on the previous slide can be simplified in certain
regimes.

I If x0(µ− λ)→∞ and x0 = o((µ− λ)N), then

(µ− λ)TXN

e (x0)−
(

log x0 + log(µ− λ)− logµ)→W ,

in distribution, where W has the standard Gumbel
distribution.

I If x0/(µ− λ)N →∞, then

(µ− λ)TXN

e (x0)−
(

logN + 2 log(µ− λ)− 2 logµ)→W ,

in distribution, where W has the standard Gumbel
distribution.
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A special case

In particular, if µ− λ = o(1) and the starting state x0 = XN(0) is
of order N, then

(µ− λ)TXN

e (x0)− (logN + 2 log(µ− λ)− 2 logµ)→W

in distribution.

Note that this formula does not involve the initial value
z0 = XN(0)/N.
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Informal description

I From any starting state above about (µ− λ)N, XN(t) moves
rapidly to a state of order (µ− λ)N.

I The bulk of the time to extinction is spent moving from a
state of order (µ− λ)N to a state of order about 1/(µ− λ).

I However, most of the variability in the extinction time comes
from the final phase, from a state around 1/(µ− λ) to
extinction.
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Formula for expected extinction time

I The following formula for the expected extinction time,
starting from state x , is originally due to Leigh (1981), and
has been rediscovered several times since.

ETXN

e (x) =
1

µ

N−1∑
j=0

(
λ

µN

)j min(x ,N−j)∑
s=1

(N − s)!

(N − s − j)!

1

s + j
.

This formula is valid for all values of the parameters.

I Deriving the precise asymptotics of this sum in various
different regimes is quite challenging.

I Moreover, we are interested in the distribution of the
extinction time, not just the expectation.
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A different approach: proof overview

I We assume that our starting state x0 satisfies x0(µ− λ)→∞.

I Our intermediate results are stated in terms of a function
ω(N) tending slowly to infinity. (We can take
ω(N) = (µ− λ)1/4N1/8.)

I Our proof proceeds by analysing the Markov chain in three
phases, corresponding to the previous rough description of the
course of the epidemic. For some starting states, we don’t
need all the phases.
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The three phases

I In the first phase, we show that, in some time t that is small
compared to the overall duration of the epidemic, XN(t)
drops to a state below N(µ− λ)ω(N) with high probability.

I In the second phase, we show that XN(t)/N closely follows a
solution to the differential equation, starting from a state at
most N(µ− λ)ω(N), until it reaches a state below about
N1/2ω(N).

I In the third phase, once XN(t) ≤ N1/2ω(N), we show that
XN(t)/N behaves like a linear birth and death chain, whose
behaviour is well-understood.
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Differential equation approximation

I Recall the differential equation

dz

dt
= λz(1− z)− µz z ∈ [0, 1],

derived from the average drifts.

I The general theory of Kurtz (1971) tells us that, if XN(t)/N
starts close to a solution z(t) of the differential equation, then
it remains close to this solution over a time interval of
constant length.

I Our method shows that XN(t)/N in fact follows the
differential equation closely over longer time intervals.
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Solution of the differential equation

I The equation
dz

dt
= λz(1− z)− µz can be solved explicitly:

z(t) =
z0(µ− λ)e−(µ−λ)t

µ− λ+ z0λ(1− e−(µ−λ)t)
,

where z0 = z(0).

I We shall make use of the inverse of the function z(t):

t(z) =
log(z0/z) + log

(
1 + λ

µ−λz
)
− log

(
1 + λ

µ−λz0
)

µ− λ
,

where t(z0) = 0.
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First phase: upper bound

It turns out that, for any starting state x0 and any values of the
parameters,

Ex0X
N
t ≤ Nz(t),

where z(t) is the solution of the differential equation with
z(0) = x0/N.

