Durham University Anna Felikson

Solutions 11-12

11.1. Let a > 0. Construct explicitly a local isometry from the plane $P = \{ (u, v, 0) \in \mathbb{R}^3 | u, v \in \mathbb{R} \}$ onto the cylinder $S = \{ (x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = a^2 \}.$

Solution:

A canonical parametrization of the plane P is

$$\boldsymbol{x} \colon U = \mathbb{R}^2 \longrightarrow P, \qquad \boldsymbol{x}(u,v) = (u,v,0).$$

Clearly, $\boldsymbol{x}_u = (1,0,0), \, \boldsymbol{x}_v = (0,1,0) \text{ and } E = \langle \boldsymbol{x}_u, \boldsymbol{x}_u \rangle = 1, \, F = \langle \boldsymbol{x}_u, \boldsymbol{x}_v \rangle = 0 \text{ and } G = \langle \boldsymbol{x}_v, \boldsymbol{x}_v \rangle = 1.$

We define a candidate for the isometry via this parametrisation

$$f: P \longrightarrow S, \qquad f(u, v, 0) := (a \cos(\omega u), a \sin(\omega u), v)$$

for some positive constant $\omega > 0$ (we could also interchange the role of u and v) (more precisely, we define $f \circ \boldsymbol{x} \colon U \longrightarrow S$). In order to check that f is a local isometry, we just need to calculate the coefficients of the fundamental form of S with respect to the (local) parametrisation $f \circ \boldsymbol{x}$, and see whether they equal E, F and G. But here we have

$$f_u = (f \circ \boldsymbol{x})_u = (-a\omega\sin(\omega u), a\omega\cos(\omega u), 0)$$
 and $f_v = (f \circ \boldsymbol{x})_v = (0, 0, 1),$

so that

$$\widetilde{E} = \langle f_u, f_u \rangle = a^2 \omega^2, \quad \widetilde{F} = \langle f_u, f_v \rangle = 0 \text{ and } \widetilde{G} = \langle f_v, f_v \rangle = 1.$$

We have $\tilde{F} = F$ and $\tilde{G} = G$. In order to have $\tilde{E} = E$, we need $\omega = 1/a$, then f is a local isometry (by Proposition 8.15).

11.2. (*) Let b be a positive number such that $\sqrt{1+b^2}$ is an integer n. Let S be the circular cone obtained by rotating the curve given by $\alpha(v) = (v, 0, bv), v > 0$, about the z-axis. Let the coordinate xy-plane P be parametrized by polar coordinates (r, ϑ) :

$$\boldsymbol{x}: U = (0, \infty) \times (0, 2\pi) \longrightarrow P, \quad \boldsymbol{x}(r, \vartheta) = (r \cos \vartheta, r \sin \vartheta, 0).$$

Show that the map $f: P \setminus \{(0,0,0)\} \longrightarrow S$ defined on $\boldsymbol{x}(U)$ by

$$f(\boldsymbol{x}(r,\vartheta)) = \frac{1}{n} (r \cos n\vartheta, r \sin n\vartheta, br)$$

is a local isometry on $\boldsymbol{x}(U)$.

Solution:

We have

$$oldsymbol{x}_r = (\cosartheta, \sinartheta, 0) \quad ext{and} \quad oldsymbol{x}_artheta = (-r\sinartheta, r\cosartheta, 0),$$

so that the coefficients of the first fundamental form of P with respect to the parametrization x (polar coordinates — parametrized $P \setminus \{0\}$) are

$$E(r, \vartheta) = 1,$$
 $F(r, \vartheta) = 0$ and $G(r, \vartheta) = r^2.$

Now calculate

$$f_r := (f \circ \boldsymbol{x})_r = \frac{1}{n} (\cos(n\vartheta), \sin(n\vartheta), b) \quad \text{and} \quad f_\vartheta := (f \circ \boldsymbol{x})_\vartheta = (-r\sin(n\vartheta), r\cos(n\vartheta), 0),$$

so that

$$\widetilde{E}:=\langle f_r,f_r\rangle=\frac{1+b^2}{n^2},\qquad \widetilde{F}:=\langle f_r,f_\vartheta\rangle=0\quad \text{and}\quad \widetilde{G}:=\langle f_\vartheta,f_\vartheta\rangle=r^2.$$

By assumption, $(1 + b^2)/n^2 = 1$, so that $\tilde{E} = E$, $\tilde{F} = F$ and $\tilde{G} = G$, hence f is a local isometry by Proposition 8.15.

