Optimization of Majority Consensus

Majority Consensus Algorithms and Spectral Optimisation

Moez Draief

Intelligent Systems and Networks Group Imperial College London

Workshop on Large Evolving Networks Heilbronn Institute for Mathematical Research

Optimization of Majority Consensus

Computational power of (social) networks

Off to the movies...

- Friends who want to watch one of two movies (together)
- They interact in pairs in order to come to a common choice before the end of the day
- Majority prefers one theater

What protocol should they run to decide to go to the latter?

Optimization of Majority Consensus

Conclusion

Computational power of (social) networks

Off to the movies...

- Friends who want to watch one of two movies (together)
- They interact in pairs in order to come to a common choice before the end of the day
- Majority prefers one theater

What protocol should they run to decide to go to the latter?

Biased voting [Kearns et al '09]

- Players paid if consensus conforms with their preference
- For some network topologies, minority preference consistently wins
- Individual behavioral characteristics (stubbornness, awareness of opposing incentives) correlate with earnings

Optimization of Majority Consensus

Consensus on networks

Distributed computing

- Information fusion/consistency in distributed networks
- Network awareness (Computing graph properties)
- Multi-agent coordination and flocking

Optimization of Majority Consensus

Conclusion

Consensus on networks

Distributed computing

- Information fusion/consistency in distributed networks
- Network awareness (Computing graph properties)
- Multi-agent coordination and flocking

Distributed algorithms

- Numerous impossibility results in the deterministic case [Lynch et al '90s]
- Random walks
- Gossiping algorithms

Optimization of Majority Consensus

Conclusion

Binary majority consensus

Desired outcome and metrics

- Nodes end with opinion held by majority of nodes
- Node can probe neighbours and update opinion accordingly using little (constant) memory
- Probability of error (convergence to incorrect consensus)
- Time to convergence

Optimization of Majority Consensus

Conclusion

Binary majority consensus

Desired outcome and metrics

- Nodes end with opinion held by majority of nodes
- Node can probe neighbours and update opinion accordingly using little (constant) memory
- Probability of error (convergence to incorrect consensus)
- Time to convergence

Applications

- Occurrence of a given event in cooperative decision making
- Voting in distributed systems
- Routine to solve more elaborate distributed decision making instances

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Outline			

Majority consensus: algorithms

- Voter Model
- Averaging Process
- Binary consensus

2 Examples

- Complete graph
- Star, ER, Ring, Line

Optimization of Majority Consensus

- Faster convergence time
- Implementation
- Examples

Optimization of Majority Consensus

Outline

Majority consensus: algorithms

- Voter Model
- Averaging Process
- Binary consensus
- Examples
 - Complete graph
 - Star, ER, Ring, Line
- Optimization of Majority Consensus
 - Faster convergence time
 - Implementation
 - Examples

Optimization of Majority Consensus

Model

Interaction Model

- Connected undirected graph G = (V, E), |V| = n
- αn nodes hold 0 and $(1 \alpha)n$ nodes hold 1, $\alpha \in (1/2, 1)$
- Nodes *i* and *j* interact at rate $q_{ij} = q_{ji}$, $q_{ij} \neq 0$ iff $(i, j) \in E$

Markov chain

- $(X_t)_{t\geq 0}$ with rate matrix Q, $q_{ii} = -\sum_{i\neq j} q_{ij}$
- $(\pi_i)_{i \in V}$ stationary distribution is uniform on *V*. Mixing time:

$$\left|\mathbb{P}_{j}(X_{t}=i)-1/n\right|=O\left(e^{-\lambda_{2}(Q)t}\right)$$

where $\lambda_2(Q) = \inf\{\sum_{i,j} q_{ij}(x_i - x_i)^2, ||x|| = 1, x^T \mathbf{1} = 0\}$

Optimization of Majority Consensus

Voter Model

Probability of error

Interaction Model

- Connected undirected graph G = (V, E), |V| = n
- αn nodes hold 0 and $(1 \alpha)n$ nodes hold 1, $\alpha \in (1/2, 1)$
- Nodes i and j interact at rate q_{ij} and i updates to j's state w.p. 1/2

Theorem [Liggett '85, Hassin-Peleg '01]

- The number of nodes in state 1 is a martingale.
- Probability of reaching (wrong) consensus at 1 is 1α .

