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What the a vacant set of a random walk?

Random walk on 600× 600 toriodal grid. Black visited, white
unvisited.



What is the component structure of vacant set?



Notation
Finite graph G = (V ,E).

Wu Simple random walk on G, starting at u ∈ V

The vacant set
R(t) Set of vertices unvisited byWu up to time t
Γ(t) Sub-graph of G induced by vacant set R(t)

Can think of vacant set R(t) as coloured red, and visited
vertices B(t) as colored blue

How large is R(t)?
What is the likely component structure of Γ(t)?



Evolution of vacant set
As the walk progresses Γ(t) is reduced from the whole graph G
to a graph with no vertices

In the context of sparse random graphs, as R(t) gets smaller,
Γ(t) will get sparser and sparser. (Small sets don’t induce many
edges)

One might expect that at some time Γ(t) will break up into small
components
This is basically what we prove. It is a sort of random graph
process in reverse



We say that Γ(t) is sub-critical at step t , if all of its components
are of size O(log n)

We say that Γ(t) is super-critical at step t , if it has a unique
giant component, (of size Θ(R(t)) ) and all other components
are of size O(log n)

In the cases we consider there is a t∗, which is a (whp)
threshold for transition from super-criticality to sub-criticality



Vacant set of Gn,p

We assume that
p =

c log n
n

where (c − 1) log n→∞ with n, and c = no(1). Let

t(ε) = n (log log n + (1 + ε) log c)

Theorem
Let ε > 0 be a small constant
Then whp we have
(i) Γ(t) is super-critical for t ≤ t(−ε)
(ii) Γ(t) is sub-critical for t ≥ t(ε)

Giant component of R(t) until t > n log log n
Cover time Tcov ∼ n log n when c > 1 constant



Random graphs Gn,r

For r ≥ 3, constant, let

t∗ =
r(r − 1) log(r − 1)

(r − 2)2 n

Theorem
Let ε > 0 be a small constant. Then whp we have

(i) Γ(t) is super-critical for t ≤ (1− ε)t∗

(ii) For t ≤ (1− ε)t∗, size of giant component is Ω(n)

(iii) Γ(t) is sub-critical for t ≥ (1 + ε)t∗

e.g. for 3-regular random graphs r = 3, and t∗ = (6 log 2) n
Giant component until t∗(6 log 2)n
Cover time Tcov ∼ 2n log n



Previous Work

Benjamini and Sznitman; Windisch:
Considered the infinite d-dimensional torus d ≥ 3, and discrete
torus for large d

Černy, Teixeira and Windisch:
Considered random r -regular graphs Gn,r
They show sub-criticality for t ≥ (1 + ε)t∗

and existence of a unique giant component for t ≤ (1− ε)t∗
These proofs use the concept of random interlacements of
continuous time random walks



Our proof: Discrete time
I Simple. Based on established random graph results
I Gives results for Gn,p

I Completely characterizes the component structure
I Proves that in the super-critical phase t ≤ t∗, the second

largest component of Gn,r has size O(log n) whp
Gives the small tree structure of Γ(t)

Subsequent Work: Černy, Teixeira and Windisch:
Consider random r -regular graphs Gn,r
Investigate scaling window around t∗ using annealed model



Proof technique: r -regular r.g’s

I Use walk to reveal the graph: Annealed model
I Estimate un-visit probability of vertices by walk and hence

size and degree sequence d of vacant set R(t)
I Graph Γ(t) induced by vacant set R(t) is random
I Given degree sequence d of Γ(t), use Molloy-Reed

condition for existence and size of giant component
I Count small tree components



Cover time Tcov of random walk on graph G
Tcov is the maximum expected time, over all start vertices u, for
a random walkWu to visit all vertices of G.

We studied whp cover time of random walks on random graphs
1. Erdös-Renyi random graphs Gn,p

Let np = c log n and (c − 1) log n→∞ then

Tcov ∼ c log
(

c
c − 1

)
n log n.

