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THE SIR SPREADING MODEL

A disease is propagating along the edges of a graph G. A vertex may
either be

- (S)usceptible
- (Dnfected and infectious

- (R)ecovered.

= rumor spreading, epidemic, prey and predator, information
dissemination ...



STANDARD SIR DYNAMICS

Markov process on X = {S,I, R}V :

- a (S)-vertex becomes (I) at rate \ times the number of
(I)-neighbors,

- a (I)-vertex becomes (R) at rate 1.



(CHASE-ESCAPE MODEL

Kordzakhia (2005)

Markov process on X = {S,I, R}V :

- a (S)-vertex becomes (I) at rate \ times the number of
(I)-neighbors,

- a (I)-vertex becomes (R) at rate 1 times the number of
R)-neighbors.



(CHASE-ESCAPE MODEL

= Nested propagation ...



CHASE-ESCAPE PROCESS ON A TREE




PROPAGATION ON TREES

In this talk : SIR model on short time scale.
A simple model : the underlying graph T is an infinite tree.
= Reasonable approximation for locally tree-like graphs.

Our initial condition :

e
—



ABSORBING STATES

= The states without (I)-vertices are absorbing.

Either :

(i) at some finite time, the process reaches an absorbing state.
(I)-vertices die out.

(ii) (I)-vertices survive indefinitely.

(R)-vertices = vertices that have been infected.



ASSUMPTION ON THE TREE

Upper growth rate :

|1/k

d = limsup |V € (1,00).

k—o00

where V), = set of vertices at distance k£ from the root.

Lower d-ary ~ for large k, the distance-k tree contains a
(d — o(1))*-ary tree.

Satisfied a.s. for Galton-Watson tree with mean number of offspring
d > 1 conditioned on non-extinction.
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Let
1

M o=2d—1-2\/d(d—1) (~—

).
(i) If X < A1 and T has upper growth rate d then qr(\) = 1.

(ii) If X > A\ and T is lower d-ary then qr(\) < 1.



PHASE TRANSITION

For which value

gr(A) = Px(exctinction) < 17

Theorem (Kordzakhia (2005) - d-ary tree)

Let
1

M o=2d—1-2\/d(d—1) (~—

).
(i) If X < A1 and T has upper growth rate d then qr(\) = 1.

(ii) If X > A\ and T is lower d-ary then qr(\) < 1.

= For the standard SIR : Ay =1/(d —1).



ANNEALED SURVIVAL PROBABILITY

Assume T is a Galton-Watson tree with offspring distribution P of
mean d > 1.

q(\) = E'qr(\) = P, (exctinction).

Theorem
If the offspring distribution has finite second moment then for all
A <A<,

A=xpm -1 (A=Ap)m -1
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Assume T is a Galton-Watson tree with offspring distribution P of
mean d > 1.

q(\) = E'qr(\) = P, (exctinction).

Theorem
If the offspring distribution has finite second moment then for all
A <A<,

A=xpm -1 (A=Ap)m -1
g ——A=AIT _A=2pr
cow’e 2(d(d—1))1/4 < 1— C](/\) < cie 2(d(d—1))1/4

with

wZ\//\—/\l.

= For the standard SIR : 1 — ¢(\) = O(A—1/(d— 1))+

= Similar result for Brunet-Derrida’s model of branching random
walk killed below a linear barrier.



SUBCRITICAL REGIME

If 0 < A < Aq, let Z be the total infected population on the GWT
(number of (R)-vertices in absorbing state).

Tail exponent
y(\) = sup{u > 0: E\[Z"] < oo},
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SUBCRITICAL REGIME

If 0 < A < Aq, let Z be the total infected population on the GWT
(number of (R)-vertices in absorbing state).

Tail exponent
y(\) = sup{u > 0: E\[Z"] < oo},

vp =sup{u >0: ZK“P(K) < oo}
(=1

Theorem
IfO < A< Aq,

. A2 —2dA+1—(1-X \//\2—2)\2d—1) 1
’y()\)—mln< Nd—T) e | -

= For the standard subcritical SIR : y()\) = vp.



COMPUTATION OF MOMENTS

It is even possible to compute by recursion the moments of Z on the
GWT. The first moment is

Theorem
IFO< A<\ and A = )\2 —2)\(2d — 1) + 1, then

A 2d 1
]E*[Z]_(d—1)(1+x+\/ﬁ) d—1

Corollary
For A = A1, E) [Z] < oo and a.s. the process gets extinct.
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IFO< A<\ and A = )\2 —2)\(2d — 1) + 1, then

A 2d 1
]E*[Z]_(d—1)(1+x+\/ﬁ) d—1

Corollary
For A = A1, E) [Z] < oo and a.s. the process gets extinct.

= For the standard subcritical SIR : E} ,, ,[Z] = cc.
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BIRTH-AND-ASSASSINATION PROCESS

(Aldous and Krebs 1990)

The tree starts with the root at time 0
The root produces children at rate .
Each new vertex produces children at rate .