Optimization of Majority Consensus

Conclusion

Voter Model

Time to convergence [Aldous 2012]

Complete graph

• Each edge has rate 1/(n-1). The number of agents with opinion 1 evolves as Birth and Death proces with

$$\lambda_{k,k+1} = \lambda_{k,k-1} = \frac{k(n-k)}{2(n-1)}$$

• Time to convergence = O(n)

General graph

- Conductance $\eta(Q) = \inf_{A \subset V} \frac{\sum_{i \in A, j \in A^c} q_{ij}}{|A||A^c|/n}$
- The Markov chain tracking the number of nodes in state 0 evolves at least η(Q) times as fast as on the complete graph,
 Time to convergence O(n/η(Q))

Optimization of Majority Consensus

Conclusion

Voter Model

Time to convergence [Cooper et al 2012.]

Cheeger's inequality

• Conductance:
$$\eta(Q) = \inf_{A \subset V} \frac{\sum_{i \in A, j \in A^c} q_{ij}}{|A||A^c|/n}$$

• Spectral Gap:

$$\lambda_2(Q) = \inf\{\sum_{i,j} q_{ij}(x_i - x_j)^2, ||x|| = 1, x^T \mathbf{1} = 0\}$$

 $\lambda_2(Q) \le \eta(Q).$

• Time to convergence of voter model $O(n/(\lambda_2(Q)))$.

Optimization of Majority Consensus

Conclusion

Voter Model

Time to convergence [Cooper et al 2012.]

Cheeger's inequality

• Conductance:
$$\eta(Q) = \inf_{A \subset V} \frac{\sum_{i \in A, j \in A^c} q_{ij}}{|A||A^c|/n}$$

• Spectral Gap:

$$\lambda_2(Q) = \inf\{\sum_{i,j} q_{ij}(x_i - x_j)^2, ||x|| = 1, x^T \mathbf{1} = 0\}$$

 $\lambda_2(Q) \le \eta(Q).$

Time to convergence of voter model O(n/(λ₂(Q))).

Let *S* of size *k* be the subset realising the inf in $\eta(Q)$ and let *x* such that $x_i = -\sqrt{\frac{n-k}{kn}}$, $i \in S$ and $x_i = \sqrt{\frac{k}{(n-k)n}}$, $i \in S^c$.

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Averaging Process			
Distributed averaging			

At each interaction of (i, j) occuring at rate q_{ij}

$$x_i(t) = x_j(t) = \frac{x_i(t-) + x_j(t-)}{2}$$

Theorem [Boyd et al '06, Aldous-Lanoue '12]

- Algorithm converges to the average value, using O(Poly(log(n)) memory per node
- Time to convergence to up O(1/n) error of the average is

 $\Theta(\log(n)/\lambda_2(Q))$,

Majority consensus: algorithms

Examples

Optimization of Majority Consensus

Conclusion

Averaging Process

Distributed averaging: Proof

Assume that $\sum_{i} x_i(0) = 0$. Let $Q(t) = ||x(t)||^2$. When an *i*, *j* interaction takes place Q(t) reduces by $(x_i - x_j)^2/2$.

$$\mathbb{E}(dQ(t) \mid x(t) = x) = -\sum_{i,j} q_{ij} \frac{(x_i - x_j)^2}{2} dt$$
$$\leq -\lambda_2(Q) ||x||^2 / 2 dt$$

In particular

$$\mathbb{E}||x(t)||^2 \le ||x(0)||^2 e^{-\lambda_2(Q)t/2}$$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Small memory			

Could we use less memory and still guarantee small error?

Could we use less memory and still guarantee small error?

Impossibility [Land-Belew '95]

- Connected undirected graph G = (V, E), |V| = n,
- αn nodes in 0 and $(1 \alpha)n$ nodes in 1, $\alpha \in (1/2, 1)$, $2\alpha 1$ is the *voting margin*.
- *i* contacts *j* at rate $q_{ij} > 0 \forall (i, j) \in E$

No 1-bit distributed algorithm can solve the majority consensus problem.

Optimization of Majority Consensus

Conclusion

Binary consensus

Binary Consensus with two undecided states

Averaging-like updates: States $0 < e_0 < e_1 < 1$.

