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Motivation
Consider large, complex networks with

a fixed set of nodes
edges that come and go over time

Application areas include
neuroscience
communication by email, phone, Twitter
on-line retail
on-line social media

PART 1: Models
PART 2: Algorithms for Computing Centrality
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Example: Voice call contact at MIT
Eagle, Pentland & Lazer, Proc. Nat. Acad. Sci., 2009

106 individuals, 365 days from July 20th, 2004
Summarized into 28 day periods, treated as undirected
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Part 1: Models

Challenges
understand mechanisms
calibrate parameters and compare models
forecast future behaviour
simulate ‘what-if’ scenarios

Grindrod & Higham, Proc. Royal Society A, 2010

Discrete time, stochastic models
Given A[k ] at time tk , how do we specify A[k+1]?
Think in terms of birth and death of edges
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Triadic Closure Model

Grindrod, Higham & Parsons, Internet Mathematics, 2012

Friends of friends become friends

Edge death probability is a constant ω ∈ (0,1)
Edge birth probability between nodes i and j given by

δ + ε
((

A[k ]
)2
)

ij

where 0 < δ � 1 and 0 < ε(N − 2) < 1− δ

Consider N = 100, ω = 0.01, ε = 5× 10−4, δ = 4× 10−4
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Triangulation model: start with ER(0.3)
time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Edge density at t = 750 is 0.712
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Triangulation Model: start with ER(0.15)
time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Edge density at t = 750 is 0.051
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Mean field analysis for δ + ε
((

A[k ]
)2
)

ij

Ergodicity and symmetry⇒ Erdös-Rényi limit: every edge
present with probablity p?

Heuristic mean field approach: insert the ansatz
“A[k ] = ER(pk )” into the model to obtain

pk+1 = (1− ω)pk + (1− pk )(δ + ε(N − 2)p2
k )

Generically: three real roots

Two are stable, one is unstable

N = 100, ω = 0.01, ε = 5× 10−4, δ = 4× 10−4

Stable fixed points 0.049 & 0.721 Unstable 0.229
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Mean-field vs. simulation from ER(0.4)
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Four simulations from ER(0.23)
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Stable fixed points 0.049 & 0.721 Unstable 0.229
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Calibration/Inference

Mantzaris & Higham, in Temporal Networks, Springer, 2013, edited by
P. Holme and J. Saramäki

Given model parameters, we can compute the probability of
observing the data: likelihood

Tests on synthetic data show that we can correctly infer the
triadic closure effect

Wealink data from Hu and Wang, Phys. Lett. A, 2009.
26 Million time stamps, over 841 days with 0.25 Million
nodes (no edge death):
we found statistical support for triadic closure
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Part 2: Algorithms for Node Centrality
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Note the lack of symmetry caused by time’s arrow
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Dynamic Walks

Time points t0 < t1 < t2 < · · · < tM

Adjacency matrices A[0], A[1], A[2], . . . , A[M]

Dynamic walk of length w from node i1 to node iw+1:
sequence of times tr1 ≤ tr2 ≤ · · · ≤ trw and a
sequence of edges i1 ↔ i2, i2 ↔ i3, . . . , iw ↔ iw+1,
such that im ↔ im+1 exists at time trm

(Several variations are possible)

Use this to define centrality of a node, following Katz1

1A new status index derived from sociometric analysis,
Leo Katz, Psychometrika, 1953
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New Algorithm
Grindrod, Higham, Parsons & Estrada, Phys. Rev. E, 2011

Key observation: the matrix product

A[r1]A[r2] · · ·A[rw ]

has i , j element that counts the number of dynamic walks of
length w from node i to node j , where the mth step takes
place at time trm

Keep track of all such walks and discount by αw

E.g. α2A[0]A[1], α4A[0]A[2]A[3]A[7], α3A[3]A[3]A[9]

This is achieved by

Q :=
(
I − αA[0]

)−1 (I − αA[1]
)−1 · · ·

(
I − αA[M]

)−1

Then Q is our overall summary of how well information can
be passed from node i to node j
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Dynamic Centrality

