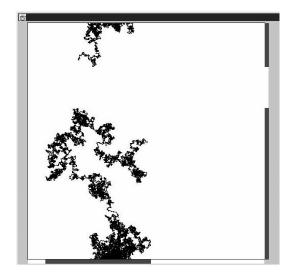
of the vacant set induced by a random walk on a random graph

Colin Cooper (KCL) Alan Frieze (CMU)

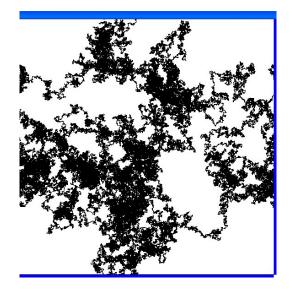
- Vacant set definition and results
- Introduction: random walks and cover time
- $ightharpoonup G_{n,p}$ vacant set
- Random r-regular graphs, vacant set

What the a vacant set of a random walk?



Random walk on 600×600 toriodal grid. Black visited, white unvisited.

What is the component structure of vacant set?



Notation

```
Finite graph G = (V, E).
```

 W_u Simple random walk on G, starting at $u \in V$

The vacant set

```
\mathcal{R}(t) Set of vertices unvisited by \mathcal{W}_u up to time t
```

 $\Gamma(t)$ Sub-graph of G induced by vacant set $\mathcal{R}(t)$

Can think of vacant set $\mathcal{R}(t)$ as coloured red, and visited vertices $\mathcal{B}(t)$ as colored blue

How large is $\mathcal{R}(t)$? What is the likely component structure of $\Gamma(t)$?

Evolution of vacant set

As the walk progresses $\Gamma(t)$ is reduced from the whole graph G to a graph with no vertices

In the context of sparse random graphs, as $\mathcal{R}(t)$ gets smaller, $\Gamma(t)$ will get sparser and sparser. (Small sets don't induce many edges)

One might expect that at some time $\Gamma(t)$ will break up into small components

This is basically what we prove. It is a sort of random graph process in reverse

We say that $\Gamma(t)$ is sub-critical at step t, if all of its components are of size $O(\log n)$

We say that $\Gamma(t)$ is super-critical at step t, if it has a unique giant component, (of size $\Theta(\mathcal{R}(t))$) and all other components are of size $O(\log n)$

In the cases we consider there is a t^* , which is a (**whp**) threshold for transition from super-criticality to sub-criticality

Vacant set of $G_{n,p}$

We assume that

$$p = \frac{c \log n}{n}$$

where $(c-1)\log n \to \infty$ with n, and $c=n^{o(1)}$. Let

$$t(\epsilon) = n (\log \log n + (1 + \epsilon) \log c)$$

Theorem

Let $\epsilon > 0$ be a small constant

Then whp we have

(i) $\Gamma(t)$ is super-critical for $t \leq t(-\epsilon)$

(ii) $\Gamma(t)$ is sub-critical for $t \geq t(\epsilon)$

Giant component of $\mathcal{R}(t)$ until $t > n \log \log n$ Cover time $T_{cov} \sim n \log n$ when c > 1 constant

Random graphs $G_{n,r}$

For $r \geq 3$, constant, let

$$t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2} n$$

Theorem

Let $\epsilon > 0$ be a small constant. Then **whp** we have

- (i) $\Gamma(t)$ is super-critical for $t \leq (1 \epsilon)t^*$
- (ii) For $t \leq (1 \epsilon)t^*$, size of giant component is $\Omega(n)$
- (iii) $\Gamma(t)$ is sub-critical for $t \geq (1 + \epsilon)t^*$

e.g. for 3-regular random graphs r=3, and $t^*=(6 \log 2) n$ Giant component until $t^*(6 \log 2)n$ Cover time $T_{cov} \sim 2n \log n$

Previous Work

Benjamini and Sznitman; Windisch: Considered the infinite d-dimensional torus $d \ge 3$, and discrete torus for large d

Černy, Teixeira and Windisch: Considered random r-regular graphs $G_{n,r}$ They show sub-criticality for $t \geq (1+\epsilon)t^*$ and existence of a unique giant component for $t \leq (1-\epsilon)t^*$ These proofs use the concept of random interlacements of continuous time random walks