Optimization of Majority Consensus

Conclusion

Binary consensus

Binary Consensus with two undecided states

Averaging-like updates: States $0 < e_0 < e_1 < 1$. Rules: Swaps + Annihilation

Majority co	nsensus:	algorithms
0000000	000000	000

Optimization of Majority Consensus

Conclusion

Binary consensus

Mean-field analysis (Complete graph)

Let $q_{ij} = \frac{1}{n-1}$, $i \neq j$ and $\mathbf{X}(t) = (|S_0(t)|, |S_{e_0}(t)|, |S_{e_1}(t)|, |S_1(t)|)$ is a Markov process with the following transition rates

$$\rightarrow \left\{ \begin{array}{ll} (|S_{0}(t)| - 1, |S_{e_{0}}(t)| + 1, |S_{e_{1}}(t)| + 1, |S_{1}(t)| - 1) & : & \frac{|S_{0}(t)||S_{1}(t)|}{n-1} \\ (|S_{0}(t)|, |S_{e_{0}}(t)| - 1, |S_{e_{1}}(t)| + 1, |S_{1}(t)|) & : & \frac{|S_{e_{0}}(t)||S_{1}(t)|}{n-1} \\ (|S_{0}(t)|, |S_{e_{0}}(t)| + 1, |S_{e_{1}}(t)| - 1, |S_{1}(t)|) & : & \frac{|S_{0}(t)||S_{1}(t)|}{n-1} \end{array} \right.$$

Majority consensus: algo	orithms
000000000000000000000000000000000000000	

Optimization of Majority Consensus

Conclusion

Binary consensus

Mean-field analysis (Complete graph)

Let $q_{ij} = \frac{1}{n-1}$, $i \neq j$ and $\mathbf{X}(t) = (|S_0(t)|, |S_{e_0}(t)|, |S_{e_1}(t)|, |S_1(t)|)$ is a Markov process with the following transition rates

$$\rightarrow \left\{ \begin{array}{ll} (|S_0(t)| - 1, |S_{e_0}(t)| + 1, |S_{e_1}(t)| + 1, |S_1(t)| - 1) & : & \frac{|S_0(t)||S_1(t)|}{n-1} \\ (|S_0(t)|, |S_{e_0}(t)| - 1, |S_{e_1}(t)| + 1, |S_1(t)|) & : & \frac{|S_0(t)||S_1(t)|}{n-1} \\ (|S_0(t)|, |S_{e_0}(t)| + 1, |S_{e_1}(t)| - 1, |S_1(t)|) & : & \frac{|S_0(t)||S_{e_1}(t)|}{n-1} \end{array} \right.$$

By Kurtz, $\mathbf{X}(t)/n$ converges to $(s_0(t), s_{e_0}(t), s_{e_1}(t), s_1(t))$,

$$s_{e_1}(t) \sim (2\alpha - 1) \frac{1 - \alpha}{\alpha} t e^{-(2\alpha - 1)t}$$

$$s_1(t) \sim (2\alpha - 1) \frac{1 - \alpha}{\alpha} e^{-(2\alpha - 1)t}.$$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Minority states			

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
General bound			

Theorem [Draief-Vojnovic '12]

Let T be the time until there are only nodes in state 0 and e_0 .

$$\mathbb{E}(T) = O(\log n / \delta(G, \alpha))$$

where

$$\delta(\boldsymbol{Q}, \alpha) = \min_{\boldsymbol{S} \subset \boldsymbol{V}, |\boldsymbol{S}| = (2\alpha - 1)n} \min_{\boldsymbol{\lambda} \in \boldsymbol{Spec}(\boldsymbol{Q}_{\boldsymbol{S}})} |\boldsymbol{\lambda}|$$

Generalised conductance lemma [Babaee-Draief '13+]

We have

$$\delta(\boldsymbol{Q}, \alpha) \geq \boldsymbol{c}_{\alpha} \lambda_2(\boldsymbol{Q})$$

In particular,

 $\mathbb{E}(T) = O(\log(n)/\lambda_2(Q))$

Let A_i and Z_i indicator node in 0 and 1 resp. The transitions of the Markov process (Z, A) is given by

$$(Z, A)
ightarrow \left\{ egin{array}{cccc} (Z - e_i, A - e_j) & : & q_{i,j} Z_i A_j \ (Z - e_i + e_j, A) & : & q_{i,j} Z_i (1 - A_j - Z_j) \ (Z, A - e_i + e_j) & : & q_{i,j} A_i (1 - A_j - Z_j) \end{array}
ight.$$

