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K queues One server

“Relative price” of a customer in queue i vs. j is pij

Arrival rates: λ1 … λK Load rates: ρi=λi / µi

Service rates: µ1 … µK Each  ρi<1, but Σ ρi > 1

Service discipline:

• When the server is at node i its serves the queue Qi(t) while it is non-empty

• When the current queue (say 1) becomes empty, the server goes to the “most 
expensive” node, for example to 2 whenever Q2(t)/ Qj(t)> p2j  j=3,…,K

The system will “overflow” but not at an individual node!

Our main result∗: the service will be periodic from some moment of time**

 K=3
** for almost all configurations of parameters



Approach: to analyze the corresponding dynamical (fluid) system

K=3 from now on

The state of the system can be represented as a point on a 3D simplex, i.e. inside the 
equilateral triangle ABC

Points on the sides correspond to situations when one of the queues is empty.

There is a decision point on each side

Mapping ϕ: to light sources A0 B0 and C0, depending on the positions of decision points



If each decision point has finitely many pre-images under ϕ, then the corresponding 
dynamical system will be periodic (follows from pigeonhole principle)

For this configuration, the only period will be
[cbabacaba] – with length 9.



Theorem     1  

Assume each of the decision points DAB, DBC, DCA has finitely many pre-images under .  

• the dynamical system is periodic. At most 4 distinct periods (up to rotations);

• the stochastic polling system is also periodic and has the same periods as the 
dynamical one.
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Theorem     2  

… for almost all configurations of the parameters (e.g.  p12 has a continuous conditional
distribution on some domain when the other parameters are fixed) each of the decision
points DAB, DBC, DCA has finitely many pre-images under ϕ.

Theorem     3  

There are uncountably many these “bad” configurations of decision points. For them:

• some trajectories of the dynamical system are aperiodic. 

• 0 < P (the polling system is aperiodic ) < 1.



Key properties of the dynamical system:

LINEARITY (projection)
PRINCIPLE

Second equilateral triangle
PRINCIPLE

Uniform CONTRACTION
PRINCIPLE



How to justify the approximation?

 The lengths of the queues increase exponentially, at least after some random time

 The dynamical polling system is homogeneous with respect to the loads

 Deviations of the stochastic system from the dynamical one are eventually small



How to justify the approximation?

• The lengths of the queues increase exponentially, at least after some random time

• The dynamical polling system is homogeneous with respect to the loads
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Let        

   f ( t )=∑
i=1

K Qi( t )

μi

Observe that when we serve node j

E ( f (t+dt )− f (t ) |ℑ(t ))=
∑
i=1

K

λi dt

μ i

−
μ j dt

μ j

=[∑
i=1

K

ρi−1 ]dt=ηdt>0

Hence f is a sub-martingale



Suppose the server at time τj has just cleared out node 3. Set   fj = f(τj)

Let X= Q1(τj), Y= Q2(τj), and Z= Q3(τj )=0 be the queue sizes at 1, 2, and 3.
Suppose w.l.o.g. X / Y > p12 so the server ought to move to node 1.

Let τj+1 be the time when the queue at 1 is emptied. Then, if the system did not have any 
randomness in it,

X↦0, Y ↦Y +λ2
X

μ1−λ1

, Z↦ λ3
X

μ1−λ1
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Let τj+1 be the time when the queue at 1 is emptied. Then, if the system did not have any 
randomness in it,

X↦0, Y ↦Y + λ2
X

μ1−λ1

, Z ↦ λ3
X

μ1−λ1

yielding

f j+1

f j

=

1
μ2

(Y + λ2
X

μ1−λ1
)+ 1

μ3

λ3 X

μ1−λ1

X
μ1

+
Y
μ2

=

X
μ1

( ρ2+ ρ3

1−ρ1
)+ Y

μ2

X
μ1

+
Y
μ2

=1+
ρ1+ ρ2+ ρ3−1

1−ρ1
(1+

μ1

μ2

Y
X )

−1

>1+
η

1−ρ1
(1+

μ1

μ2

1
p12

)
−1

≥1+ν

Thus, for the dynamical system we would have fj∝ (1+ν)j



Thus, for the dynamical system we would have fj∝ (1+ν)j

(Recall: f ( t )=∑
i=1

K Qi( t )
μi

)

Now since

f j=f ( τ j )=
X
μ1

+
Y
μ2

≤max (1,
1

p12
)×( X

μ1

+
X
μ2

)≤CX

where

   
C=max (1, p12 , p21 , p13 , p31 , p23 , p32 )

×max ( μ1
(−1)

+μ2
(−1 ) , μ1

(−1)
+μ3

(−1) , μ3
(−1)

+μ2
(−1))

the length of the most expensive queue goes to infinity, as long as  fj →∞.



Deviations of the stochastic system

Obtain exponential bounds on the probability that the j-th service time τj+1-τj deviates by 

more ( X
μ1−λ1

)
2/3

 from its expected value of X
μ1−λ1

.

We obtain similar bounds for the increments of the other two queues.

There is j0 such that for all j>j0 in fact fj+1>(1+ν/2)fj with probability exponentially(-j) 
close to 1.



Let δ>0 be smaller than the length of the smallest interval created by the set 
 P={all pre-images of decision points}

After j0, which we might choose large enough, the “lifetime deviation” of the 
stochastic system from the fluid one is smaller than δ/2 with probability also close to 1.

Let T0=all the sides of the triangle ABC; and Tn=ϕ(Tn-1).

• Tn ⊆ Tn-1 

• for n≥1 every Tn consists of at most 3×2n segments, 2n on each side of the triangle.

total Lebesgue measure of  segments in Tn → 0 as n → ∞.



We can choose n0 so large that 

for all n ≥ n0 distance(Tn,P ) > δ/2

Let xj be the state of the stochastic system at time τj, and

let yj be the closest to xj point of              , possibly xj itself.

Let xj be the state of the stochastic system at time τj, while yj =ϕ (yj-1)

Then as j grows, the distances between xj and yj decay exponentially (contraction 
principle), unless there’s a decision point between them at some time j′. 

However then latter is impossible 
(conditioned on not deviating by more than δ). 

As a result, yj “drags” xj from the same to the same side of the triangle ABC.

And the deterministic dynamical system is periodic!



Construction     of   “  bad”     decision     points     TRIPLES  

Algebraic representation of mapping     ϕ  .  
Each point x on side a ≡ BC can be written as an infinite sequence of 0’s and 1’s.

e.g.          x = a:    0  1 0 1 1 1 0…
then       ϕ(x) = b:0 1  0 1 0 0 0 1… 
or ϕ(x)= c: 1 1  0 1 0 0 0 1…



Set decision points to be

DBC = a: qrq… (“…” - variable pattern)

DCA = b: 0100000… (“…” - all zeros) where q = 1001  
DAB = c: 1010100000… (“…” - all zeros) and r = 0110.

 The sequence for DBC can be written as y = y1y2y3… where yi =∈{q, r}.

Lemma: 
If y satisfies the following properties

 (a) if  yk=r then yk+1yk+2yk+3…> y
(b) if  yk=q then yk+1yk+2yk+3…< y

then DBC has infinitely many pre-images under ϕ 

Such sequences may be  “easily” constructed using
rational approximations of irrational numbers 

y

r < q

any irrational slope∈(1,2)