11.3. Let S_1, S_2, S_3 be regular surfaces.

- (a) Suppose that $f: S_1 \longrightarrow S_2$ and $g: S_2 \longrightarrow S_3$ are local isometries. Prove that $g \circ f: S_1 \longrightarrow S_3$ is a local isometry.
- (b) Suppose that $f: S_1 \longrightarrow S_2$ and $g: S_2 \longrightarrow S_3$ are conformal maps with conformal factors $\lambda: S_1 \longrightarrow (0, \infty)$ and $\mu: S_2 \longrightarrow (0, \infty)$, respectively. Prove that $g \circ f: S_1 \longrightarrow S_3$ is a conformal map and calculate its conformal factor. (The conformal factor of a conformal map is the function appearing as factor in front of the inner product in the definition.)
- (c) Let f and g be conformal maps with conformal factors λ and μ as in the previous part. Find a condition on λ and μ such that $g \circ f$ is a *(local) isometry*.

Solution:

(a) By the definition of a local isometry,

$$\langle d_{p_1}f(\boldsymbol{v}_1), d_{p_1}f(\boldsymbol{w}_1) \rangle_{f(p_1)} = \langle \boldsymbol{v}_1, \boldsymbol{w}_1 \rangle_{p_1}$$
 and $\langle d_{p_2}g(\boldsymbol{v}_2), d_{p_2}f(\boldsymbol{w}_2) \rangle_{g(p_2)} = \langle \boldsymbol{v}_2, \boldsymbol{w}_2 \rangle_{p_2}$

for all $p_1 \in S_1$, v_1 , $w_1 \in T_{p_1}S_1$ and $p_2 \in S_2$, v_2 , $w_2 \in T_{p_2}S_2$. This notation is also already part of the solution: applying these two equations with $p_2 = f(p_1)$, $v_2 = d_{p_1}f(v_1)$ and $w_2 = d_{p_1}f(w_1)$, and using the chain rule

$$d_{p_1}(g \circ f)(\boldsymbol{w}_1) = d_{f(p_1)}g(d_{p_1}f(\boldsymbol{w}_1))$$

for all $p_1 \in S_1$ and $w_1 \in T_{p_1}S_1$, we obtain

$$\begin{aligned} \langle d_{p_1}(g \circ f)(\boldsymbol{v}_1), d_{p_1}(g \circ f)f(\boldsymbol{w}_1) \rangle_{(g \circ f)(p_1)} &= \langle d_{f(p_1)}g(d_{p_1}f(\boldsymbol{v}_1)), d_{f(p_1)}g(d_{p_1}f(\boldsymbol{w}_1)) \rangle_{(g(f(p_1)))} \\ &= \langle d_{p_1}f(\boldsymbol{v}_1), d_{p_1}f(\boldsymbol{w}_1) \rangle_{f(p_1)} \\ &= \langle \boldsymbol{v}_1, \boldsymbol{w}_1 \rangle_{p_1} \end{aligned}$$

using the chain rule for the first, the isometry of g for the second and the isometry of f for the last equality. Hence we have shown that $g \circ f$ is a local isometry using the definition.

(b) The proof is almost the same as the one of the first part: since f and g are conformal maps, we have

$$\langle d_{p_1}f(\boldsymbol{v}_1), d_{p_1}f(\boldsymbol{w}_1) \rangle_{f(p_1)} = \lambda(p_1) \langle \boldsymbol{v}_1, \boldsymbol{w}_1 \rangle_{p_1}$$
 and $\langle d_{p_2}g(\boldsymbol{v}_2), d_{p_2}f(\boldsymbol{w}_2) \rangle_{g(p_2)} = \mu(p_2) \langle \boldsymbol{v}_2, \boldsymbol{w}_2 \rangle_{p_2}$

