Durham University Anna Felikson

Homework 1-2 Starred problems due on Thursday, 26 October.

Plane curves - 1

- 1.1. Sketch the trace of the smooth curve given by $\alpha(u) = (u^5, u^2 1)$, and mark the singular points.
- **1.2.** Let $\alpha : I \to \mathbb{R}^2$ be a smooth curve, and let $[a, b] \subset I$ be a closed interval. For every partition $a = u_0 < u_1 < \cdots < u_n = b$ consider the sum

$$\ell_{\boldsymbol{\alpha},P} := \sum_{i=1}^{n} \|\boldsymbol{\alpha}(u_i) - \boldsymbol{\alpha}(u_{i-1})\|$$

where P stands for the given partition. Give a geometric interpretation of $\ell_{\alpha,P}$. What length does $\ell_{\alpha,P}$ measure? Now assume that the partition becomes *finer*, i.e., $||P|| := \max_{i=1,...,n} |u_i - u_{i-1}|$ becomes smaller. What is the limit of $\ell_{\alpha,P}$ as $||P|| \to 0$?

- **1.3.** (*) An *epicycloid* α is obtained as the locus of a point on the circumference of a circle of radius r which rolls without slipping on a circle of the same radius.
 - (a) Sketch α .
 - (b) Show that the epicycloid can be parametrized by

 $\alpha(u) = (2r\sin u - r\sin 2u, \ 2r\cos u - r\cos 2u), \qquad u \in \mathbb{R}.$

Find the length of α between the singular points at u = 0 and $u = 2\pi$.

1.4. (*) (a) Let $\alpha(u)$ and $\beta(u)$ be two smooth plane curves. Show that

$$\frac{d}{du}(\boldsymbol{\alpha}(u)\cdot\boldsymbol{\beta}(u)) = \boldsymbol{\alpha}'(u)\cdot\boldsymbol{\beta}(u) + \boldsymbol{\alpha}(u)\cdot\boldsymbol{\beta}'(u),$$

where $\alpha(u) \cdot \beta(u)$ denotes a Euclidean dot product of vectors $\alpha(u)$ and $\beta(u)$.

Hint: write $\alpha(u) = (\alpha_1(u), \alpha_2(u)), \beta(u) = (\beta_1(u), \beta_2(u))$ and compute everything in coordinates.

(b) Let $\alpha(u) : I \to \mathbb{R}^2$ be a smooth curve which does not pass through the origin. Suppose there exists $u_0 \in I$ such that the point $\alpha(u_0)$ is the closest to the origin amongst all the points of the trace of α . Show that $\alpha(u_0)$ is orthogonal to $\alpha'(u_0)$.

- **1.5.** The second derivative $\alpha''(u)$ of a smooth plane curve $\alpha(u)$ is identically zero. What can be said about α ?
- **1.6.** Let $\boldsymbol{\alpha}: (0,\pi) \to \mathbb{R}^2$ be a curve defined by

$$\boldsymbol{\alpha}(u) = (\sin u, \cos u + \log \tan \frac{u}{2})$$

The trace of α is called a *tractrix*.

- (a) Sketch α .
- (b) Show that a tangent vector at $\boldsymbol{\alpha}(u_0)$ can be written as

$$\alpha'(u_0) = (\cos u_0, -\sin u_0 + \frac{1}{\sin u_0})$$

Show that $\alpha(u)$ is smooth, and it is regular everywhere except $u = \pi/2$.

- (c) Write down the equation of a tangent line l_{u_0} to the trace of α at $\alpha(u_0)$.
- (d) Show that the distance between $\alpha(u_0)$ and the intersection of l_{u_0} with y-axis is constantly equal to 1.

Plane curves - 2

- **2.1.** The *catenary* is the plane curve $\alpha : \mathbb{R} \to \mathbb{R}^2$ given by $\alpha(u) = (u, \cosh u)$. It is the curve assumed by a uniform chain hanging under the action of gravity. Sketch the curve. Find its curvature.
- **2.2.** Suppose that $\alpha : I \to \mathbb{R}^2$ is a regular curve, but not necessarily unit speed. Write $\alpha(u) = (x(u), y(u))$. Find the formula for the curvature $\kappa(u)$ at the parameter value u in terms of the functions x and y (and their derivatives) at u.

Hint: consider the corresponding curve $\tilde{\alpha}$ parametrised by arc length. The curvature $\tilde{\kappa}$ of $\tilde{\alpha}$ is then $\tilde{\kappa}(s) = \tilde{n}(s) \cdot \tilde{t}'(s)$, where \tilde{t} and \tilde{n} are the unit tangent and unit normal vector of $\tilde{\alpha}$. Use the relation $\tilde{\alpha}(s) = \alpha(\ell^{-1}(s))$, where $s = \ell(u)$ is the arc length, together with the chain rule.

2.3. (*) Compute the curvature of tractrix (see Exercise 1.6) at $\alpha(u)$.

2.4. Let $\boldsymbol{\alpha}: I \to \mathbb{R}^2$ be a smooth regular plane curve.

(a) Assume that for some $u_0 \in I$ the normal line to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u_0)$ passes through the origin. Show that for some $\epsilon > 0$ the trace $\boldsymbol{\alpha}(u_0 - \epsilon, u_0 + \epsilon)$ can be written in polar coordinates as

$$\boldsymbol{\beta}(\vartheta) = (\rho(\vartheta)\cos\vartheta, \rho(\vartheta)\sin\vartheta)$$

for an appropriate smooth function $\rho(\vartheta)$, where $\vartheta \in J$ for some interval J.

(b) Assume that all normal lines to α pass through the origin. Show that the trace of α is contained in a circle.

(c) Let $\boldsymbol{\alpha}: I \to \mathbb{R}^2$ be given in polar coordinates by

$$\boldsymbol{\alpha}(\vartheta) = (\rho(\vartheta)\cos\vartheta, \rho(\vartheta)\sin\vartheta), \qquad \vartheta \in [a, b]$$

Show that the length of α is

$$\int_{a}^{b} \sqrt{\rho^{2} + (\rho')^{2}} \, d\vartheta$$

(d) In the assumptions of (c), show that the curvature of α is

$$\kappa(\vartheta) = \frac{2(\rho')^2 - \rho\rho'' + \rho^2}{[\rho^2 + (\rho')^2]^{3/2}}$$

- **2.5.** Find an arc length parameter for the graphs of the following functions $f, g: (0, \infty) \to \mathbb{R}$:
 - (a) f(x) = ax + b, $a, b \in \mathbb{R}$; (b)(*) $g(x) = \frac{8}{27}x^{3/2}$.