Let A_i and Z_i indicator node in 0 and 1 resp. The transitions of the Markov process (Z, A) is given by

$$(Z, A)
ightarrow \left\{ egin{array}{rll} (Z - e_i, A - e_j) & : & q_{i,j} Z_i A_j \ (Z - e_i + e_j, A) & : & q_{i,j} Z_i (1 - A_j - Z_j) \ (Z, A - e_i + e_j) & : & q_{i,j} A_i (1 - A_j - Z_j) \end{array}
ight.$$

For $t \in [t_k, t_{k+1})$ where $\{S_0(t) = S_k\}$

$$\frac{d}{dt}\mathbb{E}_{k}(A_{i}(t)) = -\left(\sum_{l \in V} q_{i,l}\right)\mathbb{E}_{k}(A_{i}(t)) + \begin{cases} \sum_{j \in V} q_{i,j}\mathbb{E}_{k}\left(A_{j}(t)\right), & i \notin S_{k} \\ 0, & i \in S_{k} \end{cases}$$

where \mathbb{E}_k is the expectation conditional on $\{S_0(t) = S_k\}$.

Optimization of Majority Consensus

Conclusion

Binary consensus

(random) Piecewise-linear dynamical system

Dynamics

The dynamics of the system boils down to $Y(t) = (Y_i(t))_{i \in V}$,

$$\frac{d}{dt}\mathbb{E}_k(Y(t)) = Q_{\mathcal{S}_k}\mathbb{E}_k(Y(t))\,,$$

for $t \in [t_k, t_{k+1})$ during which $\{S_0(t) = S_k\}$ and Q_{S_k} is given by

$$Q_{\mathcal{S}}(i,j) = \begin{cases} -\sum_{l \in V} q_{i,l}, & i = j \\ q_{i,j}, & i \notin \mathcal{S}, j \neq i \\ 0, & i \in \mathcal{S}, j \neq i. \end{cases}$$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Solution			

Proposition

Solving the above differential equation and using the strong Markov property

$$\mathbb{E}(\boldsymbol{Y}(t)) = \mathbb{E}\left[\boldsymbol{e}^{\lambda(t)}\boldsymbol{Y}(0)\right]$$

where $\lambda(t) = Q_{S_k}(t - t_k) + \sum_{l=0}^{k-1} Q_{S_l}(t_{l+1} - t_l)$.

Proof: Spectrum of Q_{c}			
Binary consensus			
Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion

For any finite graph *G*, there exists $\delta(G, \alpha) > 0$ such that, for any non-empty subset of vertices *S* with $|S| \in [(2\alpha - 1)n, \alpha n]$, if λ is an eigenvalue of the the matrix Q_S defined in, then

$$\lambda \leq -\delta(\boldsymbol{G}, \alpha) < \mathbf{0}.$$

Proof: Spectrum of O			
Binary consensus			
Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion

For any finite graph *G*, there exists $\delta(G, \alpha) > 0$ such that, for any non-empty subset of vertices *S* with $|S| \in [(2\alpha - 1)n, \alpha n]$, if λ is an eigenvalue of the the matrix Q_S defined in, then

 $\lambda \leq -\delta(\mathbf{G}, \alpha) < \mathbf{0}.$

• First $\left(-\sum_{l \in V} q_{i,l}\right)$, $i \in S$ are eigenvalues of Q_S

• The remaining eigenvalues correspond to eigenvectors of the form $(\underbrace{x}_{S^c}, \underbrace{0, \dots, 0}_{S})^T$. Let $W \subset S^c$ such that for $i \in W$, $x_i \neq 0$

$$-\lambda = \sum_{i \in W} \sum_{j \in S} q_{i,j} x_i^2 + \sum_{i \in W, j \in S^c \setminus W} q_{i,j} x_i^2 + \frac{1}{2} \sum_{i,j \in W} q_{i,j} (x_i - x_j)^2$$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Proof: The End			

Note that

$$\mathbb{E}(Y(t)) = \mathbb{E}\left[e^{\lambda(t)}Y(0)\right]$$

where $\lambda(t) = Q_{S_k}(t - t_k) + \sum_{l=0}^{k-1} Q_{S_l}(t_{l+1} - t_l)$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Proof: The End			