for all $p_1 \in S_1$, $\boldsymbol{v}_1, \boldsymbol{w}_1 \in T_{p_1}S_1$ and $p_2 \in S_2$, $\boldsymbol{v}_2, \boldsymbol{w}_2 \in T_{p_2}S_2$. Applying these two equations with $p_2 = f(p_1)$, $\boldsymbol{v}_2 = d_{p_1}f(\boldsymbol{v}_1)$ and $\boldsymbol{w}_2 = d_{p_1}f(\boldsymbol{w}_1)$, and using again the chain rule we obtain

$$\begin{aligned} \langle d_{p_1}(g \circ f)(\boldsymbol{v}_1), d_{p_1}(g \circ f)f(\boldsymbol{w}_1) \rangle_{(g \circ f)(p_1)} &= \langle d_{f(p_1)}g(d_{p_1}f(\boldsymbol{v}_1)), d_{f(p_1)}g(d_{p_1}f(\boldsymbol{w}_1)) \rangle_{(g(f(p_1)))} \\ &= \mu(f(p_1)) \langle d_{p_1}f(\boldsymbol{v}_1), d_{p_1}f(\boldsymbol{w}_1) \rangle_{f(p_1)} \\ &= \mu(f(p_1)) \lambda(p_1) \langle \boldsymbol{v}_1, \boldsymbol{w}_1 \rangle_{p_1} \end{aligned}$$

using the chain rule for the first, the conformality of g for the second and the conformality of f for the last equality. Hence we have shown that $g \circ f$ is a conformal map with conformal factor

$$(\mu \circ f) \cdot \lambda \colon S_1 \longrightarrow (0, \infty, \qquad p_1 \mapsto \mu(f(p_1))\lambda(p_1).$$

(c) The third part is again rather trivial. We want that $(\mu \circ f) \cdot \lambda$ equals the constant function 1 on S_1 , i.e., that

$$\mu(f(p_1)) = \frac{1}{\lambda(p_1)}$$

for all $p_1 \in S_1$. In particular, we do not need any restriction on the behaviour of μ outside the range $f(S_1)$ of f.

11.4. Let S be the surface of revolution parametrized by

$$\boldsymbol{x}(u,v) = \left(\cos v \cos u, \cos v \sin u, -\sin v + \log \tan\left(\frac{\pi}{4} + \frac{v}{2}\right)\right),$$

where $0 < u < 2\pi, 0 < v < \pi/2$. Let S_1 be the region

$$S_1 = \{ \boldsymbol{x}(u, v) \, | \, 0 < u < \pi, 0 < v < \pi/2 \}$$

and let S_2 be the region

$$S_2 = \{ \, \boldsymbol{x}(u, v) \, | \, 0 < u < 2\pi, \pi/3 < v < \pi/2 \, \}$$

Show that the map

$$\boldsymbol{x}(u,v) \mapsto \boldsymbol{x}\left(2u, \arccos\left(\frac{1}{2}\cos v\right)\right)$$

is an isometry from S_1 onto S_2 .

Solution:

The map $f: S_1 \longrightarrow S_2$ is actually a bijection (see below), so one can prove that it gives rise to a local parametrization; we will use Prop. 8.15 from the lectures and show that the coefficients E, F and G (w.r.t. the parametrization \boldsymbol{x}) are the same as the coefficients $\widetilde{E}, \widetilde{F}$ and \widetilde{G} w.r.t the parametrization

$$\widetilde{\boldsymbol{x}}(u,v) := \boldsymbol{x}\Big(2u, \arccos\Big(\frac{1}{2}\cos v\Big)\Big).$$

Let us calculate E, F and G first. We have

 $\boldsymbol{x}_u = (-\cos v \sin u, \cos v \cos u, 0), \qquad \boldsymbol{x}_v = (-\sin v \cos u, -\sin v \sin u, -\cos v + 1/\cos v),$

as the derivative of g with $g(v) = -\sin v + \log \tan(\pi/4 + v/2)$ is

$$g'(v) = -\cos v + \frac{1}{2} \left(\tan\left(\frac{\pi}{4} + \frac{v}{2}\right) \right)^{-1} \tan'\left(\frac{\pi}{4} + \frac{v}{2}\right)$$
$$= -\cos v + \frac{\cos(\pi/4 + v/2)}{2\sin(\pi/4 + v/2)\cos^2(\pi/4 + v/2)}$$
$$= -\cos v + \frac{1}{\sin(\pi/2 + v)}$$
$$= -\cos v + \frac{1}{\cos v} = \frac{-\cos^2 v + 1}{\cos v} = \frac{\sin^2 v}{\cos v}.$$

