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Monitoring a device

Monitoring a large interaction network over time for anomalous
behaviour is computationally very challenging.

The task is to build models of normal behaviour in the network, and
then detect anomalous departures from this normal behaviour.

Focus of this work is on monitoring nodes and edges with simple
independence assumptions.

If the nodes are computing devices, such as PCs or mobile phones,
such models lend themselves to analytics where the analysis can
potentially be run on the device itself.
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For each device, there is an associated multivariate stream of data with
diverse characteristics and of differing dimension for different devices.

The aim is to process this multivariate stream into a single
time-varying score of surprise.

In both the continuous and discrete time settings, a model is
constructed for the full multivariate data stream using conditional
independence assumptions.

Surprising recent behaviours against this learnt model of normality are
sought.
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@ VAST 2008 Challenge Data

© Continuous Time Behavioural Modelling
© Discrete Time Behavioural Modelling

© Continuous Time Behavioural Monitoring
© Discrete Time Behavioural Monitoring

© Results for the VAST Data

@ Conclusions
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A publicly available, but synthetic, data set was provided by the VAST
2008 Challenge (http://www.cs.umd.edu/hcil/VASTchallenge08).
The data are the mobile phone calls made within a small population of
400 nodes over a ten day period.

Each call event is logged with full details of the meta-data of that call:
@ source node
@ destination node
@ time call started
@ time call ended
o cell tower of source caller (geolocation)
— WHO, WHEN & WHERE.
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http://www.cs.umd.edu/hcil/VASTchallenge08

The records should provide critical information about an important
social network structure. The aim of the challenge was to detect some
anomalous activity from a small subset of the individuals sometime
within the ten day period.

From the results of award winning published work on this challenge
by Ye et al. (2008), which used a combination of the PageRank
algorithm (Brin and Page, 1998) and visual analytic methods, there is
good reason to suspect that:

@ the major anomalous activity occurs on the eighth day

@ involves a list of at least eleven individuals
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Figure : VAST data by event time and source node
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Figure : Subgraph of VAST data from malicious actors’ contacts
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A continuous time view
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There are many different ways to represent the status of node i using
Markov jump processes.

Hi )
(o)

ui(t) is the rate at which node i makes connections at time .
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There are many different ways to represent the status of node i using
Markov jump processes.

Hi )
T S )

ui(t) is the rate at which node i makes connections at time .
A;(t) is the rate at which node i terminates connections at time .
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A

i ~» denotes i initiating a connection.
~- i denotes i receiving a connection.
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Let Y;(t) € {0,1} be an indicator function such that
Yi(t) =1 <= i idle at timet.

Taking the last model as an example, define Nj;(t) to be the counting
process of events i ~ j. Nj;(t) has intensity function

Yi(£)Y;(8)pis(t)

Note that the durations of the connections of node i (to any other
node) and node j (to any other node) both act as a censoring
mechanism for the process Nj;(t).
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If connection durations are also of inferential interest, let Nj;(t) be the
counting process of i ~» j connection terminations.
Also let Y;;(t) € {0,1} be an indicator function such that

Yji(t) =1 <= i connected to j at time t.
Niji(t) has intensity function
Yii(£)Ayi(£)

Note that the pair of processes Nj;(t), Nj;(t) are heavily dependent
upon one another; one always has zero intensity.

However, their p-values (considered later) are asymptotically
independent of one another.
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Seasonality

Fast, tractable conjugate Bayesian inference is available with gamma
priors if the state transition intensities A;;(t) and p;(t) are assumed
constant.

— the inherent seasonality in the processes does not admit constant
intensities for representing normal behaviour.

For example, looking at a daily level, it is likely there will be variability
in connectivity between the night time, the day time, evening, and so
on.