Note that

$$\mathbb{E}(Y(t)) = \mathbb{E}\left[e^{\lambda(t)}Y(0)\right]$$

where $\lambda(t) = Q_{S_k}(t - t_k) + \sum_{l=0}^{k-1} Q_{S_l}(t_{l+1} - t_l)$
Hence
$$||\mathbb{E}(Y(t))||_2 \leq \mathbb{E}\left[||e^{Q_{S_k}(t - t_k)}||\prod_{l=0}^{k-1} ||e^{Q_{S_l}(t_{l+1} - t_l)}|| ||Y(0)||_2\right] \leq \sqrt{n}e^{-\delta(G,\alpha)t}$$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Proof: The End			

Note that

$$\mathbb{E}(Y(t)) = \mathbb{E}\left[e^{\lambda(t)}Y(0)\right]$$

where $\lambda(t) = Q_{S_k}(t - t_k) + \sum_{l=0}^{k-1} Q_{S_l}(t_{l+1} - t_l)$
Hence
$$||\mathbb{E}(Y(t))||_2 \leq \mathbb{E}\left[||e^{Q_{S_k}(t - t_k)}||\prod_{l=0}^{k-1} ||e^{Q_{S_l}(t_{l+1} - t_l)}|| ||Y(0)||_2\right] \leq \sqrt{n}e^{-\delta(G,\alpha)t}$$

Therefore, by Cauchy-Schwartz, we have

$$\mathbb{P}(\mathbf{Y}(t) \neq \mathbf{0}) \leq \sum_{i \in V} \mathbb{E}(\mathbf{Y}_i(t)) \leq n \, e^{-\delta(G, \alpha)t}$$

Majority consensus: algorithms ○○○○○○○○○○○○	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Summary			

- Upper bound on the expected convergence time for a number of distributed candidate dynamics for solving Majority consensus
- Bounds based on the location of the spectral gap of rate matrix (generalised-cut: quick for expander graphs).
- For binary consensus, expected convergence time critically depends on the voting margin

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Binary consensus			
Summary			

- Upper bound on the expected convergence time for a number of distributed candidate dynamics for solving Majority consensus
- Bounds based on the location of the spectral gap of rate matrix (generalised-cut: quick for expander graphs).
- For binary consensus, expected convergence time critically depends on the voting margin
- Application to particular network topologies: complete graphs, stars, ER graph, paths, cycles.

Majority	consensus:	algorithms
	00000000	

Optimization of Majority Consensus

Conclusion

Outline

Majority consensus: algorithms

- Voter Model
- Averaging Process
- Binary consensus

2 Examples

- Complete graph
- Star, ER, Ring, Line

Optimization of Majority Consensus

- Faster convergence time
- Implementation
- Examples

Majority consensus: algorithms	Examples •ooooooo	Optimization of Majority Consensus	Conclusion
Complete graph			
Upper Bounds			

Corollary

An application of the theorem to complete graph $q_{i,j} = \frac{1}{n-1}$ for all $i \neq j$, yields

$$\mathbb{E}(T_i) \leq \frac{1}{2\alpha - 1} \log(n).$$

Exact asymptotics

A direct analysis of the dynamics of the 1st phase tracking the interactions of nodes in state 1 and nodes in state 0 implies that

$$\mathbb{E}(T_1) = \frac{n-1}{|S_0| - |S_1|} \left(H_{|S_1|} + H_{|S_0| - |S_1|} - H_{|S_0|} \right)$$

where $H_k = \sum_{i=1}^k \frac{1}{i}$

Majority consensus: algorithms	Examples oeoooooo	Optimization of Majority Consensus	Conclusion	
Complete graph				
Various initial conditions				

•
$$|S_0| - |S_n| = (2\alpha - 1)n$$
, α a constant larger than 1/2
 $\mathbb{E}(T_1) = \frac{1}{2\alpha - 1}\log(n) + O(1).$

• If
$$|S_0| = |S_1|$$

 $\mathbb{E}(T_1) = \frac{\pi^2}{6}n(1 + o(1)).$

• $\mu_n = (|S_0| - |S_1|)/n$ is strictly positive but small (o(1)),

$$\mathbb{E}(T_1) = \frac{1}{\mu_n} \log(n\mu_n) + O(1).$$

Majority consensus: algorithms

Examples

Optimization of Majority Consensus

Conclusion

Complete graph

Complete Graph: Theory v. Simulation

Majority consensus: algorithms	Examples	Optimization of Majority Consensus	Conclusion
Star, ER, Ring, Line			
Star			

