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K queues One server

“Relative price” of a customer in queue i vs. j 18 p;

Arrival rates: A Ak Load rates: P=Ai / W
Service rates: ... Mk Each po<l,but2 p>1

Service discipline:
- When the server is at node i its serves the queue Q;(¢) while it is non-empty

- When the current queue (say 1) becomes empty, the server goes to the “most
expensive” node, for example to 2 whenever O»(t)/ OQ,(t)> p j=3,....K

The system will “overflow” but not at an individual node!

Our main result™ the service will be periodic from some moment of time"

K=3
™ for almost all configurations of parameters



Approach: to analyze the corresponding dynamical (fluid) system

K=3 from now on

The state of the system can be represented as a point on a 3D simplex, 1.e. inside the
equilateral triangle ABC

Points on the sides correspond to situations when one of the queues is empty.

A,

There 1s a decision point on each side

Mapping ¢: to lighi sources 4y By and C, depending on the positions of decision points



If each decision point has finitely many pre-images under ¢, then the corresponding
dynamical system will be periodic (follows from pigeonhole principle)

B,

Ay

For this configuration, the only period will be
[chabacaba] — with length 9.



Theorem 1

Assume each of the decision points Dag, Dgc, Dca has finitely many pre-images under [1.

 the dynamical system is periodic. At most 4 distinct periods (up to rotations);

e the stochastic polling system is also periodic and has the same periods as the
dynamical one.
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Theorem 2

... for almost all configurations of the parameters (e.g. p;» has a continuous conditional
distribution on some domain when the other parameters are fixed) each of the decision

points Dag, Dgc, Dca has finitely many pre-images under ¢.

Theorem 3

There are uncountably many these “bad” configurations of decision points. For them:
e some trajectories of the dynamical system are aperiodic.

e 0 <P (the polling system is aperiodic ) < 1.



Key properties of the dynamical system:

LINEARITY (projection)
PRINCIPLE

Second equilateral triangle
PRINCIPLE

Uniform CONTRACTION
PRINCIPLE

=t =ty =1
All angles are 60
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How to justify the approximation?
* The lengths of the queues increase exponentially, at least after some random time
® The dynamical polling system is homogeneous with respect to the loads

¢ Deviations of the stochastic system from the dynamical one are eventually small
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Let

Ry

i=1 M

Observe that when we serve node j

iiidt
E(f(t+dt)=f(2)|3(2))==

K
Z 1]dt=ndt>0
KU, i=1

Hence f'1s a sub-martingale



Suppose the server at time 7; has just cleared out node 3. Set f,=/(T)

Let X=0/(1), Y= 0:(T), and Z= Q;(T;)=0 be the queue sizes at 1, 2, and 3.
Suppose w.l.o.g. X /Y > pi, so the server ought to move to node 1.

Let 7,1, be the time when the queue at 1 1s emptied. Then, if the system did not have any
randomness 1n it,

X  Ze, X
=4 =4

X0, Y Y+4,
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X X
X—0, YrY+/, , LA,
=4 =4
yielding
X
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Thus, for the dynamical system we would have f,[7(1+vY



Thus, for the dynamical system we would have f;[7 (1+v)

(Recall: f(t):; %?))

Now since

1

X X
, +
P

Uy My

1 X <CX

fj:f(zj):£+£§max
Uy Hy

where

C:maX(I,plz’pzpplzﬂpsl’ Pa3> p32)

xcmax g e, )

the length of the most expensive queue goes to infinity, as long as f; — oo.



Deviations of the stochastic system

Obtain exponential bounds on the probability that the j-th service time T;:;-T; deviates by

2/3
X

more from its expected value of :
=4,

=4
We obtain similar bounds for the increments of the other two queues.

There 1s j, such that for all />j, in fact f;+,>(1+V/2)f; with probability exponentially(-))
close to 1.



Let >0 be smaller than the length of the smallest interval created by the set
P={all pre-images of decision points}

After jy, which we might choose large enough, the “lifetime deviation” of the
stochastic system from the fluid one is smaller than &/2 with probability also close to 1.

Let To=all the sides of the triangle ABC; and T,=¢(T,.,).

A /\ A\
/ \
B -/ N LN\
T,- all three sides T=¢(T) six segements

T=¢(T;) three segements

i Tn [] Tn-l
e for n=1 every T, consists of at most 3X2" segments, 2" on each side of the triangle.

total Lebesgue measure of segmentsin T, - 0 asn — oo,



We can choose 7y so large that

for all n = n, distance(T,,P ) > &/2

Let x; be the state of the stochastic system at time 7;, and

let y, be the closest to x; point of | ;_; , possibly x; itself.
Let x; be the state of the stochastic system at time 7;, while y; =@ (y;.1)

Then as j grows, the distances between x; and y; decay exponentially (contraction

principle), unless there’s a decision point between them at some time ;.

However then latter 1s impossible
(conditioned on not deviating by more than 5).

As aresult, y; “drags” x; from the same to the same side of the triangle ABC.

And the deterministic dynamical system is periodic!



Construction of “bad” decision points TRIPLES

BR.W.'G = “a: 000"| R’_W.BP(.B ="a: 001!1| R_uPa ="“a :{]1“1
F, Py, =% 10", B, C =% : 11"; CF, =%b: 0", Pd =%b:17, etc.

Algebraic representation of mappin
Each point x on side a = BC can be written as an infinite sequence of 0’s and 1’s.

e.g. x =a: 0|10 |1110...
then  ¢x)=b:0]1 |01 [000T...
or 110]l




Set decision points to be

I y
Dyc=a: qrq... (“.7 - variable pattern)
Dc=b: 0100000... (“.” - all zeros) where g = 1001
D.=c: 1010100000... (<. - all zeros) and » = 0110.

The sequence for Dsc can be written as y = y,y.y;... where y; =[1{q, r}.

Lemma:
If y satisfies the following properties
(@) if y»=r then  yiVioViss...>y  °
(b) if yi=qg then  yirsoyiss...<y
then Dsc has infinitely many pre-images under ¢

Such sequences may be “casily” constructed using
rational approximations of Irrational numbers

‘ any irrational slopei(1,2)

Sequence:  grggrgrg...