2. Random regular graphs, where 3 ≤ r = O(1) then

Tcov ∼
r − 1
r − 2

n log n

3. Web-graphs G(m, t) where m ≥ 2

Tcov ∼
2m

m − 1
t log t
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Directed graphs: random digraphs Dn,p

The main challenge for Dn,p, was to obtain the stationary
distribution

Theorem
Let np = d log n where d = d(n), and let m = n(n − 1)p

Let γ = np − log n, and assume γ = ω(log log n)

Then whp, for all v ∈ V,

πv ∼
deg−(v)

m
,

and

Tcov ∼ d log
(

d
d − 1

)
n log n



Basic idea to estimate Tcov . Rapidly mixing graphs

I Estimate the un-visit probability of states
The probability a given state has has not been visited after
t steps of the process

I For rapidly mixing processes this is (at most)
The probability a given state has has not been visited after
t steps of the process, starting from stationarity

I The expected hitting time of state v from stationarity can
be approximated by

EπHv ∼ Rv/πv

where Rv is expected number of returns to v during a
suitable mixing time

I Waiting time of first visit to v tends to geometric distn,
success probability pv ∼ πv/Rv
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Summary: Unvisit Probability
Let Tmix be a suitable mixing time of the walk.
Let πv denote the stationary distribution of v .
Let Rv denote the expect number of returns to v by the walk
Wv in the time Tmix .

Then Unvisit Probability

Pr(Wu(τ) 6= v : τ = Tmix , . . . , t) ∼ e−tπv/Rv

True under assumptions that hold for many random graph
models

For random graphs we can estimate Rv accurately from the
graph structure for most vertices, and bound it suitably for all
vertices



Example: r -regular random graphs
How to calculate Rv for random r -regular graphs ?

If v is tree-like (not near any short cycles) then Rv ∼ r−1
r−2

Same as: biassed random walk on the half line (0,1,2, ....)

Pr( go left ) = 1
r , Pr( go right ) = r−1

r



Example: r -regular random graphs
I πv = 1/n
I Tmix the mixing time O(log n)

I Most vertices are locally tree-like
For such vertices Rv ∼ (r − 1)/(r − 2), expected number of
returns to start in infinite r -regular tree

Pr(v unvisited in Tmix , . . . , t) ∼ e−tπv/Rv

∼ e−t(r−2)/(r−1)n

I R(t) set of vertices not visited by walk at step t
I Size of set of unvisited vertices R(t) ∼ ne−t(r−2)/(r−1)n

I We know the size of R(t), the vacant set
I Now we need to find the structure of R(t)
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Component structure of
vacant set of Gn,p



Distribution of edges in Γ(t)

Lemma
Consider a random walk on Gn,p
Conditional on N = |R(t)|, Γ(t) is distributed as GN,p.

Proof This follows easily from the principle of deferred
decisions. We do not have to expose the existence or absence
of edges between the unvisited vertices of R(t) �

Thus to find the super-critical/ sub-critical phases, we only need
high probability estimates of |R(t)| as t varies

This, we know how to do, from our work on cover time of
random graphs



Size of vacant set R(t) in Gn,p

Analysis of Gn,p is for np = c log n

whp
1. E(|R(t)|) ∼

∑
v e−tπv/Rv

2. Almost all vertices have ∼ average degree c log n
Thus πv ∼ 1/n

3. Rv = 1 + o(1) for all v ∈ V

Size of vacant set

E(|R(t)|) ∼ ne−(1+o(1))t/n.

We use Chebyshev to show that |R(t)| is concentrated.
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Size of ’giant’ component
I Threshold criteria for random graph GN,p is Np ∼ 1
I Recall that tθ = n(log log n + (1 + θ) log c) So, at tθ,

E(|R(tθ)|p) ∼ 1
cθ

I When θ = 0, then E(|R(tθ)|p) ∼ 1
I The threshold t∗ occurs at around

t∗ ∼ n(log log n + log c)

I Size of giant is order |R(tθ)|. As t → t∗ from below, Size of
’giant’ is order 1/p = n/(c log n). i.e. |R(t∗)| ∼ 1/p

I Above t∗ max component size collapses to O(log n)



Random regular graphs

Component structure of
vacant set of random

graphs Gn,r
for r ≥ 3, constant.



Reminder: Vacant set of r -regular random graphs
I Most vertices are locally tree-like

For such vertices Rv ∼ (r − 1)/(r − 2), expected number of
returns to start in infinite r -regular tree

Pr(v unvisited in Tmix , . . . , t) ∼ e−t(r−2)/(r−1)n

I A similar upper bound can be obtained for the non-tree-like
vertices

I Size of vacant set R(t) ∼ ne−t(r−2)/(r−1)n



Let
t∗ =

r(r − 1) log(r − 1)

(r − 2)2 n.