Our proof: Discrete time

- Simple. Based on established random graph results
- Gives results for G_{n,p}
- Completely characterizes the component structure
- ▶ Proves that in the super-critical phase $t \le t^*$, the second largest component of $G_{n,r}$ has size $O(\log n)$ whp Gives the small tree structure of $\Gamma(t)$

Subsequent Work: Černy, Teixeira and Windisch: Consider random r-regular graphs $G_{n,r}$ Investigate scaling window around t^* using annealed model

Proof technique: *r*-regular r.g's

- Use walk to reveal the graph: Annealed model
- Estimate un-visit probability of vertices by walk and hence size and degree sequence d of vacant set R(t)
- ▶ Graph $\Gamma(t)$ induced by vacant set $\mathcal{R}(t)$ is random
- Given degree sequence d of Γ(t), use Molloy-Reed condition for existence and size of giant component
- Count small tree components

 T_{cov} is the maximum expected time, over all start vertices u, for a random walk W_u to visit all vertices of G.

 T_{cov} is the maximum expected time, over all start vertices u, for a random walk W_u to visit all vertices of G.

We studied whp cover time of random walks on random graphs

 T_{cov} is the maximum expected time, over all start vertices u, for a random walk W_u to visit all vertices of G.

We studied whp cover time of random walks on random graphs

1. Erdös-Renyi random graphs $G_{n,p}$ Let $np = c \log n$ and $(c-1) \log n \to \infty$ then

$$T_{cov} \sim c \log \left(\frac{c}{c-1} \right) n \log n.$$

 T_{cov} is the maximum expected time, over all start vertices u, for a random walk W_u to visit all vertices of G.

We studied whp cover time of random walks on random graphs

1. Erdös-Renyi random graphs $G_{n,p}$ Let $np = c \log n$ and $(c-1) \log n \to \infty$ then

$$T_{cov} \sim c \log \left(\frac{c}{c-1}\right) n \log n.$$

2. Random regular graphs, where $3 \le r = O(1)$ then

$$T_{cov} \sim \frac{r-1}{r-2} n \log n$$

 T_{cov} is the maximum expected time, over all start vertices u, for a random walk W_u to visit all vertices of G.

We studied whp cover time of random walks on random graphs

1. Erdös-Renyi random graphs $G_{n,p}$ Let $np = c \log n$ and $(c-1) \log n \to \infty$ then

$$T_{cov} \sim c \log \left(\frac{c}{c-1}\right) n \log n.$$

2. Random regular graphs, where $3 \le r = O(1)$ then

$$T_{cov} \sim \frac{r-1}{r-2} n \log n$$

3. Web-graphs G(m, t) where $m \ge 2$

$$T_{cov} \sim \frac{2m}{m-1} t \log t$$

Directed graphs: random digraphs $D_{n,p}$

The main challenge for $D_{n,p}$, was to obtain the stationary distribution

Theorem

Let
$$np = d \log n$$
 where $d = d(n)$, and let $m = n(n-1)p$

Let
$$\gamma = np - \log n$$
, and assume $\gamma = \omega(\log \log n)$

Then whp, for all $v \in V$,

$$\pi_{v} \sim \frac{\deg^{-}(v)}{m},$$

and

$$T_{cov} \sim d \log \left(\frac{d}{d-1} \right) n \log n$$

Estimate the un-visit probability of states The probability a given state has has not been visited after t steps of the process

- Estimate the un-visit probability of states The probability a given state has has not been visited after t steps of the process
- For rapidly mixing processes this is (at most)
 The probability a given state has has not been visited after t steps of the process, starting from stationarity