In particular,

$$E(u, v) = \cos^2 v, \qquad F(u, v) = 0,$$

$$G(u, v) = \sin^2 v + \left(\frac{1}{\cos v} - \cos v\right)^2$$

$$= 1 - \cos^2 v + \frac{1}{\cos^2 v} - 2 + \cos^2 v$$

$$= \frac{1}{\cos^2 v} - 1 = \frac{1 - \cos^2 v}{\cos^2 v} = \tan^2 v$$

Let us now calculate the coefficients w.r.t. the parametrization \tilde{x} (make sure you use the arguments of the functions correctly):

$$f_u(u,v) = \widetilde{\boldsymbol{x}}_u(u,v) = 2\boldsymbol{x}_u(2u, \arccos((\cos v)/2))$$

$$f_v(u,v) = \widetilde{\boldsymbol{x}}_v(u,v) = \varphi'(v)\boldsymbol{x}_v(2u, \arccos((\cos v)/2))$$

$$= \frac{\sin v}{2\sqrt{1 - (\cos^2 v)/4}}\boldsymbol{x}_v(2u, \arccos((\cos v)/2))$$

since the derivative of φ given by $\varphi(v) = \arccos((\cos v)/2)$ is

$$\varphi'(v) = \frac{1}{2}(-\sin v)\arccos'((\cos v)/2) = \frac{\sin v}{2\sqrt{1 - (\cos^2 v)/4}}$$

In particular,

$$\langle f_u(u,v), f_u(u,v) \rangle = E(u,v) = 4E(2u, \arccos((\cos v)/2)),$$

$$\langle f_u(u,v), f_v(u,v) \rangle = \widetilde{F}(u,v) = 2\varphi'(v)F(\dots) = 0$$

$$\langle f_v(u,v), f_v(u,v) \rangle = \widetilde{G}(u,v) = \frac{\sin^2 v}{4(1 - (\cos^2 v)/4)}G(2u, \arccos((\cos v)/2)).$$

Let us now simplify these expressions in order to obtain $E = \tilde{E}$ and $G = \tilde{G}$ $(F = \tilde{F} = 0$ is aready clear):

$$\widetilde{E}(u, v) = 4E(2u, \arccos((\cos v)/2))$$

= 4 cos² arccos((cos v)/2))
= 4((cos v)/2)² = cos² v = E(u, v),

as $\cos(\arccos z) = z$ for $z \in [-1, 1]$. Moreover,

$$\begin{split} \widetilde{G}(u,v) &= \frac{\sin^2 v}{4(1 - (\cos^2 v)/4)} G(2u, \arccos((\cos v)/2)) \\ &= \frac{\sin^2 v}{4(1 - (\cos^2 v)/4)} \left(\frac{1}{\cos^2(\arccos((\cos v)/2))} - 1\right) \\ &= \frac{\sin^2 v}{4(1 - (\cos^2 v)/4)} \left(\frac{1}{(\cos^2 v)/4} - 1\right) \\ &= \frac{\sin^2 v}{4(1 - (\cos^2 v)/4)} \left(\frac{1 - \cos^2 v/4}{(\cos^2 v)/4}\right) \\ &= \frac{\sin^2 v}{\cos^2 v} = G(u,v) \end{split}$$

(where we use the expression of G(u, v) involving $\cos v$ only for the second equality).

Hence, by Proposition 8.15, f is a local isometry.