Theorem
Let ε > 0 be a small constant. Then whp we have

(i) Γ(t) is super-critical for t ≤ (1− ε)t∗,
(ii) For t ≤ (1− ε)t∗, size of giant component is Ω(n)

(iii) Γ(t) is sub-critical for t ≥ (1 + ε)t∗ and



Proof outline for r -regular random graph

I Generate the graph in the configuration model using the
random walk

I Graph Γ(t) induced by vacant set R(t) is random
I Estimate un-visit probability of vertices to find size of R(t)
I Estimate degree sequence d of Γ(t)in the configuration

model, using size of vacant set R(t), and number of
unvisited edges U(t)

I Given the degree sequence d of Γ(t), we can use
Molloy-Reed condition for existence of giant component in
a random graph with fixed degree sequence

I Estimate number of small trees in configuration model



Degree sequence of Γ(t)

Vacant set size. |R(t)| = (1 + o(1))Nt where Nt = ne−
(r−2)t
(r−1)n

Vertex degree. Let Ds(t) the number of unvisited vertices of
Γ(t) of degree s in Γ(t) (ie with r − s visited neighbours)
For 0 ≤ s ≤ r , and for ranges of t given below, whp

Ds(t) ∼ Nt

(
r
s

)
ps

t (1− pt )
r−s

where pt = e−
(r−2)2

(r−1)r
t
n

Range of validity. τr−s � t ≤ (1− ε)ts where τ0 = 0,

τr−s = n1−1/(r−s), ts =
(r − 1)r

(r − 2)(s(r − 2) + r)
· n log n.



Uniformity

Lemma
Consider a random walk on Gr . Conditional on N = |R(t)| and
degree sequence d = dΓ(t)(v), v ∈ R(t), then Γ(t) is distributed
as GN,d, the random graph with vertex set [N] and degree
sequence d.

Proof Basic idea: Reveal Gr using the random walk.
Suppose that we condition on R(t) and the history of the walk,
H = (Wu(0),Wu(1), . . . ,Wu(t)). If G1,G2 are graphs with
vertex set R(t) and if they have the same degree sequence
then substituting G2 for G1 will not conflict with H.
Every extension of G1 is an extension of G2 and vice-versa. �

Thus we only need:
Good model of component structure of GN,d
High probability estimates of the degree sequence Ds(t) of Γ(t).



Main variables
By calculating un-visit probabilities in various ways, we can
estimate the size at step t of
I R(t) the set of unvisited vertices
I U(t) the set of unvisited edges
I Ds(t) the number of unvisited vertices of degree s in Γ(t)

ie number of unvisited vertices with r − s edges incident
with visited vertices B(t)



Annealed process
We use the random walk to generate the graph in the
configuration model as a random pairing F

I Bt blue conifg. points at step t
which form discovered pairing Ft

I Rt red conifg. points at step t
This will form un-generated pairing F − Ft

I Visited vertices may have config. points in Rt ,
corresponding to unexplored edges



Next configuration pairing

Example: Move to an unvisited vertex
Walk at current vertex Xt ∈ B(t)
Given the walk selects a red config. point of Xt (if any), the
probability this is paired with an config. point in R(t) is r |R(t)|

|Rt |−1



Shrinking Vertices: First visit to a set of vertices S

S subset of vertices of G. γ(S) is S shrunk to a vertex
Γ(G) is G with S shrunk to γ(S)

PrG(S unvisited at step t) ∼ PrΓ(G)(γ(S) unvisited at step t)

Note: Notation overloaded Γ(t) and Γ(G)–apologies



Degree of unvisited vertex
Vertex v has 3 unvisited neighbours x , y , z and 2 visited
neighbours a,b, so s = 3, r − s = 2

Calculate probability that exactly {v , x , y , z} are unvisited, and
a,b visited from probability that {v , x , y , z} are unvisited,
{v , x , y , z,a} are unvisited etc. Contract e.g. {v , x , y , z} to a
single vertex γ of degree 20 with 3 loops



The degree sequence of R(t)

Unvisit probability

Pr(v ∈ R(t)) ∼ e−t(r−2)/(r−1)n.

To analyse the degree sequence of Γ(t) we prove

Lemma
If the neighbours of v in G are w1,w2, . . . ,wr then

Pr(v ,w1, . . . ,ws ∈ Rt , ws+1, . . . ,wr ∈ B(t))

∼ e−
(r−2)t
(r−1)n ps

t (1− pt )
r−s

where pt = e−
t(r−2)2

n(r−1)r



We write

PrW({v ,w1, . . . ,ws} ⊆ R(t) and {ws+1, . . . ,wr} ⊆ B(t))

=
∑

X⊆[s+1,r ]

(−1)|X |PrW(({v ,w1, . . . ,ws} ∪ X ) ⊆ R(t))

∼
∑

X⊆[s+1,r ]

(−1)|X | e−tpγX ,

where
pγX ∼

((r − 2)(s + |X |) + r)(r − 2)

r(r − 1)n
.