- Estimate the un-visit probability of states The probability a given state has has not been visited after t steps of the process
- For rapidly mixing processes this is (at most)
 The probability a given state has has not been visited after t steps of the process, starting from stationarity
- ► The expected hitting time of state *v* from stationarity can be approximated by

$$\mathbf{E}_{\pi}H_{\mathbf{v}}\sim R_{\mathbf{v}}/\pi_{\mathbf{v}}$$

where R_v is expected number of returns to v during a suitable mixing time

- Estimate the un-visit probability of states The probability a given state has has not been visited after t steps of the process
- For rapidly mixing processes this is (at most)
 The probability a given state has has not been visited after t steps of the process, starting from stationarity
- The expected hitting time of state v from stationarity can be approximated by

$$\mathbf{E}_{\pi}H_{\mathbf{v}}\sim R_{\mathbf{v}}/\pi_{\mathbf{v}}$$

where R_v is expected number of returns to v during a suitable mixing time

▶ Waiting time of first visit to v tends to geometric distn, success probability $p_v \sim \pi_v/R_v$

Summary: Unvisit Probability

Let T_{mix} be a suitable mixing time of the walk.

Let π_{ν} denote the stationary distribution of ν .

Let R_v denote the expect number of returns to v by the walk W_v in the time T_{mix} .

Then Unvisit Probability

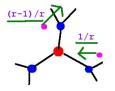
$$\mathbf{Pr}(\mathcal{W}_{u}(au) \neq \mathbf{v}: \ au = T_{mix}, \ldots, t) \sim e^{-t\pi_{v}/R_{v}}$$

True under assumptions that hold for many random graph models

For random graphs we can estimate R_v accurately from the graph structure for most vertices, and bound it suitably for all vertices

How to calculate R_{ν} for random r-regular graphs?

If v is tree-like (not near any short cycles) then $R_v \sim \frac{r-1}{r-2}$



Same as: biassed random walk on the half line (0, 1, 2,)

$$\mathbf{Pr}(\text{ go left }) = \frac{1}{r}, \quad \mathbf{Pr}(\text{ go right }) = \frac{r-1}{r}$$

- $\blacktriangleright \pi_v = 1/n$
- ► T_{mix} the mixing time $O(\log n)$
- Most vertices are locally tree-like For such vertices $R_V \sim (r-1)/(r-2)$, expected number of returns to start in infinite r-regular tree

- $\blacktriangleright \pi_v = 1/n$
- ► T_{mix} the mixing time $O(\log n)$
- Most vertices are locally tree-like For such vertices $R_V \sim (r-1)/(r-2)$, expected number of returns to start in infinite r-regular tree

Pr(
$$v$$
 unvisited in T_{mix}, \ldots, t) $\sim e^{-t\pi_v/R_v}$
 $\sim e^{-t(r-2)/(r-1)n}$

- $\rightarrow \pi_v = 1/n$
- ► T_{mix} the mixing time $O(\log n)$
- Most vertices are locally tree-like For such vertices $R_V \sim (r-1)/(r-2)$, expected number of returns to start in infinite r-regular tree

Pr(
$$v$$
 unvisited in T_{mix}, \dots, t) $\sim e^{-t\pi_v/R_v}$
 $\sim e^{-t(r-2)/(r-1)n}$

- $ightharpoonup \mathcal{R}(t)$ set of vertices not visited by walk at step t
- ▶ Size of set of unvisited vertices $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$

- $\blacktriangleright \pi_v = 1/n$
- ► T_{mix} the mixing time $O(\log n)$
- Most vertices are locally tree-like For such vertices $R_V \sim (r-1)/(r-2)$, expected number of returns to start in infinite r-regular tree

Pr(
$$v$$
 unvisited in T_{mix}, \dots, t) $\sim e^{-t\pi_v/R_v}$
 $\sim e^{-t(r-2)/(r-1)n}$

- \triangleright $\mathcal{R}(t)$ set of vertices not visited by walk at step t
- ▶ Size of set of unvisited vertices $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$
- ▶ We know the size of $\mathcal{R}(t)$, the **vacant set**

- $\blacktriangleright \pi_v = 1/n$
- ► T_{mix} the mixing time $O(\log n)$
- Most vertices are locally tree-like For such vertices $R_V \sim (r-1)/(r-2)$, expected number of returns to start in infinite r-regular tree

Pr(
$$v$$
 unvisited in T_{mix}, \dots, t) $\sim e^{-t\pi_v/R_v}$
 $\sim e^{-t(r-2)/(r-1)n}$

- \triangleright $\mathcal{R}(t)$ set of vertices not visited by walk at step t
- ▶ Size of set of unvisited vertices $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$
- ▶ We know the size of $\mathcal{R}(t)$, the **vacant set**
- Now we need to find the structure of $\mathcal{R}(t)$

Component structure of vacant set of $G_{n,p}$

Distribution of edges in $\Gamma(t)$

Lemma

Consider a random walk on $G_{n,p}$ Conditional on $N = |\mathcal{R}(t)|$, $\Gamma(t)$ is distributed as $G_{N,p}$.

