Twitter's Big Hitters

Des Higham Department of Mathematics and Statistics University of Strathclyde

Motivation

Consider large, complex networks with

- a fixed set of nodes
- edges that come and go over time

Application areas include

- neuroscience
- communication by email, phone, Twitter
- on-line retail
- on-line social media

PART 1: Models PART 2: Algorithms for Computing Centrality

Example: Voice call contact at MIT

Eagle, Pentland & Lazer, **Proc. Nat. Acad. Sci.**, 2009 106 individuals, 365 days from July 20th, 2004 Summarized into 28 day periods, treated as undirected

Bristol

Part 1: Models

Challenges

- understand mechanisms
- calibrate parameters and compare models
- forecast future behaviour
- simulate 'what-if' scenarios

Grindrod & Higham, Proc. Royal Society A, 2010

Discrete time, stochastic models Given $A^{[k]}$ at time t_k , how do we specify $A^{[k+1]}$? Think in terms of **birth** and **death** of edges

Triadic Closure Model

Grindrod, Higham & Parsons, Internet Mathematics, 2012

Friends of friends become friends

Edge death probability is a constant $\omega \in (0, 1)$ **Edge birth** probability between nodes *i* and *j* given by

$$\delta + \epsilon \left(\left(\boldsymbol{A}^{[k]} \right)^2 \right)_{ij}$$

where $0 < \delta \ll 1$ and $0 < \epsilon(N-2) < 1 - \delta$

Consider N = 100, $\omega = 0.01$, $\epsilon = 5 \times 10^{-4}$, $\delta = 4 \times 10^{-4}$

Triangulation model: start with ER(0.3)

Edge density at t = 750 is 0.712

Triangulation Model: start with ER(0.15)

Edge density at t = 750 is 0.051

Mean field analysis for $\delta + \epsilon \left(\left(A^{[k]} \right)^2 \right)_k$

Ergodicity and **symmetry** \Rightarrow Erdös-Rényi limit: every edge present with probablity p^*

Heuristic **mean field** approach: insert the ansatz " $A^{[k]} = \text{ER}(\rho_k)$ " into the model to obtain

$$\boldsymbol{p}_{k+1} = (1-\omega)\boldsymbol{p}_k + (1-\boldsymbol{p}_k)(\delta + \epsilon(N-2)\boldsymbol{p}_k^2)$$

Generically: three real roots

Two are stable, one is unstable

$$N = 100, \omega = 0.01, \epsilon = 5 \times 10^{-4}, \delta = 4 \times 10^{-4}$$
Stable fixed points0.049 $\&$ 0.721Unstable0.229

Mean-field vs. simulation from ER(0.4)

Bristol	Des Higham	Dynamic Networks	9 / 30

Four simulations from ER(0.23)

Calibration/Inference

Mantzaris & Higham, in *Temporal Networks*, Springer, 2013, edited by P. Holme and J. Saramäki

Given model parameters, we can compute the probability of observing the data: **likelihood**

Tests on synthetic data show that we can correctly infer the triadic closure effect

Wealink data from Hu and Wang, Phys. Lett. A, 2009. 26 Million time stamps, over 841 days with 0.25 Million nodes (no edge death): we found statistical support for triadic closure

Bristol	Des Higham	Dynamic Networks	12/30

Bristol	Des Higham	Dynamic Networks	12/30

Note the lack of symmetry caused by time's arrow

Dynamic Walks

Time points $t_0 < t_1 < t_2 < \cdots < t_M$ Adjacency matrices $A^{[0]}, A^{[1]}, A^{[2]}, \dots, A^{[M]}$

Dynamic walk of length *w* from node i_1 to node i_{w+1} : sequence of times $t_{r_1} \leq t_{r_2} \leq \cdots \leq t_{r_w}$ and a sequence of edges $i_1 \leftrightarrow i_2, i_2 \leftrightarrow i_3, \ldots, i_w \leftrightarrow i_{w+1}$, such that $i_m \leftrightarrow i_{m+1}$ exists at time t_{r_m}

(Several variations are possible)

Use this to define centrality of a node, following Katz¹

¹*A new status index derived from sociometric analysis*, Leo Katz, **Psychometrika**, 1953

Bristol

New Algorithm

Grindrod, Higham, Parsons & Estrada, **Phys. Rev. E**, 2011 **Key observation:** the matrix product

 $\boldsymbol{A}^{[r_1]}\boldsymbol{A}^{[r_2]}\cdots\boldsymbol{A}^{[r_w]}$

has *i*, *j* element that counts the number of dynamic walks of length *w* from node *i* to node *j*, where the *m*th step takes place at time t_{r_m}