Applying this with t =
1

ω(N)1/2λ(µ− λ)
, for any x0 ≤ N, we find

Ex0X
N
t ≤ N(µ− λ)ω(N)1/2,

and therefore P(XN
t ≥ N(µ− λ)ω(N)) = o(1).
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Second phase: following the differential equation

If (XN(t)/N) were to follow the differential equation exactly,
starting from z0 = x0/N, then the hitting time of state
x∗ = N1/2ω(N) would be t(x∗/N), which is equal to

log x0 − log x∗ + log(µ− λ)− log
(
µ− λ+ λz0

)
+ o(1)

µ− λ
.

(Note that log
(
1 + λ

µ−λ
N1/2ω(N)

N

)
= o(1) by our assumption on

µ− λ and choice of ω(N).)
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How to prove this law of large numbers?

We use a concentration of measure result from L. (2013). This is
designed for use in combination with a coupling of two copies of a
Markov chain, and is especially useful if the coupling is contractive,
i.e., the expected distance between the two copies decreases on
one step of the coupled chain.

Let P be the transition matrix of a discrete-time Markov chain,
and let g be a function on its state space. Then let (Pg)(x)
denote the expectation of g(Y ), where Y is chosen by taking one
step of the chain from x .
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Concentration of measure inequality – L. (2013)

Let P be the transition matrix of a discrete-time Markov chain
(Xi ) with discrete state space S. Let f : S → R be a function.
Suppose S0 ⊆ S and functions ax ,i on S satisfy
|Ex [f (Xi )]− Ey [f (Xi )]| ≤ ax ,i (y) whenever x , y ∈ S0, and
P(x , y) > 0. Let S0

0 = {x ∈ S0 : y ∈ S0 whenever P(x , y) > 0}.
Assume that, for some sequence (αi )i∈Z+ of positive constants,
supx∈S0

0
(Pa2x ,i )(x) ≤ α2

i . Let k > 0, and let β = 2
∑k−1

i=0 α
2
i .

Suppose also that 2 sup0≤i≤k−1 supx∈S0
0 ,P(x ,y)>0 ax ,i (y) ≤ α. Let

Ak = {ω : Xi (ω) ∈ S0
0 : 0 ≤ i ≤ k − 1}. Then, for all a > 0,

Px0

({
|f (Xk)− Ex0 [f (Xk)]| ≥ a

}
∩ Ak

)
≤ 2e−a

2/(2β+2αa/3).
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Applying the theorem

I We apply this result to a discretised version X̂k of (XN(t)),
with transition probabilities given by:

px ,x+1 =
λx(1− x/N)

K (µ+ λ)N
; px ,x−1 =

µx

K (µ+ λ)N
;

and px ,x = 1− px ,x+1 − px ,x−1, where K is a large constant.
So (XN( k

K(µ+λ)N )) is approximated by X̂k .

I We define a coupling of two copies X̂ and Ŷ as follows.
I If X̂k = Ŷk , then the two copies move together at the next

step.
I Otherwise, at most one of the two copies moves (so they never

“cross”).
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A contractive coupling

We prove that this coupling is contractive, as long as µ > λ:

E(|X̂k+1 − Ŷk+1| | Fk) ≤ |X̂k − Ŷk |
(

1− µ− λ
K (µ+ λ)N

)
,

for all k , where (Fk) is the natural filtration of the coupling.
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Applying the theorem

I We apply the theorem with S0 = {0, 1, . . . , 2x0}.
I We obtain that

Px0

(
|X̂k − Ex0X̂k | ≥ a

)
≤ 2 exp

(
− a2

4x0(λ+ µ)/(λ− µ) + 4
3a

)
+ e−(µ−λ)x0/µ,

for all a and k .

I The last term above is an upper bound for the probability that
the chain leaves S0, i.e., it reaches 2x0 before 0.
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How do we use concentration of measure?

I Consider Ek = EX̂k
N − z

(
k

K(µ+λ)N

)
.

