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Solutions 1-2

1.3. (x) An epicycloid « is obtained as the locus of a point on the circumference of a circle of radius r
which rolls without slipping on a circle of the same radius.

(a) Sketch o.
(b) Show that the epicycloid can be parametrized by

a(u) = (2rsinu — rsin 2u, 2rcosu — r cos 2u), u € R.

Find the length of o between the singular points at « = 0 and v = 2.

Solution:

The graph of the epicycloid is illustrated below for the value r = 1.

The inner (green) circle centered at (0,0) is fixed, and the second circle C' rotates around it with a marked
point on its perimeter tracing out the epicycloid. This point is at the bottom of the rotating circle at the
moment © = 0 when the rotating circle is just on top of the fixed circle, i.e., at position (0,7). As u increases,
the center of C' moves clockwise around the origin, and so does the point of contact between the fixed and
the rotating circle, and also so does the marked point around the center of C in relation to the point of
contact.

At the time u the center of the rotating circle C is located at (2r sinu, 2r cos u). To this moment C' has rotated
clockwise around its moving center by a total length of 2ru, where w is measured in radians. Therefore,
the point of contact between the two circles, seen from the moving center of C, has moved clockwise by the
angle u around its moving center, and the position of the point of contact relative to this moving center is
(rsin(m 4+ u), r cos(m 4+ u)). The marked point has moved clockwise away from the point of contact by the
same angle, and is therefore at position (rsin(m + 2u),r cos(m + 2u)) relative to the center of the moving
circle. This means that the marked point lies at

(2r sinu, 2r cosu) + (rsin(m + 2u), r cos(m + 2u)) = (2r sinu — r sin 2u, 21 cos u — 7 cos 2u).



1.4.

1.5.

Now let
a(u) = (2rsinu — rsin 2u, 2r cos u — 7 cos 2u).

Then

a'(u) = 2r(cosu — cos2u, —(sinu — sin 2u))
e/ (w)||*> = 4r*(2 — 2(cos(—u) cos(2u) — sin(—u) sin(2u))
= 4r%(2 — 2cos(2u — u)) = 4r*(2 — 2 cos u)
= 4r%(2 — 2(cos(u/2) cos(u/2) — sin(u/2) sin(u/2)))
= 16r%sin®(u/2).

This implies that ||a’(u)|| = 4r sin(u/2) and

2m 27 o
(o) = / o/ (w)]|du = 47“/ sin %du =4r (—2 COS% . > = —8r(cosm — cos0) = 16r.
0 0

(*) (a) Let a(u) and B(u) be two smooth plane curves. Show that

d /! /
7y (@) - B(w)) = o (u) - B(u) + eulu) - f(w),
where a(u) - B(u) denotes a Euclidean dot product of vectors a(u) and B(u).

(b) Let a(u) : I — R? be a smooth curve which does not pass through the origin. Suppose there
exists ug € I such that the point a(ug) is the closest to the origin amongst all the points of the
trace of a. Show that a(ug) is orthogonal to a(uy).

Solution:

(a) Let a(u) = (a1 (u), az(u)), Bu) = (Br(u), B2(u)). Then
a(u) - Bu) = a1 (u)fr(u) + az(u)B2(u)

Thus,
%(G(U) Blu) = % (o1 (w)B1(u) + az(u)Ba(u) = of (w)B1(u) + a1 (u) By (u) + oy () B2 (u) + az(u) By (u) =

= (0 (u)B1(u) + () Ba(w)) + (o (u) By (u) + az(u) By (u)) = &' (u) - Bu) + a(u) - B'(u)

(b) Since the point a(ug) is the closest to the origin, the derivative of the function ||a(u)||? vanishes at

point ug. Using the equality ||a(u)||?> = a(u) - a(u) and (a), we obtain

d

0= L)y = “ax(w) - x(2) = 20 (u0) - x(w).

s0 o (up) and a(ug) are orthogonal.

