PREDATOR-PREY DYNAMICS ON INFINITE TREES

Charles Bordenave

CNRS & University of Toulouse

Partially based on joint work with <u>Ghurumuruhan Ganesan</u>.

THE SIR SPREADING MODEL

A disease is propagating along the edges of a graph G. A vertex may either be

- (S)usceptible
- (I)nfected and infectious
- (R)ecovered.

 \Rightarrow rumor spreading, epidemic, prey and predator, information dissemination ...

STANDARD SIR DYNAMICS

Markov process on $\mathcal{X} = \{S, I, R\}^V$:

- a(S)-vertex becomes (I) at rate λ times the number of (I)-neighbors,
- a (I)-vertex becomes (R) at rate 1.

CHASE-ESCAPE MODEL

Kordzakhia (2005)

Markov process on $\mathcal{X} = \{S, I, R\}^V$:

- a(S)-vertex becomes (I) at rate λ times the number of (I)-neighbors,
- a (I)-vertex becomes (R) at rate 1 times the number of (R)-neighbors.

CHASE-ESCAPE MODEL

 \Rightarrow Nested propagation ...

CHASE-ESCAPE PROCESS ON A TREE

PROPAGATION ON TREES

In this talk : SIR model on short time scale.

A simple model : the underlying graph T is an infinite tree.

 \Rightarrow Reasonable approximation for locally tree-like graphs.

Our initial condition :

Absorbing States

 \Rightarrow The states without (I)-vertices are absorbing.

Either:

- (i) at some finite time, the process reaches an absorbing state. (I)-vertices die out.
- (ii) (I)-vertices survive indefinitely.

(R)-vertices = vertices that have been infected.

Assumption on the tree

Upper growth rate :

$$d = \limsup_{k \to \infty} |V_k|^{1/k} \in (1, \infty).$$

where V_k = set of vertices at distance k from the root.

Lower *d*-ary \simeq for large *k*, the distance-*k* tree contains a $(d - o(1))^k$ -ary tree.

Satisfied a.s. for Galton-Watson tree with mean number of offspring d > 1 conditioned on non-extinction.

PHASE TRANSITION

For which value

 $q_T(\lambda) = \mathbb{P}_{\lambda}(\text{exctinction}) < 1$?

PHASE TRANSITION

For which value

 $q_T(\lambda) = \mathbb{P}_{\lambda}(\text{exctinction}) < 1$?

Theorem (Kordzakhia (2005) - d-ary tree) Let $\lambda_1 = 2d - 1 - 2\sqrt{d(d-1)} \qquad (\sim \frac{1}{4d}).$

(i) If $\lambda < \lambda_1$ and T has upper growth rate d then $q_T(\lambda) = 1$.

(ii) If $\lambda > \lambda_1$ and T is lower d-ary then $q_T(\lambda) < 1$.

PHASE TRANSITION

For which value

 $q_T(\lambda) = \mathbb{P}_{\lambda}(\text{exctinction}) < 1$?

Theorem (Kordzakhia (2005) - d-ary tree) Let $\lambda_1 = 2d - 1 - 2\sqrt{d(d-1)} \qquad (\sim \frac{1}{4d}).$

(i) If $\lambda < \lambda_1$ and T has upper growth rate d then $q_T(\lambda) = 1$.

(ii) If $\lambda > \lambda_1$ and T is lower d-ary then $q_T(\lambda) < 1$.

 \Rightarrow For the standard SIR : $\lambda_1 = 1/(d-1)$.

ANNEALED SURVIVAL PROBABILITY

Assume T is a Galton-Watson tree with offspring distribution P of mean d > 1.

$$q(\lambda) = \mathbb{E}' q_T(\lambda) = \mathbb{P}'_{\lambda}$$
(exctinction).

Theorem

with

If the offspring distribution has finite second moment then for all $\lambda_1 < \lambda < 1$,

$$c_0 \omega^3 e^{-\frac{(1-\lambda_1)\pi}{2(d(d-1))^{1/4}}\omega^{-1}} \leqslant 1 - q(\lambda) \leqslant c_1 e^{-\frac{(1-\lambda_1)\pi}{2(d(d-1))^{1/4}}\omega^{-1}},$$
$$\omega = \sqrt{\lambda - \lambda_1}.$$

ANNEALED SURVIVAL PROBABILITY

Assume T is a Galton-Watson tree with offspring distribution P of mean d > 1.

$$q(\lambda) = \mathbb{E}' q_T(\lambda) = \mathbb{P}'_{\lambda}$$
(exctinction).

