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Solutions 11-12

11.1. Let a > 0. Construct explicitly a local isometry from the plane P = { (u, v, 0) ∈ R3 |u, v ∈ R }
onto the cylinder S = { (x, y, z) ∈ R3 |x2 + y2 = a2 }.

Solution:

A canonical parametrization of the plane P is

x : U = R2 −→ P, x(u, v) = (u, v, 0).

Clearly, xu = (1, 0, 0), xv = (0, 1, 0) and E = 〈xu,xu〉 = 1, F = 〈xu,xv〉 = 0 and G = 〈xv,xv〉 = 1.

We define a candidate for the isometry via this parametrisation

f : P −→ S, f(u, v, 0) := (a cos(ωu), a sin(ωu), v)

for some positive constant ω > 0 (we could also interchange the role of u and v) (more precisely, we define
f ◦x : U −→ S). In order to check that f is a local isometry, we just need to calculate the coefficents of the
fundamental form of S with respect to the (local) parametrisation f ◦ x, and see whether they equal E, F
and G. But here we have

fu = (f ◦ x)u = (−aω sin(ωu), aω cos(ωu), 0) and fv = (f ◦ x)v = (0, 0, 1),

so that
Ẽ = 〈fu, fu〉 = a2ω2, F̃ = 〈fu, fv〉 = 0 and G̃ = 〈fv, fv〉 = 1.

We have F̃ = F and G̃ = G. In order to have Ẽ = E, we need ω = 1/a, then f is a local isometry (by
Proposition 8.15).

11.2. (∗) Let b be a positive number such that
√

1 + b2 is an integer n. Let S be the circular cone
obtained by rotating the curve given by α(v) = (v, 0, bv), v > 0, about the z-axis. Let the
coordinate xy-plane P be parametrized by polar coordinates (r, ϑ):

x : U = (0,∞)× (0, 2π) −→ P, x(r, ϑ) = (r cosϑ, r sinϑ, 0).

Show that the map f : P \ {(0, 0, 0)} −→ S defined on x(U) by

f(x(r, ϑ)) =
1

n

(
r cosnϑ, r sinnϑ, br

)
is a local isometry on x(U).

Solution:

We have
xr = (cosϑ, sinϑ, 0) and xϑ = (−r sinϑ, r cosϑ, 0),

so that the coefficients of the first fundamental form of P with respect to the parametrization x (polar
coordinates — parametrized P \ {0}) are

E(r, ϑ) = 1, F (r, ϑ) = 0 and G(r, ϑ) = r2.
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Now calculate

fr := (f ◦ x)r =
1

n
(cos(nϑ), sin(nϑ), b) and fϑ := (f ◦ x)ϑ = (−r sin(nϑ), r cos(nϑ), 0),

so that

Ẽ := 〈fr, fr〉 =
1 + b2

n2
, F̃ := 〈fr, fϑ〉 = 0 and G̃ := 〈fϑ, fϑ〉 = r2.

By assumption, (1 + b2)/n2 = 1, so that Ẽ = E, F̃ = F and G̃ = G, hence f is a local isometry by
Proposition 8.15.

11.3. Let S1, S2, S3 be regular surfaces.

(a) Suppose that f : S1 −→ S2 and g : S2 −→ S3 are local isometries. Prove that g ◦ f : S1 −→ S3
is a local isometry.

(b) Suppose that f : S1 −→ S2 and g : S2 −→ S3 are conformal maps with conformal factors
λ : S1 −→ (0,∞) and µ : S2 −→ (0,∞), respectively. Prove that g ◦ f : S1 −→ S3 is a
conformal map and calculate its conformal factor. (The conformal factor of a conformal map
is the function appearing as factor in front of the inner product in the definition.)

(c) Let f and g be conformal maps with conformal factors λ and µ as in the previous part. Find
a condition on λ and µ such that g ◦ f is a (local) isometry.