The second derivative a”(u) of a smooth plane curve a(u) is identically zero. What can be said
about a?

Solution: Since ' (u) = 0, the tangent vector a'(u) is constant, which implies that a(u) is either a constant
speed parametrization of a line or just a single point.



1.6. Let a: (0,7) — R? be a curve defined by
a(u) = (sinu, cosu + log tan %)

The trace of o is called a tractriz.
(a) Sketch o.

(b) Show that a tangent vector at a(ug) can be written as

)

o' (ug) = (cosug, — sin ug + —
S1 U

Show that «(u) is smooth, and it is regular everywhere except u = 7/2.
(c) Write down the equation of a tangent line [, to the trace of o at a(uyp).

(d) Show that the distance between a(ug) and the intersection of l,, with y-axis is constantly
equal to 1.

Solution: The equation of a tangent line I, to the trace of v at a(up) can be written as r(v) = a(ug) +
va! (ug), or
1

sin ug

)

The line intersects y-axis at

. uo .
r(v) = (sinwug + v cos ug, cos ug + log tan - —vsinug +v

The square of the distance between r(v) and a(ug) is equal to v2||a’ (ug)|?.

v = —tanug, so (the square of) the required distance is equal to

——)||? = tan® ug(cos® up + sin® ug — 2 + ) = tan® ug(— 1) =1

tan? ug|| (cos ug, — sinug + -
sin ug sin® ug sin” ug



2.1. The catenary is the plane curve a : R — R? given by a(u) = (u,coshu). It is the curve assumed
by a uniform chain hanging under the action of gravity. Sketch the curve. Find its curvature.

Solution:

Since ae(u) = (u,coshu), we can write
o' (u) = (1,sinhu),

so that
lo ()| = V/1 + sinh? u = coshu
and
' (u) = (0, coshu)
Now,
' (uw)y” (u) — 2" (u)y' (u)  coshu 1
r(u) = TNE = 3. = 2
[’ ()| cosh®u  cosh”u

2.2. Suppose that o : I — R? is a regular curve, but not necessarily unit speed. Write o (u) =
(x(u),y(u)). Find the formula for the curvature x(u) at the parameter value u in terms of the
functions = and y (and their derivatives) at u.

Solution:

We can write the unit tangent vector as

_ o (u) _ 1 .
le/ (W)l o’ (u)]

so the unit normal vector can be written as

n(u)

t(u)

1
' (w)]

To compute the curvature x(u) we need to compute the vector t'(s)|,, where s is an arc length parameter
and s = I(u) for I to be the lenght function. By the chain rule, we have

(=y/ (), 2" (u))

(5)h = 9o o
where J ) )
o - U= iy T
Thus,
o1 d (@)1 4 (@) ey - e,
Fls)h ||o/<u>|du< o' ()] ) ||a/<u>||du(<x'<u>2+y'<u>2>l/2> @u? Ty Y W)

(some work is required to obtain the last equality above...)
Therefore,

1 2/ (wy"(w) — 2" (w)y'(u) ' (w)y" (u) — 2" (w)y' (u)

k) =nu) - t(s)], = ' (w). 2 (u)I? =
(1) = )9} = ot T O a2 = 4




2.3.

2.4.

(¥) Compute the curvature of tractrix (see Exercise 1.6) at a(u).

Solution:

Using the formula above and the expressions for o'(u) and o’ (u)

o' (u) = (cosu, —sinu + wma)  and a’(u) = (= sinu, —cosu — sclis;;
we compute
_ cosu(—cosu — 8 ) — (—sinu)(—sinu + s) - —cos®u(l + gpirg) = (sin"u 1) =
wlu) = (cos?u+ (—sinu + -)2)3/2  (cos?u+sin®u — 2+ )’ -
_ —cos?u — zfjjff — (—cos®u) _ _% = —|tanul
Pe— (i

Let « : I — R? be a smooth regular plane curve.