Proof This follows easily from the principle of deferred decisions. We do not have to expose the existence or absence of edges between the unvisited vertices of $\mathcal{R}(t)$

Thus to find the super-critical/ sub-critical phases, we only need high probability estimates of $|\mathcal{R}(t)|$ as t varies

This, we know how to do, from our work on cover time of random graphs

Size of vacant set $\mathcal{R}(t)$ in $G_{n,p}$

Analysis of $G_{n,p}$ is for $np = c \log n$

whp

1. $\mathbf{E}(|\mathcal{R}(t)|) \sim \sum_{v} e^{-t\pi_{v}/R_{v}}$

Size of vacant set $\mathcal{R}(t)$ in $G_{n,p}$

Analysis of $G_{n,p}$ is for $np = c \log n$

whp

- 1. $\mathbf{E}(|\mathcal{R}(t)|) \sim \sum_{v} e^{-t\pi_{v}/R_{v}}$
- 2. Almost all vertices have \sim average degree $c \log n$ Thus $\pi_{\rm V} \sim 1/n$

Size of vacant set $\mathcal{R}(t)$ in $G_{n,p}$

Analysis of $G_{n,p}$ is for $np = c \log n$

whp

- 1. $\mathbf{E}(|\mathcal{R}(t)|) \sim \sum_{V} e^{-t\pi_{V}/R_{V}}$
- 2. Almost all vertices have \sim average degree $c \log n$ Thus $\pi_v \sim 1/n$
- 3. Rv = 1 + o(1) for all $v \in V$

Size of vacant set

$$\mathbf{E}(|\mathcal{R}(t)|) \sim ne^{-(1+o(1))t/n}$$
.

We use Chebyshev to show that $|\mathcal{R}(t)|$ is concentrated.

Size of 'giant' component

- ▶ Threshold criteria for random graph $G_{N,p}$ is $Np \sim 1$
- ▶ Recall that $t_{\theta} = n(\log \log n + (1 + \theta) \log c)$ So, at t_{θ} ,

$$\mathsf{E}(|\mathcal{R}(t_{\! heta})|p) \sim rac{1}{c^{ heta}}$$

- ▶ When $\theta = 0$, then $\mathbf{E}(|\mathcal{R}(t_{\theta})|p) \sim 1$
- ▶ The threshold *t** occurs at around

$$t^* \sim n(\log\log n + \log c)$$

- Size of giant is order $|\mathcal{R}(t_{\theta})|$. As $t \to t^*$ from below, Size of 'giant' is order $1/p = n/(c \log n)$. i.e. $|\mathcal{R}(t^*)| \sim 1/p$
- ► Above t* max component size collapses to O(log n)

Random regular graphs

Component structure of vacant set of random graphs $G_{n,r}$ for $r \geq 3$, constant.

Reminder: Vacant set of *r*-regular random graphs

Most vertices are locally tree-like For such vertices $R_{\rm V} \sim (r-1)/(r-2)$, expected number of returns to start in infinite r-regular tree

Pr(
$$v$$
 unvisited in T_{mix}, \ldots, t) $\sim e^{-t(r-2)/(r-1)n}$

- A similar upper bound can be obtained for the non-tree-like vertices
- ► Size of vacant set $\mathcal{R}(t) \sim ne^{-t(r-2)/(r-1)n}$

$$t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2} \ n.$$

Theorem

Let $\epsilon > 0$ be a small constant. Then **whp** we have

- (i) $\Gamma(t)$ is super-critical for $t \leq (1 \epsilon)t^*$,
- (ii) For $t \leq (1 \epsilon)t^*$, size of giant component is $\Omega(n)$
- (iii) $\Gamma(t)$ is sub-critical for $t \geq (1 + \epsilon)t^*$ and