Solution:

(a) By the definition of a local isometry,

〈dp1f(v1), dp1f(w1)〉f(p1) = 〈v1,w1〉p1
and 〈dp2

g(v2), dp2
f(w2)〉g(p2) = 〈v2,w2〉p2

for all p1 ∈ S1, v1,w1 ∈ Tp1
S1 and p2 ∈ S2, v2,w2 ∈ Tp2

S2.

This notation is also already part ot the solution: applying these two equations with p2 = f(p1),
v2 = dp1f(v1) and w2 = dp1f(w1), and using the chain rule

dp1
(g ◦ f)(w1) = df(p1)g(dp1

f(w1))

for all p1 ∈ S1 and w1 ∈ Tp1S1, we obtain

〈dp1
(g ◦ f)(v1), dp1

(g ◦ f)f(w1)〉(g◦f)(p1) = 〈df(p1)g(dp1
f(v1)), df(p1)g(dp1

f(w1))〉(g(f(p1))

= 〈dp1
f(v1), dp1

f(w1)〉f(p1)

= 〈v1,w1〉p1

using the chain rule for the first, the isometry of g for the second and the isometry of f for the last
equality. Hence we have shown that g ◦ f) is a local isometry using the definition.

(b) The proof is almost the same as the one of the first part: since f and g are conformal maps, we have

〈dp1
f(v1), dp1

f(w1)〉f(p1) = λ(p1)〈v1,w1〉p1
and 〈dp2

g(v2), dp2
f(w2)〉g(p2) = µ(p2)〈v2,w2〉p2

for all p1 ∈ S1, v1,w1 ∈ Tp1
S1 and p2 ∈ S2, v2,w2 ∈ Tp2

S2.

Applying these two equations with p2 = f(p1), v2 = dp1
f(v1) and w2 = dp1

f(w1), and using again
the chain rule we obtain

〈dp1(g ◦ f)(v1), dp1(g ◦ f)f(w1)〉(g◦f)(p1) = 〈df(p1)g(dp1f(v1)), df(p1)g(dp1f(w1))〉(g(f(p1))

= µ(f(p1))〈dp1f(v1), dp1f(w1)〉f(p1)

= µ(f(p1))λ(p1)〈v1,w1〉p1
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using the chain rule for the first, the conformality of g for the second and the conformality of f for the
last equality. Hence we have shown that g ◦ f) is a conformal map with conformal factor

(µ ◦ f) · λ : S1 −→ (0,∞, p1 7→ µ(f(p1))λ(p1).

(c) The third part is again rather trivial. We want that (µ ◦ f) · λ equals the constant function 1 on S1,
i.e., that

µ(f(p1)) =
1

λ(p1)

for all p1 ∈ S1. In particular, we do not need any restriction on the behaviour of µ outside the range
f(S1) of f .

11.4. Let S be the surface of revolution parametrized by

x(u, v) =
(

cos v cosu, cos v sinu,− sin v + log tan
(π

4
+
v

2

))
,

where 0 < u < 2π, 0 < v < π/2. Let S1 be the region

S1 = {x(u, v) | 0 < u < π, 0 < v < π/2 }

and let S2 be the region

S2 = {x(u, v) | 0 < u < 2π, π/3 < v < π/2 }.

Show that the map

x(u, v) 7→ x
(

2u, arccos
(1

2
cos v

))
is an isometry from S1 onto S2.

Solution:

The map f : S1 −→ S2 is actually a bijection (see below), so one can prove that it gives rise to a local
parametrization; we will use Prop. 8.15 from the lectures and show that the coefficients E, F and G (w.r.t.

the parametrization x) are the same as the coefficients Ẽ, F̃ and G̃ w.r.t the parametrization

x̃(u, v) := x
(

2u, arccos
(1

2
cos v

))
.