Let S be a seasonal period over which the processes are expected to
show repetitive intensity patterns; for example, S might be the length
of one day.
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The process Nj;(t) will be assumed to be the censored counting process
(implied by the state space diagrams) of events arising from an
inhomogeneous Poisson process with intensity function

yij(t) = yif mij(t mod S)

where m;; : [0,S] — R" is a probability density function for the time
within the season at which a single connection would be made.
So the intensity function of the process Nj;(t) for normal behaviour is

yij Y,‘(t) Y]'(t) mij(t mod S) (2.1)

Similarly, Nj;(t) will have intensity
Al Yl‘]‘(t) li]‘(t mod S) (2.2)

where J;; : [0,S5] — R™ is the probability density function of a single
connection ending time for the edge.
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For (approximately) known density functions /;;, m;;, this construction
then admits conjugate Bayesian inference when

AU yij ~T(a,b).

The density functions /;;, m;; for capturing seasonality must be learnt
from training data, and then periodically updated.

If some edges have sparse data, then it can be reasonable to assume
that for j # k,

li =l =1

mjj = M = Mm;

and possibly even [; = m;.
This also reduces the computational resource required.
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A changepoint model for I;;, m;;

Assume a piecewise constant density on [0, S), with ks changepoints
1., ordered such that 0 = 0p < 07 < ... < 0}, < Opg41 = S.
Changepoints are assumed to follow a Poisson process with rate vg,

plks, o1x) = VeV,

Conditional on (ks, 01 ), let 6; be the probability of an observation
falling in the j" segment, j = 1,2,..., ks + 1. Together the changepoints
and these probabilities specify a piecewise constant density, say

k+1

0:
mi(s 211[0] Lo - ]a]l’ s€[0,9).
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Straightforward conjugate inference can be completed by specifying

[91:k5+1 | (kSI al:ks )] ~ DiriChlet(le, X2,..., DCkS-Fl)/

where #; = a{[0j_1,07) } and a(-) is a base measure on [0, S); the
default choice being Lebesgue measure,

{10y = ol I,

e Wrap each observation into the season [0, S): — replace t with
t mod S.

@ Let n; be the number of wrapped observations falling in the i

segment defined by the changepoints, and n = Zfi J{l n;.
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Care has to be taken not to be double counting the censorship induced
by the rival processes. Equations (2.1) and (2.2) already account for the
fact that node i is not available to make a new connection whilst it is
still engaged in an existing connection. So the density estimates should
not reflect this censoring.

Strictly, this would require treating each seasonal period of data as a
sample from a truncated version of m;;(s), but this breaks the
conjugacy of the Dirichlet model. So instead an approximate solution
is sought.

Focusing on the connections made by node i, for s € [0, 5], after
observing ng seasons let

Yi(s) = f: Yi(s +j5)
=0

be the number of seasons in which the node was being observed and
available to make a connection at time s.
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Figure : Y1 (s) for the VAST data
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Define
7j _
a; =/ Yi(s)a(ds),
S:(Tj,l
7j _
5 = / Yi(s)ds
S:(Tj_l

to be, respectively, the base measure and Lebesgue measure of the total
observation time of node i in the j segment, and

ks+1

a=y a
=1

to be the base measure of the overall total observation time for node i.
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Then approximate inference can proceed by defining

gi= ——1——

J ﬂs(ffj - Uj—l)’
99

0! =

! Zerll qi0;

as the actual probabilities of observing the j segment, and then
performing conjugate inference assuming

[91;k5+1|(k51<71:k5)] ~ Dirichlet(ay,ay, . .., a4, 41)-

An estimate of ¢’ is then transformed back into probabilities # which
account for censoring via

o /0
7 Zk+1 0//1’71
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Reversible jump MCMC sampling changepoints from the posterior
distribution is trivial via

p(ks, 01| D) o v (]711]])
j=1 r(ﬂ])S]

The MAP number of changepoints is first obtained,
k¢ = argmax p(kg|D)
ks
and then conditional on ks = kg, the MAP changepoints are obtained,

01, = argmax p(kg, 01| D).
Ul:k;

The transformed posterior mean heights for the piecewise constant
probability density function corresponding to these changepoints are
given by
aj + 1
mj o ————~—,
(a+n)s;
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Fitted density mj3(s) for node 3 from the VAST data
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Figure : Estimated mj3(s) for the VAST data
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A discrete time view
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Node activity status

Connection event data can also be modelled in discrete time, with
connection counts aggregated into, say, one minute intervals.