We will call the row and column sums

N∑
k=1

Qnk &
N∑

k=1

Qkn

the broadcast and receive communicabilities

generalizes Katz centrality in social networks
involves sparse linear solves
captures the asymmetry through non-commutativity of
matrix multiplication
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Enron email: 151 nodes over two weeks

Explanatory model for dynamic communicators in:
Mantzaris & Higham, Eur. J. Appl. Math., 2012
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fMRI in Neuroscience: functional connectivity
Mantzaris, Bassett, Wymbs, Estrada, Porter, Mucha, Grafton, Higham,
J. Complex Networks, 2013

Data: Bassett, Wymbs, Porter, Mucha, Carlson, Grafton, PNAS, 2011

Each experiment: 112× 112× 25 tensor
region region time

60 experiments: 20 subjects repeat a task three times

Unsupervised k-means custering of the full data set shows
significant evidence for “learning”:
subjects typically move from cluster 1 to cluster 2

Summarizing each experiment in terms of the 112
broadcast (or receive) centrality measures, we recover the
same level of significance.
And we can now interpret the data more easily. . . . . .

Bristol Des Higham Dynamic Networks 17 / 30

http://www.mims.manchester.ac.uk/


Change in broadcast centrality: Right Medial
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Twitter’s Big Hitters

Laflin, Mantzaris, Grindrod, Ainley, Otley, Higham,
Proc. of Social Informatics, 2012

Listen to tweets containing the phrases
city break, cheap holiday, travel, insurance,
cheap flight plus two brand names

From 17 June 2012 at 14:41 to 18 June at 12:41
0.5 Million Tweeters/Followers
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Active Node Subnetwork Sequence

Record all relevant edges: tweeter 7→ followers
Remove all nodes with zero out degree
Binarize over time windows of length ∆t
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Dynamic Broadcast Centralities
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Twitter account with fourth highest bandwidth (out
degree) is a very poor dynamic broadcaster
Closer inspection⇒ an automated process.

Five social media experts were given the Twitter data and
asked to rank the accounts according to importance

We found that dynamic centrality measures are hard to
distinguish from human experts
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Arsenal 5 - 2 Spurs, November 2012
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Adebayor: volume of tweets
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Minutes after 1200 GMT

North London Derby: 17 November 2012 - Adebayor Tweets
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Adebayor: sentiment across time
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Adebayor: sentiment weighted by influence

Bristol Des Higham Dynamic Networks 25 / 30

http://www.mims.manchester.ac.uk/


Downweighting over time
Grindrod & Higham, SIAM Review (Research Spotlights) 2013

Motivation: News goes stale, messages become irrelevant,
viruses mutate, . . . old information is less important
The algorithm can be generalized naturally to

S [k ] =
(
I + e−b∆tkS [k−1]

) (
I − α A[k ]

)−1 − I

Here,
(
S [k ]
)

ij counts the number of dynamic walks from i to j
up to time tk , scaled by

a factor αw for dynamic walks of length w
a factor e−bt for walks that begin t time units ago

We have a new parameter, b:
b = 0 is the previous algorithm
b =∞ is Katz on the current network
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Enron daily emails: Centrality prediction
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Continuous Time?

Discretizing in time and binarizing is convenient, but
∆t too large can overlook or smear events
∆t too small may give a false impression of accuracy

So create A(t) over continuous time

⇒ ODE for the evolution of pairwise communicability:

U ′(t) = −b(U(t)− I)− U(t) log
(

I − aA(t)
)
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What’s New?

Edge birth model based on triadic closure
Mean field analysis that accurately summarizes the
macro scale behavoiur and predicts bistability
Concept of dynamic walks
Resolvent-based algorithms generalizing Katz
Continuous-time analogues
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What’s Next?

Large scale calibration/inference/model comparison
Dynamic network monitoring/prediction/disruption
Algorithms for dynamic clustering/classification,
e.g., fake account detection

Thanks to
EPSRC/RCUK Digital Economy programme,
Leverhulme Trust,
EPSRC/Strathclyde Impact Acceleration Account,
Bloom Agency.
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