Theorem

with

If the offspring distribution has finite second moment then for all $\lambda_1 < \lambda < 1$,

$$c_0 \omega^3 e^{-\frac{(1-\lambda_1)\pi}{2(d(d-1))^{1/4}}\omega^{-1}} \leqslant 1 - q(\lambda) \leqslant c_1 e^{-\frac{(1-\lambda_1)\pi}{2(d(d-1))^{1/4}}\omega^{-1}},$$
$$\omega = \sqrt{\lambda - \lambda_1}.$$

 \Rightarrow For the standard SIR : $1 - q(\lambda) = \Theta(\lambda - 1/(d-1))_+$.

 \Rightarrow Similar result for Brunet-Derrida's model of branching random walk killed below a linear barrier.

SUBCRITICAL REGIME

If $0 < \lambda \leq \lambda_1$, let Z be the total infected population on the GWT (number of (R)-vertices in absorbing state).

Tail exponent

$$\gamma(\lambda) = \sup\{u \ge 0 : \mathbb{E}'_{\lambda}[Z^u] < \infty\},\$$

$$\gamma_P = \sup\{u \ge 0 : \sum_{\ell=1}^{\infty} \ell^u P(\ell) < \infty\}$$

SUBCRITICAL REGIME

If $0 < \lambda \leq \lambda_1$, let Z be the total infected population on the GWT (number of (R)-vertices in absorbing state).

Tail exponent

$$\gamma(\lambda) = \sup\{u \ge 0 : \mathbb{E}'_{\lambda}[Z^u] < \infty\},\$$

$$\gamma_P = \sup\{u \ge 0 : \sum_{\ell=1}^{\infty} \ell^u P(\ell) < \infty\}.$$

Theorem If $0 < \lambda < \lambda_1$,

$$\gamma(\lambda) = \min\left(\frac{\lambda^2 - 2d\lambda + 1 - (1 - \lambda)\sqrt{\lambda^2 - 2\lambda(2d - 1) + 1}}{2\lambda(d - 1)}, \gamma_P\right).$$

SUBCRITICAL REGIME

If $0 < \lambda \leq \lambda_1$, let Z be the total infected population on the GWT (number of (R)-vertices in absorbing state).

Tail exponent

$$\gamma(\lambda) = \sup\{u \ge 0 : \mathbb{E}'_{\lambda}[Z^u] < \infty\},\$$

$$\gamma_P = \sup\{u \ge 0 : \sum_{\ell=1}^{\infty} \ell^u P(\ell) < \infty\}.$$

Theorem If $0 < \lambda < \lambda_1$,

$$\gamma(\lambda) = \min\left(\frac{\lambda^2 - 2d\lambda + 1 - (1 - \lambda)\sqrt{\lambda^2 - 2\lambda(2d - 1) + 1}}{2\lambda(d - 1)}, \gamma_P\right).$$

 \Rightarrow For the standard subcritical SIR : $\gamma(\lambda) = \gamma_P$.

Computation of moments

It is even possible to compute by recursion the moments of Z on the GWT. The first moment is

Theorem If $0 < \lambda \leq \lambda_1$ and $\Delta = \lambda^2 - 2\lambda(2d - 1) + 1$, then

$$\mathbb{E}'_{\lambda}[Z] = \frac{2d}{(d-1)(1+\lambda+\sqrt{\Delta})} - \frac{1}{d-1}.$$

Corollary For $\lambda = \lambda_1$, $\mathbb{E}'_{\lambda_1}[Z] < \infty$ and a.s. the process gets extinct.

COMPUTATION OF MOMENTS

It is even possible to compute by recursion the moments of Z on the GWT. The first moment is

Theorem If $0 < \lambda \leq \lambda_1$ and $\Delta = \lambda^2 - 2\lambda(2d - 1) + 1$, then

$$\mathbb{E}'_{\lambda}[Z] = \frac{2d}{(d-1)(1+\lambda+\sqrt{\Delta})} - \frac{1}{d-1}.$$

Corollary For $\lambda = \lambda_1$, $\mathbb{E}'_{\lambda_1}[Z] < \infty$ and a.s. the process gets extinct.

 \Rightarrow For the standard subcritical SIR : $\mathbb{E}'_{1/(d-1)}[Z] = \infty$.

(Aldous and Krebs 1990)

The tree starts with the root at time $\mathbf{0}$

(Aldous and Krebs 1990)

The tree starts with the root at time 0 The root produces children at rate λ .

(Aldous and Krebs 1990)

The tree starts with the root at time 0 The root produces children at rate λ . Each new vertex produces children at rate λ .

(Aldous and Krebs 1990)

The tree starts with the root at time $\mathbf{0}$

The root produces children at rate λ .

Each new vertex produces children at rate λ .

The root is at risk at time 0 and dies at time D, an exponential variable with parameter 1.