Let Z;(t) be the number of connections for node i at the ' time point.
For a binary perspective, again let Y;(t) € {0,1} be the indicator
variable for whether node i is idle at time ¢; so in discrete time,

Yi(t) =0 <= Zi(t) > 0.

1
|
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Node activity status

Connection event data can also be modelled in discrete time, with
connection counts aggregated into, say, one minute intervals.

Let Z;(t) be the number of connections for node i at the ' time point.
For a binary perspective, again let Y;(t) € {0,1} be the indicator
variable for whether node i is idle at time ¢; so in discrete time,

Yi(t) =0 <= Zi(t) > 0.
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A Markov chain for connectivity status has transition probability
matrix

where

This model assumes connection durations to follow a Geometric(¢')
distribution rather than the exponential distribution from continuous
time, although here no event distinction is made if a connection is
terminated and a new one begins within the same discrete time period.

... An analogous seasonal changepoint model can be constructed.

N A Heard & M J M Turcotte (Imperial) Monitoring a communicating device 19 March 2013 28 /61



Continuous time monitoring
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Recall equation (2.1) for the intensity of the process Nj;(t) for normal

behaviour, )
‘ul] Yi(t) Y](t) mi]’(t mod S)

The seasonality will be considered stable under the null hypothesis,
and local changes in the overall level of connectivity from normal
behaviour will act as changepoints in p".
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For a sequence of monitoring times t; < t, < ..., inference will be
made about the process based on observation over [fo, t,].

@ The changepoints 1y, = (71, ..., T, ) arrive as a homogeneous
Poisson process with intensity v

@ The intensities have conjugate priors,

e = (] ) S T(w, ),

and so these can be integrated without any estimation.
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So the changepoint posterior distribution is known up to
proportionality,

k
—upy B T(atry)
T i) (T Kn) < Yy, o1 (T, hn) = v

[tOt ] n [i'l(]ri-l ] n ]g) r (w) (,B +yk)rk+(x

where 19 = ty, Tx1 = t, and ry is the number of observed connections
in the k" segment and

Tet1
Y = / Yi(t) Y;(t) myi(t mod S)dt
t

is the seasonally rescaled total observation time in the k' segment.

° (lekl,kl)(i) are easily sampled from 71, ., (Ti:¢,, k1) by RIMCMC.
@ Subsequently, sequential Monte Carlo (SMC) sampling can exploit
the similarity of 7, ,; and 7 ,,. Turcotte and Heard (2013).
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A fast SMC algorithm for changepoints

Att,_q, let {(tix, | kn 1) n 1} be a sample of particles and
importance weights for the target ”[to,tn_ -

Define t;_; to be the time of the most recent changepoint before t,_;.
The posterior expectation of £, ; wrt 7ty ;| can be calculated using
the particle approximation

E”[tot _1) ZTkn 1 n 1

Additional changepoints are then proposed for the update interval
(ty—1, tu], using RIMCMC for the posterior restricted to the data from
(" _1,ta]. Note that changepoints are only sampled from (f,_1,t,].

| b |

| PO |
to 1 tl ki+1 tz
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Note that this is equivalent to proposing additional changepoints from
the posterior 7t | ;| with a revised prior distribution for the first
intensity level of

D(a+dy 1, B+tu1— 1ty 1),

where d’_, is the number of events observed within (¢;_;, f,—1].

