Durham University Anna Felikson

Homework 7-8 Starred problems due on Thursday, 7 December.

Surfaces - 2

7.1. (*) (a) Parametrize the hyperbolic paraboloid S from Exercise 6.4 as a ruled surface (i.e., find a curve $\boldsymbol{\alpha}(v) \subset S$ and a curve $\boldsymbol{w}(v)$ such that $\boldsymbol{x}(u,v) = \boldsymbol{\alpha}(v) + u\boldsymbol{w}(v)$ will be a parametrization of S).

(b) Now let S be an arbitrary ruled surface, and let $\boldsymbol{x} : J \times I \to \mathbb{R}^3$, $\boldsymbol{x}(u,v) = \boldsymbol{\alpha}(v) + u\boldsymbol{w}(v)$ be a parametrization of S such that $|\boldsymbol{w}(v)| = 1$ for all $v \in I$, where $\boldsymbol{\alpha} : I \to \mathbb{R}^3$ is a regular space curve and I, J are intervals in \mathbb{R} . A curve $\boldsymbol{\beta} : I \to \mathbb{R}^3$ lying in S is called a *curve of striction* if $\boldsymbol{\beta}'(v) \cdot \boldsymbol{w}'(v) = 0$ for all $v \in I$. Find the curve of striction of the ruled surface in (a) with a = b = 1(using either one of the rulings).

Hint: You may assume $\boldsymbol{\beta}(v) = \boldsymbol{\alpha}(v) + u(v)\boldsymbol{w}(v)$.

7.2. (a) Show that the set S of $(x, y, z) \in \mathbb{R}^3$ fulfilling the equation $xz + y^2 = 1$ is a surface.

(b) Let $\boldsymbol{\alpha}, \boldsymbol{w} : \mathbb{R} \to \mathbb{R}^3$ be given by

 $\boldsymbol{\alpha}(v) = (\cos v, \sin v, \cos v) \quad \text{and} \quad \boldsymbol{w}(v) = (1 + \sin v, -\cos v, -1 + \sin v).$

Show that for all $v \in \mathbb{R}$ there are two straight lines through $\boldsymbol{\alpha}(v)$, one of which is in direction $\boldsymbol{w}(v)$, both of which lie on S. If $\boldsymbol{x}(u,v) = \boldsymbol{\alpha}(v) + u\boldsymbol{w}(v)$, $u \in \mathbb{R}$, $0 < v < 2\pi$, show that \boldsymbol{x} is a local parametrization of S.

- 7.3. Determine all surfaces of revolution which are also ruled surfaces.
- **7.4.** (*) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = (x + y + z 1)^2$.
 - (a) Find the points at which grad f = 0.
 - (b) For which values of c the level set $S := \{p = (x, y, z) \in \mathbb{R}^3 \mid f(p) = c\}$ is a surface?
 - (c) What is the level set f(p) = c?
 - (d) Repeat (a) and (b) using the function $f(x, y, z) = xyz^2$.

7.5. Möbius band

Let S be the image of the function $f: \mathbb{R} \times (-\varepsilon, \varepsilon) \to \mathbb{R}^3, (\varepsilon > 0)$, defined by

$$f(u,v) = \left(\left(2 - v \sin \frac{u}{2}\right) \sin u, \ \left(2 - v \sin \frac{u}{2}\right) \cos u, \ v \cos \frac{u}{2} \right).$$

Show that, for ε sufficiently small, S is a surface in \mathbb{R}^3 which may be covered by two coordinate neighborhoods. Give a sketch of the surface indicating the curves u = const and v = const (such curves are called *coordinate curves*).

7.6. Real projective plane (bonus problem)

Let $f : \mathbb{R}^3 \to \mathbb{R}^5$ be defined by

$$f(x, y, z) = \left(yz, zx, xy, \frac{1}{2}(x^2 - y^2), \frac{1}{2\sqrt{3}}(x^2 + y^2 - 2z^2)\right).$$

Show that:

(a) f(x, y, z) = f(x', y', z') if and only if $(x, y, z) = \pm (x', y', z')$;

(b) the image $S = f(S^2(1))$ of the unit sphere $S^2(1)$ in \mathbb{R}^3 is a surface in \mathbb{R}^5 .