To prove this we contract {v ,w1, . . . ,ws} ∪ X to a single vertex
γX creating ΓX (t).
We then estimate the probability that γX hasn’t been visited by
a random walk on ΓX (t). (Unvisit probability)



For this we argue that |{v ,w1, . . . ,ws} ∪ X | = s + |X |+ 1

πγX =
r(s + |X |+ 1)

rn
and

RγX ∼
(s + |X |+ 1)r(r − 1)

((r − 2)(s + |X |) + r)(r − 2)

Expression for RγX is obtained by considering the expected
number of returns to the origin in an infinite tree with branching
factor r − 1 at each non-root vertex. At the root there are
s + |X | loops and (r − 2)(s + |X |) + r branching edges..



Reminder: Rv for random r -regular graphs
A transition on the loops returns to γX immediately, and a
transition on any other edge is (usually) like a walk in a tree

If v is tree-like (not near any short cycles) then Rv ∼ r−1
r−2

Same as: random walk on the line (0,1,2, ....)
Pr( go left ) = 1

r , Pr( go right ) = r−1
r



Degree sequence of Γ(t). Molloy-Reed
Unvisit probability

Pr(v ∈ R(t)) ∼ e−t(r−2)/(r−1)n

and the degree of a vertex in Γ(t) is (approximately) binomial

Bin(r ,pt ) where pt = e−
t(r−2)2

n(r−1)r

Once we know the degree sequence we can use the
Molloy-Reed criterion to see whether or not there is a giant
component. G has a giant component iff S > 0, where

S =
∑

v

dv (dv − 2).

Direct calculation gives t∗ = r(r−1) log(r−1)
(r−2)2 n as the critical value



Heuristically, t∗ = r(r−1) log(r−1)
(r−2)2 n can be obtained from the

degree sequence of unvisited vertices

Branching outward from an unvisited vertex
The probability an edge goes to another unvisited vertex:

pt = e−
(r−2)2t
(r−1)rn

We need branching factor (r − 1)pt > 1, to have a chance to
get a large component

At t∗ = r(r−1) log(r−1)
(r−2)2 n

(r − 1)pt = (r − 1)e−
(r−2)2t
(r−1)rn

= (r − 1)e− log(r−1)

= 1



Rooted subtrees of the infinite regular tree

Number of rooted k -subtrees of the infinite r -regular tree

r
((r − 2)k + 2)

(
(r − 1)k

k − 1

)



Number of small components in Γ(t)

Nt = E|R(t)|. Expected size of vacant set
pt probability of a red edge
N(k , t): Number of unvisited tree components of Γ(t) with k
vertices

Theorem
Let ε be a small positive constant. Let 1 ≤ k ≤ ε log n and
εn ≤ t ≤ (1− ε)tk−1. Then whp:

N(k , t) ∼ r
k((r − 2)k + 2)

(
(r − 1)k

k − 1

)
Nt pk−1

t (1− pt )
k(r−2)+2



Vertices on small components of vacant set
Let

t∗ = n
r(r − 1)

(r − 2)2 log(r − 1).

Theorem
Let µ(t) be the expected proportion of vertices on small trees.
The function µ(t) increases from 0 at t = 0, to a maximum
value µ∗ = 1/(r − 1)r/(r−2) at t → t∗, and decreases to 0 as
t → (r − 1)/(r − 2) n log n



Example: r = 3. Vacant set as a function of τ = t/n
Proportion of vertices in vacant set N(t)/n ∼ e−t/n((r−2)/(r−1))

Proportion of vertices in unvisited tree components



Threshold: r = 3, t∗ = 6 log 2

t∗ =
r(r − 1) log(r − 1)

(r − 2)2 n

Propn. of vertices in vacant set, and on small tree components

The cusp is at t∗ = 6 log 2 ∼ 4.16, with µ∗ = 1/8



Closing observations

I Both classes of graphs (G(n,p),G(n, r)) exhibit threshold
behavior

I The size of the giant can be estimated in the super-critical
range

I The number of small components of a given size can be
estimated

I The technique is simple, but seems restricted to random
graphs
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