Let us calculate E, F and G first. We have

xu = (− cos v sinu, cos v cosu, 0), xv = (− sin v cosu,− sin v sinu,− cos v + 1/ cos v),

as the derivative of g with g(v) = − sin v + log tan(π/4 + v/2) is

g′(v) = − cos v +
1

2

(
tan
(π

4
+
v

2

))−1
tan′

(π
4

+
v

2

)
= − cos v +

cos(π/4 + v/2)

2 sin(π/4 + v/2) cos2(π/4 + v/2)

= − cos v +
1

sin(π/2 + v)

= − cos v +
1

cos v
=
− cos2 v + 1

cos v
=

sin2 v

cos v
.
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In particular,

E(u, v) = cos2 v, F (u, v) = 0,

G(u, v) = sin2 v +
( 1

cos v
− cos v

)2
= 1− cos2 v +

1

cos2 v
− 2 + cos2 v

=
1

cos2 v
− 1 =

1− cos2 v

cos2 v
= tan2 v

Let us now calculate the coefficients w.r.t. the parametrization x̃ (make sure you use the arguments of the
functions correctly):

fu(u, v) = x̃u(u, v) = 2xu(2u, arccos((cos v)/2))

fv(u, v) = x̃v(u, v) = ϕ′(v)xv(2u, arccos((cos v)/2))

=
sin v

2
√

1− (cos2 v)/4
xv(2u, arccos((cos v)/2))

since the derivative of ϕ given by ϕ(v) = arccos((cos v)/2) is

ϕ′(v) =
1

2
(− sin v) arccos′((cos v)/2) =

sin v

2
√

1− (cos2 v)/4
.

In particular,

〈fu(u, v), fu(u, v)〉 = Ẽ(u, v) = 4E(2u, arccos((cos v)/2)),

〈fu(u, v), fv(u, v)〉 = F̃ (u, v) = 2ϕ′(v)F (. . . ) = 0

〈fv(u, v), fv(u, v)〉 = G̃(u, v) =
sin2 v

4(1− (cos2 v)/4)
G(2u, arccos((cos v)/2)).

Let us now simplify these expressions in order to obtain E = Ẽ and G = G̃ (F = F̃ = 0 is aready clear):

Ẽ(u, v) = 4E(2u, arccos((cos v)/2))

= 4 cos2 arccos((cos v)/2))

= 4
(
(cos v)/2

)2
= cos2 v = E(u, v),

as cos(arccos z) = z for z ∈ [−1, 1].

Moreover,

G̃(u, v) =
sin2 v

4(1− (cos2 v)/4)
G(2u, arccos((cos v)/2))

=
sin2 v

4(1− (cos2 v)/4)

( 1

cos2(arccos((cos v)/2))
− 1
)

=
sin2 v

4(1− (cos2 v)/4)

( 1

(cos2 v)/4
− 1
)

=
sin2 v

4(1− (cos2 v)/4)

(1− cos2 v/4

(cos2 v)/4

)
=

sin2 v

cos2 v
= G(u, v)
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(where we use the expression of G(u, v) involving cos v only for the second equality).

Hence, by Proposition 8.15, f is a local isometry.

For f being an isometry, we also need that f : S1 −→ S2 is a bijection: Basically, we map (u, v) ∈ U1 =
(0, π)× (0, π/2) onto Φ(u, v) := (2u, arccos((cos v)/2)) ∈ U2 = (0, 2π)× (π/3, π/2), and as

ψ : (0, π) −→ (0, 2π), ψ(u) = 2u

and
ϕ : (0, π/2) −→ (π/3, π/2), ϕ(v) = arccos((cos v)/2)

are both bijections, Φ: U1 −→ U2 is a bijection and hence also f = x ◦ Φ ◦ x−1.

12.1. (∗) Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an
isometry of S.