Proof outline for *r*-regular random graph

- Generate the graph in the configuration model using the random walk
- ▶ Graph $\Gamma(t)$ induced by vacant set $\mathcal{R}(t)$ is random
- ▶ Estimate un-visit probability of vertices to find size of $\mathcal{R}(t)$
- Estimate degree sequence d of $\Gamma(t)$ in the configuration model, using size of vacant set $\mathcal{R}(t)$, and number of unvisited edges $\mathcal{U}(t)$
- Given the degree sequence d of Γ(t), we can use Molloy-Reed condition for existence of giant component in a random graph with fixed degree sequence
- Estimate number of small trees in configuration model

Degree sequence of $\Gamma(t)$

Vacant set size.
$$|\mathcal{R}(t)| = (1 + o(1))N_t$$
 where $N_t = ne^{-\frac{(r-2)t}{(r-1)n}}$

Vertex degree. Let $D_s(t)$ the number of unvisited vertices of $\overline{\Gamma(t)}$ of degree \underline{s} in $\Gamma(t)$ (ie with $\underline{r}-\underline{s}$ visited neighbours) For $0 \leq \underline{s} \leq \underline{r}$, and for ranges of t given below, \underline{whp}

$$D_s(t) \sim N_t \binom{r}{s} p_t^s (1 - p_t)^{r-s}$$

where
$$p_t = e^{-\frac{(r-2)^2}{(r-1)r}\frac{t}{n}}$$

Range of validity. $\tau_{r-s} \ll t \leq (1 - \epsilon)t_s$ where $\tau_0 = 0$,

$$au_{r-s} = n^{1-1/(r-s)}, ag{t_s} = \frac{(r-1)r}{(r-2)(s(r-2)+r)} \cdot n \log n.$$

Uniformity

Lemma

Consider a random walk on G_r . Conditional on $N = |\mathcal{R}(t)|$ and degree sequence $\mathbf{d} = d_{\Gamma(t)}(v), v \in \mathcal{R}(t)$, then $\Gamma(t)$ is distributed as $G_{N,\mathbf{d}}$, the random graph with vertex set [N] and degree sequence \mathbf{d} .

Proof Basic idea: Reveal G_r using the random walk. Suppose that we condition on $\mathcal{R}(t)$ and the *history of the walk*, $\mathcal{H} = (W_u(0), W_u(1), \dots, W_u(t))$. If G_1, G_2 are graphs with vertex set $\mathcal{R}(t)$ and if they have the same degree sequence then substituting G_2 for G_1 will not conflict with \mathcal{H} . Every extension of G_1 is an extension of G_2 and vice-versa. \square

Thus we only need:

Good model of component structure of $G_{N,d}$ High probability estimates of the degree sequence $D_s(t)$ of $\Gamma(t)$.

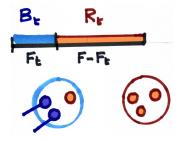
Main variables

By calculating un-visit probabilities in various ways, we can estimate the size at step t of

- R(t) the set of unvisited vertices
- $ightharpoonup \mathcal{U}(t)$ the set of unvisited edges
- ▶ $D_s(t)$ the number of unvisited vertices of degree s in $\Gamma(t)$ ie number of unvisited vertices with r-s edges incident with visited vertices $\mathcal{B}(t)$

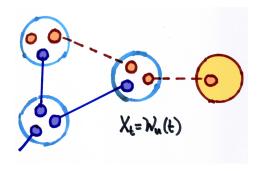
Annealed process

We use the random walk to generate the graph in the configuration model as a random pairing F



- ▶ B_t blue conifg. points at step t which form discovered pairing F_t
- R_t red conifg. points at step t
 This will form un-generated pairing F F_t
- Visited vertices may have config. points in R_t, corresponding to unexplored edges