I A short calculation gives

E(X̂k+1 − X̂k)

=
1

K (λ+ µ)N

(
− (µ− λ)EX̂k − λ

EX̂ 2
k

N

)
=

1

K (λ+ µ)N

(
− (µ− λ)EX̂k − λ

(EX̂k)2

N
− λE(X̂k − EX̂k)2

N

)
.

I The fact that X̂k is well-concentrated implies that this last
term can be bounded, uniformly in k. In fact,
E(X̂k − EX̂k)2 ≤ 30x0(λ+µ)

µ−λ
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Controlling the error Ek

I Also, for some u ∈
(

k
K(µ+λ)N ,

k+1
K(µ+λ)N

)
,

z
( k + 1

K (µ+ λ)N

)
− z
( k

K (µ+ λ)N

)
=

1

K (λ+ µ)N

[
− (µ− λ)z

( k

K (µ+ λ)N

)
− λz

( k

K (µ+ λ)N

)2]
+

1

2K 2(µ+ λ)2N2
z ′′(u).

I We then deduce that

|Ek+1| ≤ |Ek |
(

1− µ− λ
K (µ+ λ)N

)
+

30λx0
(µ− λ)KN3

+
supu |z ′′(u)|

2K 2(µ+ λ)2N2
,

where the supremum is over u ∈ [0, 1]. The last term is
negligible for large K .

Malwina Luczak Extinction times in the stochastic logistic epidemic



The model
Extinction Time

Proofs

Deducing the law of large numbers

I The calculation above gives a uniform bound:

Ek =
EX̂k

N
− z
( k

K (µ+ λ)N

)
≤ 70x0λµ

N2(µ− λ)2
.

I Then the concentration of measure result is applied again to
show that, with high probability, X̂k/N is close to its
expectation, and therefore close to the solution of the
differential equation for all time.

I This is exactly what we want, provided “close” means small
with respect to our target value N1/2ω(N).

Malwina Luczak Extinction times in the stochastic logistic epidemic



The model
Extinction Time

Proofs

Third phase: approximation

Once we reach a point where XN(t)/N is less than
N1/2ω(N)/N � µ− λ, downward steps occur at rate µXN(t), and
upward steps at rate

λXN(t)(1− XN(t)/N) = XN(t)
(
µ− (µ− λ)− λXN(t)/N

)
.

So, roughly speaking, the “logistic correction” −λXN(t)2/N is a
negligible contribution to the downward drift.

Thus the behaviour of the logistic process is essentially the same
as that of the linear birth and death chain (Y (t)) taking steps up
at rate λY (t) and down at rate µY (t).
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The linear birth and death chain

The extinction time of the chain (Y (t)) can be analysed exactly,
using probability generating functions.
If Y (0) = y0, then, for t ≥ 0:

P(Y (t) = 0) =

(
µ− µe−(µ−λ)t

µ− λe−(µ−λ)t

)y0

.

Let TY
e (y0) be the time to extinction for (Y (t)). Then:

(µ− λ)TY
e (y0)−

(
log y0 + log(µ− λ)− logµ

)
→W ,

in distribution, where W has the standard Gumbel distribution,
provided y0(µ− λ)→∞.
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Extinction time in the third phase

We show that, if (XN(t)) is started at any state near
x∗ = N1/2ω(N), then the time to extinction has the same
asymptotic distribution as TY

e (x∗), i.e.,

(µ− λ)TXN

e (x∗)−
(

log x∗ + log(µ− λ)− logµ
)
→W ,

in distribution, where W has the standard Gumbel distribution.
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Combining the phases

I The time for the first phase is o((µ− λ)−1).

I The time for the second phase is

log x0 − log x∗ + log(µ− λ)− log
(
µ− λ+ λx0/N

)
+ o(1)

µ− λ
.

I The time for the third phase is distributed as

log x∗ + log(µ− λ)− logµ+ W

µ− λ
.

I So the total time to extinction from state x0 is distributed as

log x0 + 2 log(µ− λ)− log
(
µ− λ+ λx0/N

)
− logµ+ W

µ− λ
.
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