Solution:

Let S be parametrised by x : U −→ S with

x(u, v) = (f(v) cosu, f(v) sinu, g(v))

and U = (−π, π) × J or U = (0, 2π) × J , where f : J −→ (0,∞) and g : J −→ R are the functions of the
generating curve given by v 7→ (f(v), 0, g(v)). We know that

E(u, v) = f(v)2, F (u, v) = 0, G(u, v) = f ′(v)2 + g′(v)2

The rotation R by an angle ϑ around the symmetry axis is define by

R(x(u, v)) = x(u+ ϑ, v)

(for appropriate parameter values (u, v) ∈ U such that (u+ ϑ, v) ∈ U). Then we have

Ru(u, v) = (R ◦ x)u(u, v) = xu(u+ ϑ, v)

Rv(u, v) = (R ◦ x)v(u, v) = xv(u+ ϑ, v),

hence

Ẽ(u, v) = 〈Ru(u, v), Ru(u, v)〉 = xu(u+ ϑ, v) · xu(u+ ϑ, v) = E(u+ ϑ, v) = f(v)2

= E(u, v)

F̃ (u, v) = 〈Ru(u, v), Rv(u, v)〉 = xu(u+ ϑ, v) · xv(u+ ϑ, v) = 0 = F (u, v)

G̃(u, v) = 〈Rv(u, v), Rv(u, v)〉 = xv(u+ ϑ, v) · xv(u+ ϑ, v)

= G(u+ ϑ, v) = f ′(v)2 + g′(v)2 = G(u, v)

(in other words, the coefficients do not depend on the angle variable u).

Hence, f is a local isometry. Moreover, R = Rϑ : S −→ S is obviously a bijection, so it is a global isometry.

Alternatively, one can note that R = Rϑ : R3 −→ R3 is a linear orthogonal map, so its differential dpRϑ = Rϑ

preserves lengths of all tangent (to R3) vectors. This means that Rϑ is a global isometry of any surface onto
its image. Now, since Rϑ(S) = S, Rϑ is a global isometry of S.
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12.2. The disc model of the hyperbolic plane.
Let D denote the unit disc {(x, y) ∈ R2 |x2 + y2 < 1} with first fundamental form

Ẽ = G̃ =
4

(1− x2 − y2)2
, F̃ = 0.

Let H be the hyperbolic plane with coordinates (u, v) ∈ R× (0,∞) and first fundamental form

E = G =
1

v2
, F = 0.

Show that the map f : H −→ D given by

f(z) =
z − i

z + i
, z = u+ iv ∈ H,

is an isometry.

Solution: We can consider (x, y) = (Re(f), Im(f)) as a coordinate system on D (the bijectivity can be
checked easily, please also check that the differential is non-degenerate everywhere).

If we take a tangent vector w = (a, b) ∈ T(u,v)H, then the square of its length is equal to

〈w,w〉(u,v) =
(
a b

)(E(u, v) F (u, v)
F (u, v) G(u, v)

)(
a
b

)
= a2E + 2abF + b2G =

a2 + b2

v2
=
〈w,w〉Eucl

v2

by the definition of the coefficients of the first fundamental form, where 〈w,w〉Eucl is the Euclidean dot
product.

The differential of f can be written as

d(u,v)f =

(
∂x(u,v)

∂u
∂x(u,v)

∂v
∂y(u,v)

∂u
∂y(u,v)

∂v

)
,=
(
fu fv

)
,

where

fu =

(
∂x(u,v)

∂u
∂y(u,v)

∂u

)
= d(u,v)f((1, 0)), fv =

(
∂x(u,v)

∂v
∂y(u,v)

∂v

)
= d(u,v)f((0, 1)).

Then

d(u,v)f(w) =

(
∂x(u,v)

∂u
∂x(u,v)

∂v
∂y(u,v)

∂u
∂y(u,v)

∂v

)(
a
b

)
= afu + bfv.