Keep track of all such walks and discount by α^w

E.g. $\alpha^2 A^{[0]} A^{[1]}$, $\alpha^4 A^{[0]} A^{[2]} A^{[3]} A^{[7]}$, $\alpha^3 A^{[3]} A^{[3]} A^{[9]}$

This is achieved by

$$\mathcal{Q} := \left(\boldsymbol{I} - \alpha \boldsymbol{A}^{[0]}\right)^{-1} \left(\boldsymbol{I} - \alpha \boldsymbol{A}^{[1]}\right)^{-1} \cdots \left(\boldsymbol{I} - \alpha \boldsymbol{A}^{[M]}\right)^{-1}$$

Then Q is our overall summary of how well information can be passed from node *i* to node *j*

Dynamic Centrality

We will call the row and column sums

the broadcast and receive communicabilities

- generalizes Katz centrality in social networks
- involves sparse linear solves
- captures the asymmetry through non-commutativity of matrix multiplication

Enron email: 151 nodes over two weeks

Explanatory model for **dynamic communicators** in: Mantzaris & Higham, **Eur. J. Appl. Math.**, 2012

fMRI in Neuroscience: functional connectivity

Mantzaris, Bassett, Wymbs, Estrada, Porter, Mucha, Grafton, Higham, J. Complex Networks, 2013

Data: Bassett, Wymbs, Porter, Mucha, Carlson, Grafton, PNAS, 2011

Each experiment: $112 \times 112 \times 25$ tensor region region time

60 experiments: 20 subjects repeat a task three times

Unsupervised k-means custering of the full data set shows **significant evidence for "learning"**: subjects typically move from cluster 1 to cluster 2

Summarizing each experiment in terms of the 112 broadcast (or receive) centrality measures, we recover the **same level of significance**.

And we can now interpret the data more easily.....

Change in broadcast centrality: Right Medial

Bristol

Des Higham

Dynamic Networks

Twitter's Big Hitters

Laflin, Mantzaris, Grindrod, Ainley, Otley, Higham, **Proc. of Social Informatics**, 2012

Listen to tweets containing the phrases city break, cheap holiday, travel, insurance, cheap flight plus two brand names

From 17 June 2012 at 14:41 to 18 June at 12:41 0.5 Million Tweeters/Followers

Active Node Subnetwork Sequence

- Record all relevant edges: tweeter → followers
- Remove all nodes with zero out degree
- Binarize over time windows of length Δt

Dynamic Broadcast Centralities

Twitter account with **fourth highest bandwidth** (out degree) is a **very poor dynamic broadcaster** Closer inspection \Rightarrow an automated process.

Five **social media experts** were given the Twitter data and asked to rank the accounts according to importance

We found that dynamic centrality measures are hard to distinguish from human experts

Arsenal 5 - 2 Spurs, November 2012

Bristol

Des Higham

Dynamic Networks

Adebayor: volume of tweets

Adebayor: sentiment across time

Adebayor: sentiment weighted by influence

Downweighting over time

Grindrod & Higham, SIAM Review (Research Spotlights) 2013

Motivation: News goes stale, messages become irrelevant, viruses mutate, ... *old information is less important* The algorithm can be generalized naturally to

$$\mathcal{S}^{[k]} = \left(I + \boldsymbol{e}^{-b\Delta t_k} \mathcal{S}^{[k-1]}\right) \left(I - \alpha \; \boldsymbol{A}^{[k]}\right)^{-1} - I$$

Here, $(S^{[k]})_{ij}$ counts the number of dynamic walks from *i* to *j* up to time t_k , scaled by

- **a** factor α^{w} for **dynamic walks of length** *w*
- a factor e^{-bt} for walks that begin t time units ago

We have a new parameter, *b*:

- b = 0 is the previous algorithm
- $b = \infty$ is Katz on the current network

Enron daily emails: Centrality prediction

Continuous Time?

Discretizing in time and binarizing is convenient, but

- Δt too large can **overlook** or **smear** events
- Δt too small may give a false impression of accuracy

So create A(t) over continuous time

 \Rightarrow ODE for the evolution of pairwise communicability:

$$U'(t) = -b(U(t) - I) - U(t)\log\left(I - aA(t)\right)$$

What's New?

- Edge birth model based on triadic closure
- Mean field analysis that accurately summarizes the macro scale behavoiur and predicts bistability
- Concept of dynamic walks
- Resolvent-based algorithms generalizing Katz
- Continuous-time analogues

What's Next?

- Large scale calibration/inference/model comparison
- Dynamic network monitoring/prediction/disruption
- Algorithms for dynamic clustering/classification, e.g., fake account detection

Thanks to EPSRC/RCUK Digital Economy programme, Leverhulme Trust, EPSRC/Strathclyde Impact Acceleration Account, Bloom Agency.