(Aldous and Krebs 1990)

The tree starts with the root at time $\mathbf{0}$

The root produces children at rate λ .

Each new vertex produces children at rate λ .

The root is at risk at time 0 and dies at time D, an exponential variable with parameter 1.

Other vertices are at risk when its ancestor dies, and dies after an independent copy of D.

 \Rightarrow Scaling limit as $d\to\infty$ of the chase-escape model with intensity $\lambda/d.$ Easier formulas.

 $q(\lambda) = \mathbb{P}_{\lambda}(\text{exctinction}).$

Theorem (Aldous & Krebs (1990)) (i) If $0 < \lambda < 1/4$, (ii) If $\lambda > 1/4$, $q(\lambda) < 1$.

SUBCRITICAL PHASE

For $0 < \lambda < 1/4$, Z = total population in the BA process.

Tail exponent

$$\gamma(\lambda) = \sup\{u \ge 0 : \mathbb{E}_{\lambda}[Z^u] < \infty\}.$$

Theorem For all $0 < \lambda \leq 1/4$,

$$\gamma(\lambda) = \frac{1 + \sqrt{1 - 4\lambda}}{1 - \sqrt{1 - 4\lambda}}.$$

SUBCRITICAL PHASE

Theorem

(i) If $\lambda \in (0, 1/4]$,

$$\mathbb{E}_{\lambda}[Z] = \frac{2}{\sqrt{1-4\lambda}+1}.$$

SUBCRITICAL PHASE

Theorem

(i) If $\lambda \in (0, 1/4]$, $\mathbb{E}_{\lambda}[Z] = \frac{2}{\sqrt{1-4\lambda}+1}.$ (ii) If $\lambda \in (0, 2/9)$, 0 \mathbb{E}_{λ} -.

(iii) If $\lambda \in (0, 3/16)$,

$$[Z^2] = \frac{2}{3\sqrt{1-4\lambda}-1}$$

$$\mathbb{E}_{\lambda}[Z^3] = \cdots$$

Corollary For $\lambda = 1/4$, $\mathbb{E}_{1/4}[Z] = 2$ and q(1/4) = 1.

Y(t) = the total population given that the root dies at time t.

If D is an exponential variable with parameter 1, independent of \boldsymbol{Y}

 $Z \stackrel{d}{=} Y(D).$

Y(t) = the total population given that the root dies at time t. If D is an exponential variable with parameter 1, independent of Y

 $Z \stackrel{d}{=} Y(D).$

If $\{\xi_i\}_{i \ge 1}$ is a Poisson point process of intensity λ , independent of $(Y_i, D_i)_{i \ge 1}$, a sequence of independent copies of (Y, D).

$$Y(t) \stackrel{d}{=} 1 + \sum_{0 \leqslant \xi_i \leqslant t} Y_i(t - \xi_i + D_i)$$

Y(t) = the total population given that the root dies at time t. If D is an exponential variable with parameter 1, independent of Y

 $Z \stackrel{d}{=} Y(D).$

If $\{\xi_i\}_{i \ge 1}$ is a Poisson point process of intensity λ , independent of $(Y_i, D_i)_{i \ge 1}$, a sequence of independent copies of (Y, D).

$$Y(t) \stackrel{d}{=} 1 + \sum_{0 \leqslant \xi_i \leqslant t} Y_i(t - \xi_i + D_i)$$
$$\stackrel{d}{=} 1 + \sum_{0 \leqslant \xi_i \leqslant t} Y_i(\xi_i + D_i)$$

FIRST MOMENT

Assume that $\mathbb{E}Y(t) < \infty$ for all $t \ge 0$. Taking expectation, we get

$$\begin{split} \mathbb{E}Y(t) &= 1 + \lambda \int_0^t \int_0^\infty \mathbb{E}Y(x+s) e^{-s} ds dx \\ &= 1 + \lambda \int_0^t e^x \int_x^\infty \mathbb{E}Y(s) e^{-s} ds dx \end{split}$$

FIRST MOMENT

Assume that $\mathbb{E}Y(t) < \infty$ for all $t \ge 0$. Taking expectation, we get

$$\begin{split} \mathbb{E}Y(t) &= 1 + \lambda \int_0^t \int_0^\infty \mathbb{E}Y(x+s) e^{-s} ds dx \\ &= 1 + \lambda \int_0^t e^x \int_x^\infty \mathbb{E}Y(s) e^{-s} ds dx \end{split}$$

Taking derivative twice, we get that $\mathbb{E}Y(t)$ solves

$$x'' - x' + \lambda x = 0.$$

with initial condition x(0) = 1.