The square of the length of d(u,v)f(w) is then can be computed as

〈d(u,v)f(w), d(u,v)f(w)〉f(u,v) = (d(u,v)f(w))T

(
Ẽ(u, v) F̃ (u, v)

F̃ (u, v) G̃(u, v)

)
(d(u,v)f(w)) =

4〈d(u,v)f(w), d(u,v)f(w)〉Eucl

(1− x2 − y2)2
=

4

(1− x2 − y2)2
(a2〈fu,fu〉Eucl + 2ab〈fu,fv〉Eucl + b2〈fv,fv〉Eucl).

To show that f is an isometry, We need to show that 〈w,w〉(u,v) = 〈d(u,v)f(w), d(u,v)f(w)〉f(u,v).
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Writing

x+ iy = f(u+ iv)

=
u+ iv − i
u+ iv + i

=
(u+ iv − i)(u− iv − i)

u2 + (v + 1)2

=
u2 + v2 − 1

u2 + (v + 1)2
+ i

−2u

u2 + (v + 1)2
,

we have

f(u, v) = (x(u, v), y(u, v)) =
1

u2 + (v + 1)2
(u2 + v2 − 1,−2u).

In particular, we can calculate that

1− x2 − y2 = 1− (u2 + v2 − 1)2 + (−2u)2

(u2 + (v + 1)2)2
=

4v

u2 + (v + 1)2
.

Taking partial derivatives gives

fu =
1

(u2 + (v + 1)2)2
(4u(v + 1), 2u2 − 2(v + 1)2),

fv =
1

(u2 + (v + 1)2)2
(−2u2 + 2(v + 1)2, 4u(v + 1)).

Computing the (Euclidean) inner products of the vectors above, we obtain

fu · fu =
4

(u2 + (v + 1)2)4
(4u2(v + 1)2 + (u2 − (v + 1)2)2) =

4

(u2 + (v + 1)2)2
,

fu · fv = 0,

fv · fv =
4

(u2 + (v + 1)2)2
.

Therefore,

4
fu · fu

(1− x2 − y2)2
= 4

4
(u2+(v+1)2)2(

4v
u2+(v+1)2

)2 =
1

v2
= E,

4
fu · fv

(1− x2 − y2)2
= 0 = F,

4
fv · fv

(1− x2 − y2)2
=

1

v2
= G,

and thus
〈d(u,v)f(w), d(u,v)f(w)〉f(u,v) = a2E + 2abF + b2G = 〈w,w〉(u,v)

(compare to Proposition 8.15 from the lectures).

12.3. Hyperboloid model of the hyperbolic plane.
Let Q : R3 → R be the quadratic form defined by

Q(x1, x2, x3) = x21 + x22 − x23, (x1, x2, x3) ∈ R3
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(the quadratic space (R3, Q) is usually denoted by R2,1). Let

S = {(x1, x2, x3) ∈ R3 |Q(x1, x2, x3) = −1}

(i.e. S is a hyperboloid of two sheets).

Recall that the induced quadratic form Ip on each tangent plane TpS is defined by Ip(w) = Q(w)
for every w ∈ Tp(S). Show that Ip is positive definite and that the map f : D→ S from the disc
model of the hyperbolic plane (see the previous exercise) defined by

f(x, y) =
1

1− x2 − y2
(2x, 2y, 1 + x2 + y2), (x, y) ∈ D,

maps D isometrically onto the component of S for which x3 > 0.

Solution:

Note that f is parametrization of the “upper” part of S (please check bijectivity!). In particular,

fx =
2

(1− x2 − y2)2
((1 + x2 − y2), 2xy, 2x),

fy =
2

(1− x2 − y2)2
(2xy, (1− x2 + y2), 2y),

which implies that

Ẽ = Q(fx) =
4

(1− x2 − y2)4
((1 + x2 − y2)2 + (2xy)2 − (2x)2) =

4

(1− x2 − y2)2
= E,

F̃ = 0,

G̃ = Q(fy) =
4

(1− x2 − y2)2
= G.
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