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The SIR spreading modelA disease is propagating along the edges of a graph G. A vertex mayeither be- (S)useptible- (I)nfeted and infetious- (R)eovered.
⇒ rumor spreading, epidemi, prey and predator, informationdissemination ...



Standard SIR dynamisMarkov proess on X = {S, I, R}V :- a (S)-vertex beomes (I) at rate λ times the number of
(I)-neighbors,- a (I)-vertex beomes (R) at rate 1.



Chase-esape modelKordzakhia (2005)Markov proess on X = {S, I, R}V :- a (S)-vertex beomes (I) at rate λ times the number of
(I)-neighbors,- a (I)-vertex beomes (R) at rate 1 times the number of
(R)-neighbors.



Chase-esape model

⇒ Nested propagation ...



Chase-Esape Proess on a Tree



Propagation on treesIn this talk : SIR model on short time sale.A simple model : the underlying graph T is an in�nite tree.
⇒ Reasonable approximation for loally tree-like graphs.Our initial ondition :

1

0



Absorbing States
⇒ The states without (I)-verties are absorbing.Either :(i) at some �nite time, the proess reahes an absorbing state.

(I)-verties die out.(ii) (I)-verties survive inde�nitely.
(R)-verties = verties that have been infeted.



Assumption on the treeUpper growth rate :
d = lim sup

k→∞

|Vk|1/k ∈ (1,∞).where Vk = set of verties at distane k from the root.Lower d-ary ≃ for large k, the distane-k tree ontains a
(d− o(1))k-ary tree.Satis�ed a.s. for Galton-Watson tree with mean number of o�spring
d > 1 onditioned on non-extintion.



Phase transitionFor whih value
qT (λ) = Pλ(extintion) < 1 ?
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⇒ For the standard SIR : λ1 = 1/(d− 1).



Annealed survival probabilityAssume T is a Galton-Watson tree with o�spring distribution P ofmean d > 1.
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⇒ For the standard SIR : 1− q(λ) = Θ(λ− 1/(d− 1))+.
⇒ Similar result for Brunet-Derrida's model of branhing randomwalk killed below a linear barrier.



Subritial RegimeIf 0 < λ 6 λ1, let Z be the total infeted population on the GWT(number of (R)-verties in absorbing state).Tail exponent
γ(λ) = sup{u > 0 : E′

λ[Z
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γP = sup{u > 0 :
∞
∑

ℓ=1

ℓuP (ℓ) < ∞}.
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⇒ For the standard subritial SIR : γ(λ) = γP .



Computation of momentsIt is even possible to ompute by reursion the moments of Z on theGWT. The �rst moment isTheoremIf 0 < λ 6 λ1 and ∆ = λ2 − 2λ(2d− 1) + 1, then
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⇒ For the standard subritial SIR : E′

1/(d−1)[Z] = ∞.
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Birth-and-Assassination Proess(Aldous and Krebs 1990)The tree starts with the root at time 0The root produes hildren at rate λ.Eah new vertex produes hildren at rate λ.The root is at risk at time 0 and dies at time D, an exponentialvariable with parameter 1.Other verties are at risk when its anestor dies, and dies after anindependent opy of D.



Birth-and-Assassination Proess

⇒ Saling limit as d → ∞ of the hase-esape model with intensity
λ/d. Easier formulas.



Phase transition
q(λ) = Pλ(extintion).Theorem (Aldous & Krebs (1990))(i) If 0 < λ < 1/4,

q(λ) = 1.(ii) If λ > 1/4,
q(λ) < 1.



Subritial phaseFor 0 < λ < 1/4, Z = total population in the BA proess.Tail exponent
γ(λ) = sup{u > 0 : Eλ[Z

u] < ∞}.

TheoremFor all 0 < λ 6 1/4,
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.
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First MomentAssume that EY (t) < ∞ for all t > 0. Taking expetation, we get
EY (t) = 1 + λ
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EY (s)e−sdsdxTaking derivative twie, we get that EY (t) solves
x′′ − x′ + λx = 0.with initial ondition x(0) = 1.If 0 < λ 6 1/4, the roots of X2 −X + λ = 0 are real 0 < α 6 β · · ·

EY (t) = eαt.If λ > 1/4 no admissible solution of the integral equation.



Other moments
It is possible to generalize this argument to ompute all moments of Z.Everything boils down to linear seond order di�erential equations.+ extend to the ase GWT.



Probability of Extintion
q(λ) = Pλ(extintion).

TheoremFor all 1/4 < λ < 1,
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Reursive Distributional Equation
Qλ(t) = Pλ (extintion|root dies at time t) .

q(λ) =

∫

∞

0

Qλ(t)e
−tdt.If (Di)i>1 iid exponential variables with parameter 1, {ξi}i>1independent a Poisson point proess of intensity λ :

Qλ(t) = E

∏

ξi6t

Qλ(t− ξi +Di).

⇒ To get extint, the subtrees of all hildren of the root must getextint.



A Non-Linear ODEThrough
x(t) = − lnQλ(t),using Lévy-Khinhin formula, we get

x′′ − x′ + λ− λe−x = 0,with x(0) = 0.
⇒ Near ritiality, λ = 1/4, it is possible to study this type of ODE,(Brunet-Derrida (1997), Mueller-Mytnik-Quastel (2011)).



Phase DiagramWe have X ′ = F (X) with X =

(

x
x′

) and
F

(

x1

x2

)

=

(

x2

x1 − λ(1− ex1)

)

PSfrag replaements
x1

x2

0

λ

x2 = x1 − λ(1− e
x1)X(t)

⇒ Near ritiality, λ = 1/4, we linearize the ODE at the origin.



On Finite Graphs



Rumor Sothing ProessA variant of the hase-esape proess (rumor sothing proess) :- a (I)-vertex beomes (R) at rate 1 times the number ofneighboring (R)-verties that have infeted the vertex.
⇒ The rumor is on�dential.
⇒ On trees, with our initial ondition, the CE and RS proesses areequal.



On the Complete GraphInfetion rate is λ/n.
0

1

Absorbing states = no (I)-vertex.
Zn = total population of infeted verties.



On the Complete GraphInfetion rate is λ/n.
0

1

Absorbing states = no (I)-vertex.
Zn = total population of infeted verties.The saling limit of the proess as n → ∞ is the BA proess.



Heuristi for the Phase TransitionOne an guess that Zn/n onverges weakly to W with
W

d
= qδ0 + (1− q)δ1,with

q(λ) = Pλ (extintion in the BA proess) .
⇒ Either quik extintion or total invasion.
⇒ For the standard SIR : W d

= qδ0 + (1− q)δ1−q.



Final Perspetive- Similarly, uniform random graphs with given degree sequene haveGalton-Watson trees has loal limit.
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Final Perspetive- Similarly, uniform random graphs with given degree sequene haveGalton-Watson trees has loal limit.- Bring bak the partiles !- Chase-esape proess on a lattie ?- Long time sale on the omplete graph : analog ofKermak-MKendrik ODE system ?



Thank you for your attention !Extintion probability and total progeny of predator-prey dynamis onin�nite trees, with Ghurumuruhan Ganesan. Preprint,arXiv :1210.2883.On the birth-and-assassination proess, with an appliation tosothing a rumor in a network. Eletroni Journal of Probability,2014-2030, 2008.