First Moment

Assume that $\mathbb{E}Y(t) < \infty$ for all $t \ge 0$. Taking expectation, we get

$$\begin{split} \mathbb{E}Y(t) &= 1 + \lambda \int_0^t \int_0^\infty \mathbb{E}Y(x+s) e^{-s} ds dx \\ &= 1 + \lambda \int_0^t e^x \int_x^\infty \mathbb{E}Y(s) e^{-s} ds dx \end{split}$$

Taking derivative twice, we get that $\mathbb{E}Y(t)$ solves

$$x'' - x' + \lambda x = 0.$$

with initial condition x(0) = 1.

If $0 < \lambda \leq 1/4$, the roots of $X^2 - X + \lambda = 0$ are real $0 < \alpha \leq \beta \cdots$

$$\mathbb{E}Y(t) = e^{\alpha t}.$$

If $\lambda > 1/4$ no admissible solution of the integral equation.

It is possible to generalize this argument to compute all moments of Z.

Everything boils down to linear second order differential equations.

+ extend to the case GWT.

PROBABILITY OF EXTINCTION

 $q(\lambda) = \mathbb{P}_{\lambda}(\text{exctinction}).$

Theorem For all $1/4 < \lambda < 1$,

$$c_0\omega^3 e^{-\frac{\pi}{2}\omega^{-1}} \leqslant 1 - q(\lambda) \leqslant c_1\omega^{-1} e^{-\frac{\pi}{2}\omega^{-1}},$$

with

$$\omega = \sqrt{\lambda - 1/4}.$$

 $Q_{\lambda}(t) = \mathbb{P}_{\lambda}$ (exctinction|root dies at time t).

$$q(\lambda) = \int_0^\infty Q_\lambda(t) e^{-t} dt.$$

If $(D_i)_{i \ge 1}$ iid exponential variables with parameter 1, $\{\xi_i\}_{i \ge 1}$ independent a Poisson point process of intensity λ :

$$Q_{\lambda}(t) = \mathbb{E} \prod_{\xi_i \leqslant t} Q_{\lambda}(t - \xi_i + D_i).$$

 \Rightarrow To get extinct, the subtrees of all children of the root must get extinct.

A NON-LINEAR ODE

Through

$$x(t) = -\ln Q_{\lambda}(t),$$

using Lévy-Khinchin formula, we get

$$x'' - x' + \lambda - \lambda e^{-x} = 0,$$

with x(0) = 0.

 \Rightarrow Near criticality, $\lambda = 1/4$, it is possible to study this type of ODE, (Brunet-Derrida (1997), Mueller-Mytnik-Quastel (2011)).

Phase Diagram

 \Rightarrow Near criticality, $\lambda = 1/4$, we linearize the ODE at the origin.

ON FINITE GRAPHS

RUMOR SCOTCHING PROCESS

A variant of the chase-escape process $(rumor\ scotching\ process)$:

- a (I)-vertex becomes (R) at rate 1 times the number of neighboring (R)-vertices that have infected the vertex.

 \Rightarrow The rumor is confidential.

 \Rightarrow On trees, with our initial condition, the CE and RS processes are equal.

ON THE COMPLETE GRAPH

Infection rate is λ/n .

Absorbing states = no (I)-vertex.

 Z_n = total population of infected vertices.

ON THE COMPLETE GRAPH

Infection rate is λ/n .

Absorbing states = no (I)-vertex.

 Z_n = total population of infected vertices.

The scaling limit of the process as $n \to \infty$ is the BA process.

HEURISTIC FOR THE PHASE TRANSITION

One can guess that Z_n/n converges weakly to W with

 $W \stackrel{d}{=} q\delta_0 + (1-q)\delta_1,$

with

$$q(\lambda) = \mathbb{P}_{\lambda}$$
 (extinction in the BA process).

 \Rightarrow Either quick extinction or total invasion.

 \Rightarrow For the standard SIR : $W \stackrel{d}{=} q\delta_0 + (1-q)\delta_{1-q}$.

FINAL PERSPECTIVE

- Similarly, uniform random graphs with given degree sequence have Galton-Watson trees has local limit.

- Similarly, uniform random graphs with given degree sequence have Galton-Watson trees has local limit.
- Bring back the particles!

- Similarly, uniform random graphs with given degree sequence have Galton-Watson trees has local limit.
- Bring back the particles!
- Chase-escape process on a lattice?
- Long time scale on the complete graph : analog of Kermack-McKendrick ODE system ?

THANK YOU FOR YOUR ATTENTION !

Extinction probability and total progeny of predator-prey dynamics on infinite trees, with Ghurumuruhan Ganesan. Preprint, arXiv:1210.2883.

On the birth-and-assassination process, with an application to scotching a rumor in a network. Electronic Journal of Probability, 2014-2030, 2008.