The proposed changepoint samples for the update interval (t,_1, t,]
are then appended to the existing samples.
@ The new sample is permuted to break correlation.

e If an update interval has low probability of containing
changepoints, then fewer samples can be drawn for that update.
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Time since last changepoint

As a measure of anomaly at time ¢, let g(¢) be the time that has passed
since the last changepoint,

glt) =t -1,
i* = max{t < t}.
1

Small values of g(t) correspond to recent change and therefore
anomalous behaviour.

Note that the prior expectation and variance of g(t) are both increasing
with ¢, and therefore it is preferable to work with a standardised

alternative (t) —E [g(t)]
_ 8 — B iglt)]
"0 =" N k)
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For monitoring, there are several possibilities, including:

@ The posterior expectation of h(t) - this should take highly negative
values for an anomaly.

@ The posterior probability IP(h(t) < 0) > - this should be high for
an anomaly.

The latter has the advantage that it is easily calibrated, and anomalies
can be flagged whenever

P(h(t) <0) >«

for some «, say 0.95.
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Discrete time monitoring
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Suppose an inhomogeneous Poisson process has recently been
observed over (t,_1,t,], producing two pieces of data:
© a total number of events N(t,) — N(t,-1) = k;
Q eventtimest, | = t0 < 1) < . < % <, and inter-arrival
times x; = t) — t,_1,xp = &) — 1)y, = () — t(k=1) gnd perhaps
a right-censored arrival time x; 1 = t, — 1),
Respectively there are two natural p-values to consider (and
corresponding lower tail and two-sided analogues):
o P(N(tn) - N(tn—l) > k)/
Q 5y,50,---, sxk,s;k+l combined via Fisher’s method.
Sverdrup’s (unpublished) observations on transition intensities imply
that the former would be more powerful when the intensity of
connections is low, otherwise the latter would have more power.

N A Heard & M J M Turcotte (Imperial) Monitoring a communicating device 19 March 2013 38/61



Control charts

For a collection of independent p-values p', . .., p*, Fisher’s method
combines these separate measures of surprise into a single score

X*=-2

k .
logp'.

=1

When the null hypotheses are correct, X* ~ x3,.

At monitoring time point ¢, the aim is to combine independent
uniform p-values obtained for the most recently observed data from
each aspect of the multivariate data stream using Fisher’s method, to
give a single measure of surprise p,,.

N A Heard & M J M Turcotte (Imperial) Monitoring a communicating device 19 March 2013 39/61



Stouffer’s Z-score

Combined p-values {p,} i [0, 1] under the null hypothesis of normal
behaviour, so if

Zy =D (1 —pa),
then {Z,} ¥ N(0,1).

Now outlying (small p-value) behaviour at time ¢, will correspond to a
large value of Z,,.
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Finally, to accumulate evidence of anomalous behaviour over time, the
proposed method is to run an exponentially weighted moving average
(EWMA) chart {S,,} on the Z-scores {Z,},

So=0,
Sp=01-w)S,—1+wZ,, n>1,

with the dual benefits that more recent values carry highest weight but
recent surprise over successive intervals can also be accumulated. The
tunable parameter w € [0, 1] controls the level of significance placed on
the most recent Z-score.

This model has well understood boundaries under the null,

L\/w[1 —(1—w)™.

2—w
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Adjusting discrete p-values

The discrete time analytics proposed here rely on p-values from either
binary or count random variables.

For example, for the discrete time model which takes a binary view of
activity status, for computational tractability p-values need to be
calculated for each calculated binary observation of activity status and
then combined using a method such as Fisher’s. The crude discrete
p-values can only take two values, and so are far from uniform.
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Let X be a discrete random variable on N = {0, 1,2, ...}. Denote the
probability mass function (pmf) and survivor function respectively as

pr =P(X =x)
x—1
ss=P(X>x)=1-) p;.
j=0

@ s, are the upper tail p-values,
P(sx =s;)=pi, i=0,1,2,....

@ Note that sy = 1 and limy_,e0 5y = 0.
@ W.lo.g. can assume pg > 0.