Next configuration pairing



Example: Move to an unvisited vertex Walk at current vertex $X_t \in \mathcal{B}(t)$ Given the walk selects a red config. point of X_t (if any), the probability this is paired with an config. point in $\mathcal{R}(t)$ is $\frac{r[\mathcal{R}(t)]}{|\mathcal{B}_t|-1}$

Shrinking Vertices: First visit to a set of vertices S

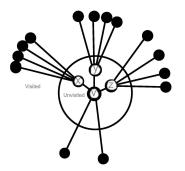


S subset of vertices of G. $\gamma(S)$ is S shrunk to a vertex $\Gamma(G)$ is G with S shrunk to $\gamma(S)$

 $\mathbf{Pr}_G(S \text{ unvisited at step } t) \sim \mathbf{Pr}_{\Gamma(G)}(\gamma(S) \text{ unvisited at step } t)$

Degree of unvisited vertex

Vertex v has 3 unvisited neighbours x, y, z and 2 visited neighbours a, b, so s = 3, r - s = 2



Calculate probability that exactly $\{v, x, y, z\}$ are unvisited, and a, b visited from probability that $\{v, x, y, z\}$ are unvisited, $\{v, x, y, z, a\}$ are unvisited etc. Contract e.g. $\{v, x, y, z\}$ to a single vertex γ of degree 20 with 3 loops

The degree sequence of $\mathcal{R}(t)$

Unvisit probability

$$\Pr(v \in \mathcal{R}(t)) \sim e^{-t(r-2)/(r-1)n}$$
.

To analyse the degree sequence of $\Gamma(t)$ we prove

Lemma

If the neighbours of v in G are w_1, w_2, \ldots, w_r then

$$\begin{aligned} \textbf{Pr}(\textbf{\textit{v}}, \textbf{\textit{w}}_1, \dots, \textbf{\textit{w}}_s \in \mathcal{R}_t, \ \textbf{\textit{w}}_{s+1}, \dots, \textbf{\textit{w}}_r \in \mathcal{B}(t)) \\ \sim e^{-\frac{(r-2)t}{(r-1)n}} \ p_t^s \ (1-p_t)^{r-s} \end{aligned}$$

where
$$p_t = e^{-\frac{t(r-2)^2}{n(r-1)r}}$$

We write

$$\begin{aligned} \mathbf{Pr}_{\mathcal{W}}(\{v, w_1, \dots, w_s\} \subseteq \mathcal{R}(t) \text{ and } \{w_{s+1}, \dots, w_r\} \subseteq \mathcal{B}(t)) \\ &= \sum_{X \subseteq [s+1,r]} (-1)^{|X|} \mathbf{Pr}_{\mathcal{W}}((\{v, w_1, \dots, w_s\} \cup X) \subseteq \mathcal{R}(t)) \\ &\sim \sum_{X \subseteq [s+1,r]} (-1)^{|X|} e^{-tp_{\gamma_X}}, \end{aligned}$$

where

$$p_{\gamma_X} \sim \frac{((r-2)(s+|X|)+r)(r-2)}{r(r-1)n}.$$

To prove this we contract $\{v, w_1, \dots, w_s\} \cup X$ to a single vertex γ_X creating $\Gamma_X(t)$.

We then estimate the probability that γ_X hasn't been visited by a random walk on $\Gamma_X(t)$. (Unvisit probability)

For this we argue that $|\{v, w_1, \dots, w_s\} \cup X| = s + |X| + 1$

$$\pi_{\gamma_X} = \frac{r(s+|X|+1)}{rn}$$

and

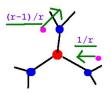
$$R_{\gamma_X} \sim \frac{(s+|X|+1)r(r-1)}{((r-2)(s+|X|)+r)(r-2)}$$

Expression for $R_{\gamma x}$ is obtained by considering the expected number of returns to the origin in an infinite tree with branching factor r-1 at each non-root vertex. At the root there are s+|X| loops and (r-2)(s+|X|)+r branching edges..