For f being an isometry, we also need that $f: S_1 \longrightarrow S_2$ is a bijection: Basically, we map $(u, v) \in U_1 = (0, \pi) \times (0, \pi/2)$ onto $\Phi(u, v) := (2u, \arccos((\cos v)/2)) \in U_2 = (0, 2\pi) \times (\pi/3, \pi/2)$, and as

$$\psi \colon (0,\pi) \longrightarrow (0,2\pi), \quad \psi(u) = 2u$$

and

$$\varphi \colon (0, \pi/2) \longrightarrow (\pi/3, \pi/2), \quad \varphi(v) = \arccos((\cos v)/2)$$

are both bijections, $\Phi: U_1 \longrightarrow U_2$ is a bijection and hence also $f = \mathbf{x} \circ \Phi \circ \mathbf{x}^{-1}$.

12.1. (*) Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an isometry of S.

Solution:

Let S be parametrised by $\boldsymbol{x} \colon U \longrightarrow S$ with

$$\boldsymbol{x}(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$$

and $U = (-\pi, \pi) \times J$ or $U = (0, 2\pi) \times J$, where $f: J \longrightarrow (0, \infty)$ and $g: J \longrightarrow \mathbb{R}$ are the functions of the generating curve given by $v \mapsto (f(v), 0, g(v))$. We know that

$$E(u, v) = f(v)^2$$
, $F(u, v) = 0$, $G(u, v) = f'(v)^2 + g'(v)^2$

The rotation R by an angle ϑ around the symmetry axis is define by

$$R(\boldsymbol{x}(u,v)) = \boldsymbol{x}(u+\vartheta,v)$$

(for appropriate parameter values $(u, v) \in U$ such that $(u + \vartheta, v) \in U$). Then we have

$$\begin{aligned} R_u(u,v) &= (R \circ \boldsymbol{x})_u(u,v) = \boldsymbol{x}_u(u+\vartheta,v) \\ R_v(u,v) &= (R \circ \boldsymbol{x})_v(u,v) = \boldsymbol{x}_v(u+\vartheta,v), \end{aligned}$$

hence

$$\begin{split} \widetilde{E}(u,v) &= \langle R_u(u,v), R_u(u,v) \rangle = \boldsymbol{x}_u(u+\vartheta,v) \cdot \boldsymbol{x}_u(u+\vartheta,v) = E(u+\vartheta,v) = f(v)^2 \\ &= E(u,v) \\ \widetilde{F}(u,v) &= \langle R_u(u,v), R_v(u,v) \rangle = \boldsymbol{x}_u(u+\vartheta,v) \cdot \boldsymbol{x}_v(u+\vartheta,v) = 0 = F(u,v) \\ \widetilde{G}(u,v) &= \langle R_v(u,v), R_v(u,v) \rangle = \boldsymbol{x}_v(u+\vartheta,v) \cdot \boldsymbol{x}_v(u+\vartheta,v) \\ &= G(u+\vartheta,v) = f'(v)^2 + g'(v)^2 = G(u,v) \end{split}$$

(in other words, the coefficients do not depend on the angle variable u).

Hence, f is a local isometry. Moreover, $R = R_{\vartheta} \colon S \longrightarrow S$ is obviously a bijection, so it is a global isometry.

Alternatively, one can note that $R = R_{\vartheta} \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is a linear orthogonal map, so its differential $d_p R_{\vartheta} = R_{\vartheta}$ preserves lengths of all tangent (to \mathbb{R}^3) vectors. This means that R_{ϑ} is a global isometry of any surface onto its image. Now, since $R_{\vartheta}(S) = S$, R_{ϑ} is a global isometry of S.

12.2. The disc model of the hyperbolic plane.

Let \mathbb{D} denote the unit disc $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with first fundamental form

$$\widetilde{E}=\widetilde{G}=\frac{4}{(1-x^2-y^2)^2},\quad \widetilde{F}=0.$$

Let \mathbb{H} be the hyperbolic plane with coordinates $(u, v) \in \mathbb{R} \times (0, \infty)$ and first fundamental form

$$E = G = \frac{1}{v^2}, \quad F = 0.$$

Show that the map $f \colon \mathbb{H} \longrightarrow \mathbb{D}$ given by

$$f(z) = \frac{z - \mathrm{i}}{z + \mathrm{i}}, \qquad z = u + \mathrm{i}v \in \mathbb{H},$$

is an isometry.