@ e.g. for binary variables, could further assume py > p; > .. if that
sort of p-value preferred.
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A problem for this work is that p-values for discrete random variables
are discrete and therefore not U0, 1] random variables. Instead they
are only approximately uniform in the following sense: If

X ~ Px/
and U|X = x ~ U(Sy+1, Sx]
—U ~ U[0,1]

Proof: For u € [0,1], U has density function

]IS ,S.
) = Y puf () = Y (53— s041) 2 alC = Y U e (1) = Mgy ().

Sx — SX+1 x
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So in fact, discrete p-values are stochastically larger than UJ[0, 1]
random variables.
If U~ U0,1],

14y 2 1
P(U < sx) pr (U < sy) —prsx—prZp] Zp" >3

X ]>x

@ Unadjusted discrete p-values are too big!
1
@ In particular, E(sx) > >

@ The same results hold for lower tail p-values.
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Really, discrete p-values should be regarded as an interval censored
observation of a truly uniform p-value.

o cf. the p-value of an interval censored observation of a continuous
random variable.

A discrete observation of X = x corresponds to the censored
observation of a p-value

s ~ U(Sx4+1,Sx)-

N A Heard & M J M Turcotte (Imperial) Monitoring a communicating device 19 March 2013 46/ 61



A Monte Carlo adjustment

Sx+1 1 Sx

—

@ Alternatively, each observed p-value can be preserved as a
U(Sx41, Sx] random variable.

@ A deterministic correction can be made, e.g. s =

Suppose several independently observed p-values s) are going to be
combined, typically arising from different distributions. If

S(i) ~ U(Ell', bl]

then the expected value of Fisher’s score can be taken with respect to
their joint density

L, (s9)
Monte Carlo estimation of expectations arising from this joint

distribution are trivial to perform but carry an increased
computational cost.
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Some results for the VAST data
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The following graphs show control charts or changepoint curves for
the different model and analytic combinations:

@ Continuous time model (Markov jump process), discrete time
analytic S;.

@ Continuous time model(Markov jump process), continuous time
analytic E[h(t)] or P(h(t) < 0).

@ Discrete time model (Markov chain), discrete time analytic S;.
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Each line represents one node from the network.

o If present, a green line shows a threshold for decision making.
@ Curves of malicious actors in the data set are coloured

» blue if no threshold has been used or if they were not detected
against the threshold
» otherwise they are coloured red to indicate that they were detected.

o False detections are coloured purple.
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Figure : VAST data control charts: continuous time model for undirected
node event times
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Figure : VAST data control charts: continuous time model for outgoing event
times for each node
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Figure : VAST data control charts: continuous time model for incoming event
times for each node
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Figure : VAST data control charts: continuous time model for incoming event
times and Markov model for corresponding incoming caller for each node
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Figure : VAST data control charts: continuous time model for incoming event
times and Markov model for corresponding call towers for each node
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Figure : VAST data control charts: continuous time models for incoming and
outgoing event times for each node
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Figure : VAST data E[h(t)]: continuous time model for incoming event times
for each node
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Figure : VAST data IP(h(t) < 0): continuous time model for incoming event
times for each node
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Summary of methods

Continuous time modelling gives more accurate inference and is
computationally faster than discrete time modelling, which also
requires an arbitrary discretisation of the time domain.

In contrast, continuous time monitoring and discrete time monitoring
give very similar inference, and it is discrete time monitoring that has
the greater computational simplicity (with no requirement for costly
MCMC or SMC simulation).
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Summary of VAST data results

The majority of the signal for detecting the malicious actors was in the
change in pattern of their incoming calls. The outgoing calls held
almost no information. This finding stood up for all of the different
analytics.

Beyond this, there was no further information to be extracted from the
identity of the incoming callers, or the cell towers used by those callers.

Splitting the data stream into separate process for each edge led to
more noise rather than more signal, the information here was in the
aggregated call pattern.

This is only synthetic data, although it is interesting to be able to gain
insight into how the data were generated.
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