The root is at risk at time 0 and dies at time D, an exponential
variable with parameter 1.

Other vertices are at risk when its ancestor dies, and dies after an
independent copy of D.



BIRTH-AND-ASSASSINATION PROCESS

= Scaling limit as d — oo of the chase-escape model with intensity
A/d. Easier formulas.



PHASE TRANSITION

q(\) = Py (exctinction).

Theorem (Aldous & Krebs (1990))
(i) fFo < A < 1/4,

(i) IF A > 1/4,



SUBCRITICAL PHASE

For 0 < A < 1/4, Z = total population in the BA process.

Tail exponent,
Y(A) = sup{u > 0: E»[Z"] < c0}.

Theorem
For all 0 < A < 1/4,

(o LV D
T T Ao
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SUBCRITICAL PHASE

Theorem
(i) If X € (0,1/4], )
B = =t
(ii) If X € (0,2/9), ,
R Wi s
(iii) If A € (0,3/16),
Ey[Z%] =---

Corollary
For A\ =1/4, E/4[Z] = 2 and q(1/4) = 1.
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Y (t) = the total population given that the root dies at time ¢.
If D is an exponential variable with parameter 1, independent of Y

4

Z2Ly(D).

If {&}i>1 is a Poisson point process of intensity A\, independent of
(Y3, Di)i>1, a sequence of independent copies of (Y, D).

1N

Y (t) 1+ Y Yi(t—&+Dy)

0<éi<t
1+ Y Yi&+Dy)

0<éist

Il
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FIRST MOMENT

Assume that EY (t) < oo for all ¢ > 0. Taking expectation, we get
t oo
EY(t) = 1+ )\/ / EY (z + s)e”°dsdx
0o Jo

= 1+ )\/Ot e’ /OO EY (s)e *dsdx
Taking derivative twice, we get that EY (¢) solves
2 —a' + X =0.
with initial condition x(0) = 1.
If 0 < A< 1/4, the roots of X2 — X + A= 0arereal 0 <a < f3 ---
EY (t) = ™.

If A > 1/4 no admissible solution of the integral equation.



OTHER MOMENTS

It is possible to generalize this argument to compute all moments of Z.

Everything boils down to linear second order differential equations.

+ extend to the case GWT.



PROBABILITY OF EXTINCTION

q(\) = Py (exctinction).

Theorem
Forall1/4 < A < 1,

-1 x, -1
cowde 2Y L1 — q(A) < cw e 2%

with
w=+/A—-1/4.



RECURSIVE DISTRIBUTIONAL EQUATION

Q2 (t) = Py (exctinction|root dies at time ).

g\ = /0 ~ Ox(t)e-tt.

If (D;);>1 iid exponential variables with parameter 1, {&;}i>1
independent a Poisson point process of intensity A :

Q) =E H Qx(t — & + D;).

§ist

= To get extinct, the subtrees of all children of the root must get
extinct.



A NoN-LINEAR ODE

Through
z(t) = —InQx (1),

using Lévy-Khinchin formula, we get
-2+ A=A =0,

with z(0) = 0.

= Near criticality, A = 1/4, it is possible to study this type of ODE,
(Brunet-Derrida (1997), Mueller-Mytnik-Quastel (2011)).



PHASE DIAGRAM

We have X/ = F(X) with X = <§,) and

= Near criticality, A = 1/4, we linearize the ODE at the origin.



ON FINITE GRAPHS




RUMOR SCOTCHING PROCESS

A variant of the chase-escape process (rumor scotching process) :

- a (I)-vertex becomes (R) at rate 1 times the number of
neighboring (R)-vertices that have infected the verte.

= The rumor is confidential.

= On trees, with our initial condition, the CE and RS processes are
equal.



ON THE COMPLETE GRAPH

Infection rate is \/n.

Absorbing states = no (I)-vertex.

Z,, = total population of infected vertices.



ON THE COMPLETE GRAPH

Infection rate is \/n.

Absorbing states = no (I)-vertex.
Z,, = total population of infected vertices.

The scaling limit of the process as n — oo is the BA process.



HEURISTIC FOR THE PHASE TRANSITION

One can guess that Z, /n converges weakly to W with

WL qdo + (1 — q)d1,

with
q(X) = Py (extinction in the BA process) .

= Either quick extinction or total invasion.

= For the standard SIR : W £ g0+ (1 — q)d1—q.



FINAL PERSPECTIVE

- Similarly, uniform random graphs with given degree sequence have
Galton-Watson trees has local limit.
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FINAL PERSPECTIVE

Similarly, uniform random graphs with given degree sequence have
Galton-Watson trees has local limit.

Bring back the particles !
Chase-escape process on a lattice ?

Long time scale on the complete graph : analog of
Kermack-McKendrick ODE system ?
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