The surface S is often written as $\mathbb{R}P^2$ and is called the *real projective plane*. Note that it can be identified with the set of lines through the origin in \mathbb{R}^3 .

Tangent plane

8.1. (a) Let $\boldsymbol{x} : U \to S$ be a local parametrization of a surface S in some neiborhood of a point $\boldsymbol{p} = (x_0, y_0, z_0) \in S$. Show that the tangent plane to S at \boldsymbol{p} has equation

$$\left(\frac{\partial \boldsymbol{x}}{\partial u}(\boldsymbol{p}) \times \frac{\partial \boldsymbol{x}}{\partial v}(\boldsymbol{p})\right) \cdot (\boldsymbol{x} - \boldsymbol{x}_0, \boldsymbol{y} - \boldsymbol{y}_0, \boldsymbol{z} - \boldsymbol{z}_0) = 0$$

(b) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function, and let $c \in f(\mathbb{R}^3)$ be a regular value of f. Show that the tangent plane of the regular surface

$$S = \{(x, y, z) \mid f(x, y, z) = c\}$$

at the point $\boldsymbol{p} = (x_0, y_0, z_0) \in S$ has equation

$$\frac{\partial f}{\partial x}(\boldsymbol{p})(x-x_0) + \frac{\partial f}{\partial y}(\boldsymbol{p})(y-y_0) + \frac{\partial f}{\partial z}(\boldsymbol{p})(z-z_0) = 0$$

- **8.2.** (*) Show that the tangent plane of one-sheeted hyperboloid $x^2 + y^2 z^2 = 1$ at point (x, y, 0) is parallel to the z-axis.
- **8.3.** Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function. Define a surface S as

$$S = \{(x, y, z) \mid xf(y/x) - z = 0, \ x \neq 0\}$$

Show that all tangent planes of S pass through the origin (0, 0, 0).

- 8.4. Let $U \subset \mathbb{R}^2$ be open, and let S_1 and S_2 be two regular surfaces with parametrizations $\boldsymbol{x} : U \to S_1$ and $\boldsymbol{y} : U \to S_2$. Define a map $\boldsymbol{\varphi} = \boldsymbol{y} \circ \boldsymbol{x}^{-1} : S_1 \to S_2$. Let $\boldsymbol{p} \in S_1$, $\boldsymbol{w} \in T_{\boldsymbol{p}}S_1$, and let $\boldsymbol{\alpha} : (-\varepsilon, \varepsilon) \to S_1$ be an arbitrary regular curve in S_1 such that $\boldsymbol{p} = \boldsymbol{\alpha}(0)$ and $\boldsymbol{\alpha}'(0) = \boldsymbol{w}$. Define $\boldsymbol{\beta} : (-\varepsilon, \varepsilon) \to S_2$ as $\boldsymbol{\beta} = \boldsymbol{\varphi} \circ \boldsymbol{\alpha}$.
 - (a) Show that $\beta'(0)$ does not depend on the choice of α .
 - (b) Show that the map $d_{\boldsymbol{p}}\boldsymbol{\varphi}: T_{\boldsymbol{p}}S_1 \to T_{\boldsymbol{\varphi}(\boldsymbol{p})}S_2$ defined by $d_{\boldsymbol{p}}\boldsymbol{\varphi}(\boldsymbol{w}) = \boldsymbol{\beta}'(0)$ is linear.
- 8.5. Let $\alpha : I \to \mathbb{R}^3$ be a regular curve with nonzero curvature parametrized by arc length. Recall that a *canal surface* (or *tubular surface*) S is a surface parametrized by

$$\boldsymbol{x}(u,v) = \boldsymbol{\alpha}(u) + r(\boldsymbol{n}(u)\cos v + \boldsymbol{b}(u)\sin v),$$

where \boldsymbol{n} and \boldsymbol{b} are unit normal and binormal vectors, and r > 0 is a sufficiently small constant. Find the equation of the tangent plane to S at $\boldsymbol{x}(u, v)$. In particular, show that the tangent plane at $\boldsymbol{x}(u, v)$ is parallel to $\boldsymbol{\alpha}'(u)$.