(a) Assume that for some ug € I the normal line to a at a(up) passes through the origin. Show
that for some € > 0 the trace a(ug — €, ug + €) can be written in polar coordinates as

B(0) = (p(9) cos ¥, p(V) sin )

for an appropriate smooth function p(##), where ¥ € J for some interval J.

(b) Assume that all normal lines to a pass through the origin. Show that the trace of e is contained
in a circle.

(c) Let o : I — R? be given in polar coordinates by
a(¥) = (p(¥) cos I, p(¥) sin ), Y € [a, b
Show that the length of « is
IRGErR
(d) In the assumptions of (c¢), show that the curvature of « is

_ 2% = pp" +p?
Rt

Solution:

(a) Since the normal line at a(ug) passes through the origin, the tangent vector o’(ug) is orthogonal
to the vector a(ug). Write a(u) = (z(u),y(u)), and without loss of generality assume that z'(ug) # 0
(otherwise rotate the whole picture around the origin by a small angle). By the latter assumption, we have
y' (ug) /2’ (ug) # oo (geometrically, 3/ (ug)/2'(ug) is the tangent of the angle ¢(ug) forming by the tangent
vector o’ (ug) and the z-axis).

By smoothness of a, we can choose a small € such that for every u € (up — €, ug + €) the angle ¢(u) forming
by the tangent vector a'(u) and the z-axis differs from ¢(ug) not too much (say, by m/100 at most). This



implies that for any u € (up—e€, ugp+e€) the line passing through the origin and a(u) intersects ae(ug —e, ug+e)
at a(u) only.

Now, taking ¥ = ¢(u) — 5 and p(¥) = ||a(u)| (draw the picture!!!) we obtain the required parametrization.
(b) Take any ug € I and, as in (a), parametrize « in some neighborhood of a(ug) by
B9) = au(®)) = (p(9) cos b, p(9) sin )
Now
B (9) = (p'(9) cos ¥ — p(V9) sin¥, p’ (¥9) sindd + p(1I) cos )
By assumptions, B'(99) is orthogonal to B(1J), so
0=70'(9)B(W) = (p(¥)cost — p(I) sin?)p(I) cos ¥ + (p'(I¥) sind + p(I9) cos ¥)p(I) sin ¥ = p’p,

which implies that p’ = 0. Therefore, p() = r is constant in some neighborhood of every u € I, so it
is constant on I (prove this implication!). Thus, the trace of 8 (which coincides with the trace of «) is
contained in a circle of radius r centered at the origin.

(c) By definition,

b b
= / &’ (9)]| dv = / V(p'(9) cos ¥ — p(9) sind)2 + (p'(9) sind + p(¥9) cos 92) dy =

b
= / \/p’(ﬁ)2((;052 9+ sin? ) + o/ (9)p(9) (=2 cos ¥ sin®? + 2 cos ¥ sin ) + p(19)2(sin I + cos2 ) d =

b
~ [ VEr@rw
(d) Apply the formula for the curvature from Exercise 2.2 and the expression for a’(¥) from (c).

. Find an arc length parameter for the graphs of the following functions f, g : (0,00) — R:
(a) f(x) =ax+b, a,beR,

(b)(%) g(z) = g2/,

Solution:

Parametrize the curves by a(z) = (z, f(z)) and B(z) = (z, g(x)), and choose zy = 0.
(a) By definition,

/na |du—/ 11, (u |du—/ T @du /i a

Thus,
s

V1ta2’

and the curve

- 5 as
a(s) = s +
&)= e —
is an arc length parametrization of the graph of f(x).
(b) Similar to (a), we write

812 16 27 16
_ 17 — 1 3/2 —_ 1 3/2
0= [18@lde= [0 gvatan= [ie Budu= F20e 20220 - X o1,

_81( 8 2/3 _
16 <<27 +1 1)

which implies