• Star Network: $q_{1,i} = q_{i,1} = \frac{1}{n-1}$, $i \neq 1$ and $q_{i,j} = 0$, $i, j \neq 1$. $\mathbb{E}(T_i) \leq \frac{1}{2\alpha - 1} n \log(n)$. Using, direct calculation

$$\mathbb{E}(T_1) = \frac{1}{(2\alpha - 1)(3 - 2\alpha)} n \log(n) + O(n)$$

• **ER-graph:** $q_{i,j} = \frac{1}{np_n} X_{i,j} X_{i,j}$ i.i.d. Bernoulli r.v. with mean $c \frac{\log(n)}{n}$, $c > \frac{2}{2\alpha - 1}$, for h^{-1} the inverse of $h(x) = x \log(x) + 1 - x$,

$$\mathbb{E}(T_i) \leq \frac{1}{(2\alpha - 1)h^{-1}\left(\frac{2}{c(2\alpha - 1)}\right)}\log(n) + O(1)$$

• Path: $\mathbb{E}(T_i) \leq \frac{16(1-\alpha)^2}{\pi^2} n^2 \log(n) + O(1)$

• **Ring**: $\mathbb{E}(T_i) \le \frac{4(1-\alpha)^2}{\pi^2} n^2 \log(n) + O(1).$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Star, ER, Ring, Line			
Star			

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Star, ER, Ring, Line			
ER-graph			

• Star Network: $q_{1,i} = q_{i,1} = \frac{1}{n-1}$, $i \neq 1$ and $q_{i,j} = 0$, $i, j \neq 1$. $\mathbb{E}(T_i) \leq \frac{1}{2\alpha-1} n \log(n)$. Using, direct calculation

$$\mathbb{E}(T_1) = \frac{1}{(2\alpha - 1)(3 - 2\alpha)} n \log(n) + O(n)$$

• **ER-graph:** $q_{i,j} = \frac{1}{np_n} X_{i,j} X_{i,j}$ i.i.d. Bernoulli r.v. with mean $c \frac{\log(n)}{n}$, $c > \frac{2}{2\alpha - 1}$, for h^{-1} the inverse of $h(x) = x \log(x) + 1 - x$,

$$\mathbb{E}(T_i) \leq \frac{1}{(2\alpha - 1)h^{-1}\left(\frac{2}{c(2\alpha - 1)}\right)}\log(n) + O(1)$$

• Path: $\mathbb{E}(T_i) \leq \frac{16(1-\alpha)^2}{\pi^2} n^2 \log(n) + O(1)$ • Ring: $\mathbb{E}(T_i) \leq \frac{4(1-\alpha)^2}{\pi^2} n^2 \log(n) + O(1).$

Majority consensus: algorithms	Examples 00000000	Optimization of Majority Consensus	Conclusion
Star, ER, Ring, Line			
ER-graph			

Majority consensus: algorithms	Examples ○○○○○○●	Optimization of Majority Consensus	Conclusion
Star, ER, Ring, Line			
Path and Ring			

• Star Network: $q_{1,i} = q_{i,1} = \frac{1}{n-1}$, $i \neq 1$ and $q_{i,j} = 0$, $i, j \neq 1$. $\mathbb{E}(T_i) \leq \frac{1}{2\alpha-1} n \log(n)$. Using, direct calculation

$$\mathbb{E}(T_1) = \frac{1}{(2\alpha - 1)(3 - 2\alpha)} n \log(n) + O(n)$$

• **ER-graph:** $q_{i,j} = \frac{1}{np_n} X_{i,j} X_{i,j}$ i.i.d. Bernoulli r.v. with mean $c \frac{\log(n)}{n}$, $c > \frac{2}{2\alpha - 1}$, for h^{-1} the inverse of $h(x) = x \log(x) + 1 - x$,

$$\mathbb{E}(T_i) \leq \frac{1}{(2\alpha - 1)h^{-1}\left(\frac{2}{c(2\alpha - 1)}\right)}\log(n) + O(1)$$

• Path: $\mathbb{E}(T_i) \le \frac{16(1-\alpha)^2}{\pi^2} n^2 \log(n) + O(1)$ • Ring: $\mathbb{E}(T_i) \le \frac{4(1-\alpha)^2}{\pi^2} n^2 \log(n) + O(1).$

Optimization of Majority Consensus

Outline

Majority consensus: algorithms

- Voter Model
- Averaging Process
- Binary consensus

2 Examples

- Complete graph
- Star, ER, Ring, Line

Optimization of Majority Consensus

- Faster convergence time
- Implementation
- Examples

Optimization of Majority Consensus ••••• Conclusion

Faster convergence time

Convex Optimization [Boyd, Diaconis, Xiao '04]

For technical reasons, let us assume

$$Q = P - I_n$$

where *P* is a symmetric stochastic matrix.