Solution: We can consider $(x, y) = (\operatorname{Re}(f), \operatorname{Im}(f))$ as a coordinate system on \mathbb{D} (the bijectivity can be checked easily, please also check that the differential is non-degenerate everywhere).

If we take a tangent vector $\boldsymbol{w} = (a, b) \in T_{(u,v)}\mathbb{H}$, then the square of its length is equal to

$$\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{(u,v)} = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} E(u,v) & F(u,v) \\ F(u,v) & G(u,v) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a^2 E + 2abF + b^2 G = \frac{a^2 + b^2}{v^2} = \frac{\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{\text{Eucl}}}{v^2}$$

by the definition of the coefficients of the first fundamental form, where $\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{\text{Eucl}}$ is the Euclidean dot product.

The differential of f can be written as

$$d_{(u,v)}\boldsymbol{f} = \begin{pmatrix} \frac{\partial x(u,v)}{\partial u} & \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial u} & \frac{\partial y(u,v)}{\partial v} \end{pmatrix}, = \begin{pmatrix} \boldsymbol{f}_u & \boldsymbol{f}_v \end{pmatrix},$$

where

$$\boldsymbol{f}_{u} = \begin{pmatrix} \frac{\partial x(u,v)}{\partial u} \\ \frac{\partial y(u,v)}{\partial u} \end{pmatrix} = d_{(u,v)}\boldsymbol{f}((1,0)), \qquad \boldsymbol{f}_{v} = \begin{pmatrix} \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial v} \end{pmatrix} = d_{(u,v)}\boldsymbol{f}((0,1)).$$

Then

$$d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) = \begin{pmatrix} \frac{\partial x(u,v)}{\partial u} & \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial u} & \frac{\partial y(u,v)}{\partial v} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a\boldsymbol{f}_u + b\boldsymbol{f}_v.$$

The square of the length of $d_{(u,v)} f(w)$ is then can be computed as

$$\begin{split} \langle d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}), d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) \rangle_{\boldsymbol{f}(u,v)} &= (d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}))^T \begin{pmatrix} \widetilde{E}(u,v) & \widetilde{F}(u,v) \\ \widetilde{F}(u,v) & \widetilde{G}(u,v) \end{pmatrix} (d_{(u,v)}\boldsymbol{f}(\boldsymbol{w})) = \\ \frac{4\langle d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}), d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) \rangle_{\text{Eucl}}}{(1-x^2-y^2)^2} &= \frac{4}{(1-x^2-y^2)^2} (a^2 \langle \boldsymbol{f}_u, \boldsymbol{f}_u \rangle_{\text{Eucl}} + 2ab \langle \boldsymbol{f}_u, \boldsymbol{f}_v \rangle_{\text{Eucl}} + b^2 \langle \boldsymbol{f}_v, \boldsymbol{f}_v \rangle_{\text{Eucl}}). \end{split}$$

To show that \boldsymbol{f} is an isometry, We need to show that $\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{(u,v)} = \langle d_{(u,v)} \boldsymbol{f}(\boldsymbol{w}), d_{(u,v)} \boldsymbol{f}(\boldsymbol{w}) \rangle_{\boldsymbol{f}(u,v)}$.

Writing

$$\begin{array}{rcl} x+iy &=& {\pmb f}(u+iv) \\ &=& \frac{u+iv-i}{u+iv+i} \\ &=& \frac{(u+iv-i)(u-iv-i)}{u^2+(v+1)^2} \\ &=& \frac{u^2+v^2-1}{u^2+(v+1)^2}+i\frac{-2u}{u^2+(v+1)^2}, \end{array}$$

we have

$$\mathbf{f}(u,v) = (x(u,v), y(u,v)) = \frac{1}{u^2 + (v+1)^2}(u^2 + v^2 - 1, -2u).$$

In particular, we can calculate that

$$1 - x^{2} - y^{2} = 1 - \frac{(u^{2} + v^{2} - 1)^{2} + (-2u)^{2}}{(u^{2} + (v+1)^{2})^{2}} = \frac{4v}{u^{2} + (v+1)^{2}}.$$