Reminder: R_v for random r-regular graphs

A transition on the loops returns to γ_X immediately, and a transition on any other edge is (usually) like a walk in a tree

If v is tree-like (not near any short cycles) then $R_v \sim \frac{r-1}{r-2}$



Same as: random walk on the line (0, 1, 2,)**Pr**(go left) = $\frac{1}{r}$, **Pr**(go right) = $\frac{r-1}{r}$

Degree sequence of $\Gamma(t)$. Molloy-Reed

Unvisit probability

$$\Pr(v \in \mathcal{R}(t)) \sim e^{-t(r-2)/(r-1)n}$$

and the degree of a vertex in $\Gamma(t)$ is (approximately) binomial $Bin(r, p_t)$ where $p_t = e^{-\frac{t(r-2)^2}{n(r-1)r}}$

Once we know the degree sequence we can use the Molloy-Reed criterion to see whether or not there is a giant component. G has a giant component iff S > 0, where

$$S=\sum_{v}d_{v}(d_{v}-2).$$

Direct calculation gives $t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2} n$ as the critical value

Heuristically, $t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2}n$ can be obtained from the degree sequence of unvisited vertices

Branching outward from an unvisited vertex
The probability an edge goes to another unvisited vertex:

$$p_t = e^{-\frac{(r-2)^2t}{(r-1)rn}}$$

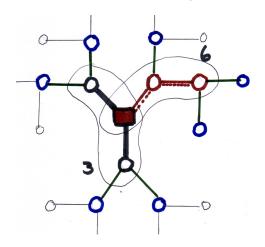
We need branching factor $(r-1)p_t > 1$, to have a chance to get a large component

At
$$t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2}n$$

$$(r-1)p_t = (r-1)e^{-\frac{(r-2)^2t}{(r-1)m}}$$

= $(r-1)e^{-\log(r-1)}$
= 1

Rooted subtrees of the infinite regular tree



Number of rooted *k*-subtrees of the infinite *r*-regular tree

$$\frac{r}{((r-2)k+2)}\binom{(r-1)k}{k-1}$$

Number of small components in $\Gamma(t)$

 $N_t = \mathbf{E}|\mathcal{R}(t)|$. Expected size of vacant set p_t probability of a red edge N(k,t): Number of unvisited tree components of $\Gamma(t)$ with k vertices

Theorem

Let ϵ be a small positive constant. Let $1 \le k \le \epsilon \log n$ and $\epsilon n \le t \le (1 - \epsilon)t_{k-1}$. Then **whp**:

$$N(k,t) \sim \frac{r}{k((r-2)k+2)} \binom{(r-1)k}{k-1} N_t p_t^{k-1} (1-p_t)^{k(r-2)+2}$$

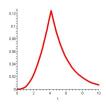
Vertices on small components of vacant set

Let

$$t^* = n \frac{r(r-1)}{(r-2)^2} \log(r-1).$$

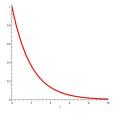
Theorem

Let $\mu(t)$ be the expected proportion of vertices on small trees. The function $\mu(t)$ increases from 0 at t=0, to a maximum value $\mu^*=1/(r-1)^{r/(r-2)}$ at $t\to t^*$, and decreases to 0 as $t\to (r-1)/(r-2)$ $n\log n$

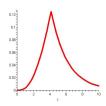


Example: r = 3. Vacant set as a function of $\tau = t/n$

Proportion of vertices in vacant set $N(t)/n \sim e^{-t/n((r-2)/(r-1))}$

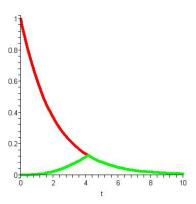


Proportion of vertices in unvisited tree components



Threshold: r = 3, $t^* = 6 \log 2$

$$t^* = \frac{r(r-1)\log(r-1)}{(r-2)^2}n$$

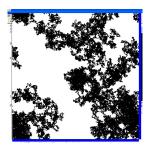


Propn. of vertices in vacant set, and on small tree components

Closing observations

- ▶ Both classes of graphs (G(n, p), G(n, r)) exhibit threshold behavior
- The size of the giant can be estimated in the super-critical range
- The number of small components of a given size can be estimated
- The technique is simple, but seems restricted to random graphs

THANK YOU



QUESTIONS