Eigenvalue (convex) optimization

Minimize the time it takes majority consensus to converge, i.e.

$$\begin{array}{ll} \text{minimize} & \lambda_2(P) = \sup\{x^T P x \mid x^T x = 1, x^T 1 = 0\} \\ \text{subject to } P_{ij} \geq 0, & P_{ij} = 0 \text{ if } i, j \notin E \\ \text{and} & \sum_j P_{ij} = 1, \forall i \end{array}$$

- Let *u* be the eigenvector associated with $\lambda_2(P)$.
- Let E^{ℓ} , $\ell = (i, j)$ an edge in the graph such that

$$E_{ij}^{\ell} = E_{ji}^{\ell} = 1, \ E_{ii}^{\ell} = E_{jj}^{\ell} = -1$$

The subgradient of the objective function λ₂(P) is

$$g(P) = \left(u^T E^1 u, \dots, u^T E^m u\right)$$

• In particular, for $\ell = (i, j)$

$$u^T E^\ell u = (u_i - u_j)^2$$

 To compute eingenvector we could use Lanczos method or recent distributed algorithms [Kempe-McSherry '08].

Optimization of Majority Consensus

Conclusion

Implementation

Projected subgradient method [Bertsekas '99]

 $k \leftarrow 1$ repeat Subgradient Step Calculate $q^{(k)}$ and update $P \leftarrow P - \beta_k q^{(k)}$, β_k step size, $\beta \rightarrow 0$, $\sum_{\mathbf{k}} \beta_{\mathbf{k}} \to \infty$ Sequential Projection Projection onto non-negative orthant $P_{\ell} \leftarrow \max \{P_{\ell}, 0\}, \ell = 1, ..., m$ **For** each node i = 1, ..., n, $\mathcal{L}(i) = \{\ell | \text{ edge } \ell \text{ connected to } i \}$ Projection onto half-spaces While $\sum_{\ell \in \mathcal{L}(i)} P_{\ell} > 1$ $\mathcal{L}(i) \leftarrow \{\ell | \ell \in \mathcal{L}(i), P_{\ell} > 0\}$ $\gamma \leftarrow \min\left\{\min_{\ell \in \mathcal{L}(i)} P_{\ell}, \left(\sum_{\ell \in \mathcal{L}(i)} P_{\ell} - 1\right) / |\mathcal{L}(i)|\right\}$ $P_{\ell} \leftarrow P_{\ell} - \gamma, \ell \in \mathcal{L}(i)$ $k \leftarrow k + 1$

It can be implemented in a distributed fashion [Boyd et al '06].

Majority consensus: algorithms

Examples

Optimization of Majority Consensus

Conclusion

Examples

ER-graph [Babaee, Draief'13+]

Majority consensus: algorithms

Examples 00000000 Optimization of Majority Consensus

Examples

Preferential attachment [Babaee, Draief'13+]

Summary

- Algorithms for solving Majority consensus
- Performance: memory, error, time to convergence
- Time to convergence related to spectral properties of rate matrix
- Speedingup convergence via convex optimisation

- Lower-bounds of convergence time
 - O. Ayaso, D. Shah and M. Dahleh, Information Theoretic Bounds for Distributed Computation over Networks of Point-to-Point Channels, IEEE IT, 2010.

- M. Abdullah, M. Draief, Consensus on the Initial Global Majority by Local Majority Polling for a Class of Sparse Graphs, Arxiv1209.5025, 2013.

- Trade-off between memory, error, time to convergence.
- Distributed spectral computations
 - David Kempe, Frank McSherry: A Decentralized Algorithm for Spectral Analaysis, Journal of Computer and System Sciences, 2008.

- S. Korada, A. Montanari, and S. Oh, Gossip PCA, Sigmetrics 2011.