Taking partial derivatives gives

$$\begin{split} \boldsymbol{f}_u &= \frac{1}{(u^2+(v+1)^2)^2}(4u(v+1),2u^2-2(v+1)^2), \\ \boldsymbol{f}_v &= \frac{1}{(u^2+(v+1)^2)^2}(-2u^2+2(v+1)^2,4u(v+1)). \end{split}$$

Computing the (Euclidean) inner products of the vectors above, we obtain

$$\begin{split} & \boldsymbol{f}_u \cdot \boldsymbol{f}_u \ = \ \frac{4}{(u^2 + (v+1)^2)^4} (4u^2(v+1)^2 + (u^2 - (v+1)^2)^2) = \frac{4}{(u^2 + (v+1)^2)^2}, \\ & \boldsymbol{f}_u \cdot \boldsymbol{f}_v \ = \ 0, \\ & \boldsymbol{f}_v \cdot \boldsymbol{f}_v \ = \ \frac{4}{(u^2 + (v+1)^2)^2}. \end{split}$$

Therefore,

$$\begin{split} 4\frac{\boldsymbol{f}_{u}\cdot\boldsymbol{f}_{u}}{(1-x^{2}-y^{2})^{2}} &= 4\frac{\frac{(u^{2}+(v+1)^{2})^{2}}{\left(\frac{4v}{u^{2}+(v+1)^{2}}\right)^{2}} = \frac{1}{v^{2}} \quad = \quad E, \\ 4\frac{\boldsymbol{f}_{u}\cdot\boldsymbol{f}_{v}}{(1-x^{2}-y^{2})^{2}} &= 0 \quad = \quad F, \\ 4\frac{\boldsymbol{f}_{v}\cdot\boldsymbol{f}_{v}}{(1-x^{2}-y^{2})^{2}} &= \frac{1}{v^{2}} \quad = \quad G, \end{split}$$

and thus

$$\langle d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}), d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) \rangle_{\boldsymbol{f}(u,v)} = a^2 E + 2abF + b^2 G = \langle \boldsymbol{w}, \boldsymbol{w} \rangle_{(u,v)}$$

(compare to Proposition 8.15 from the lectures).

12.3. Hyperboloid model of the hyperbolic plane.

Let $Q: \mathbb{R}^3 \to \mathbb{R}$ be the quadratic form defined by

$$Q(x_1, x_2, x_3) = x_1^2 + x_2^2 - x_3^2, \qquad (x_1, x_2, x_3) \in \mathbb{R}^3$$

(the quadratic space (\mathbb{R}^3, Q) is usually denoted by $\mathbb{R}^{2,1}$). Let

$$S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \,|\, Q(x_1, x_2, x_3) = -1\}$$

(i.e. S is a hyperboloid of two sheets).

Recall that the *induced quadratic form* I_p on each tangent plane T_pS is defined by $I_p(w) = Q(w)$ for every $w \in T_p(S)$. Show that I_p is positive definite and that the map $f : \mathbb{D} \to S$ from the disc model of the hyperbolic plane (see the previous exercise) defined by

$$\boldsymbol{f}(x,y) = \frac{1}{1 - x^2 - y^2} \, (2x, 2y, 1 + x^2 + y^2), \qquad (x,y) \in \mathbb{D},$$

maps \mathbb{D} isometrically onto the component of S for which $x_3 > 0$.

Solution:

Note that f is parametrization of the "upper" part of S (please check bijectivity!). In particular,

$$\begin{array}{rcl} {\pmb f}_x & = & \frac{2}{(1-x^2-y^2)^2} \, ((1+x^2-y^2), 2xy, 2x), \\ {\pmb f}_y & = & \frac{2}{(1-x^2-y^2)^2} \, (2xy, (1-x^2+y^2), 2y), \end{array}$$

which implies that

$$\begin{split} \widetilde{E} &= Q(\boldsymbol{f}_x) = \frac{4}{(1-x^2-y^2)^4} \left((1+x^2-y^2)^2 + (2xy)^2 - (2x)^2 \right) = \frac{4}{(1-x^2-y^2)^2} = E, \\ \widetilde{F} &= 0, \\ \widetilde{G} &= Q(\boldsymbol{f}_y) = \frac{4}{(1-x^2-y^2)^2} = G. \end{split}$$