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11.1.

11.2.

Solutions 11-12

Let a > 0. Construct explicitly a local isometry from the plane P = { (u,v,0) € R?|u,v € R}
onto the cylinder S = { (x,y,2) € R®|2% + y* = a® }.

Solution:
A canonical parametrization of the plane P is
z:U=R?>— P, x(u,v) = (u,v,0).
Clearly, x,, = (1,0,0), , = (0,1,0) and FE = (x,x,) = 1, F = (xy,x,) =0 and G = (x,,x,) = 1.
We define a candidate for the isometry via this parametrisation
f: P— S, f(u,v,0) := (acos(wu), asin(wu),v)

for some positive constant w > 0 (we could also interchange the role of u and v) (more precisely, we define
fox: U — S). In order to check that f is a local isometry, we just need to calculate the coefficents of the
fundamental form of S with respect to the (local) parametrisation f o, and see whether they equal E, F
and G. But here we have

fu=(fox), = (—awsin(wu), aw cos(wu),0) and f, = (fox), =(0,0,1),

so that B B B
E = {fu,fu) =d*?* F={(fu,fs)=0 and G=(f,, f,)=1

We have F = F and G = G. In order to have E = E, we need w = 1/a, then f is a local isometry (by
Proposition 8.15).

(x) Let b be a positive number such that v/1+ b2 is an integer n. Let S be the circular cone
obtained by rotating the curve given by a(v) = (v,0,bv), v > 0, about the z-axis. Let the
coordinate zy-plane P be parametrized by polar coordinates (r,4):

x: U =(0,00) x (0,21) — P, x(r,9) = (rcosd,rsind,0).

Show that the map f: P\ {(0,0,0)} — S defined on x(U) by
1
f(x(r,9)) = E(r cos nd, r sinnd, br)
is a local isometry on x(U).

Solution:

We have
. = (cos?,sin®,0) and xy = (—rsind,rcos?,0),

so that the coefficients of the first fundamental form of P with respect to the parametrization x (polar
coordinates — parametrized P\ {0}) are

E(r,9) =1, F(r,9)=0 and G(r,9) =12



Now calculate

fri=(fox), = %(cos(nﬂ),sin(m?),b) and fy := (fox)y = (—rsin(nd),r cos(nd),0),

so that

~ 2 ~ ~
E::(fT,fT):ﬂ, Fi={fr,fo) =0 and G := (fg,fs) =1°

n2

By assumption, (1 + b%)/n? = 1, so that E=E, F =F and G = G, hence f is a local isometry by
Proposition 8.15.

11.3. Let 51, 59,53 be regular surfaces.

(a)
(b)

()

Suppose that f: 57 — S5 and g: S5 — S3 are local isometries. Prove that go f: 5] — S3
is a local isometry.

Suppose that f: S — S and g: S9 — S3 are conformal maps with conformal factors
A: S — (0,00) and p: S — (0,00), respectively. Prove that go f: S; — S3 is a
conformal map and calculate its conformal factor. (The conformal factor of a conformal map
is the function appearing as factor in front of the inner product in the definition.)

Let f and g be conformal maps with conformal factors A and p as in the previous part. Find
a condition on A and p such that g o f is a (local) isometry.

Solution:

(a)

By the definition of a local isometry,

<dp1f(v1)a dplf(wl)>f(p1) = <vla w1>p1 and <dng(1)2)v dp2f(w2)>g(p2) = <1;27w2>172

for all p1 € Sl, V1, Wi € TplSl and P2 € Sg, Vo, Wy € szsg.
This notation is also already part ot the solution: applying these two equations with ps = f(p1),
vo = dp, f(v1) and wy = dp, f(w1), and using the chain rule

dp, (g0 f)(w1) = dgp,)9(dp, f(w1))

for all p; € S; and w; € T, 51, we obtain

(dp, (g0 f)(v1),dp, (g0 f)f(W1))(gor)p) = {drp)9(dp, f (1)), dg ) 9(dp, [ (W1))) (g1 (1))
= <d;l71 f(vl)adp1f(w1)>f(l71)
= <’01, w1>p1
using the chain rule for the first, the isometry of g for the second and the isometry of f for the last
equality. Hence we have shown that g o f) is a local isometry using the definition.

The proof is almost the same as the one of the first part: since f and g are conformal maps, we have

<dp1f(111), dp1f(w1)>f(p1) = )\(pl)<111,w1>p1 and <dp2g(v2)7dp2f('w2)>g(p2) = M(p2)<v2aw2>p2

for all p1 € S1, vi, w1 €T}, 51 and py € S, vo, wy € T}, So.
Applying these two equations with pe = f(p1), v2 = dp, f(v1) and wy = d,, f(w1), and using again
the chain rule we obtain

(dp, (g0 f)(01),dp, (g0 F)f(W1))(gor)p1) = (drp)9(dp, f (1)), dp ) 9(dp, f(W1))) (g5 (p1))
= u(f (p1)){dp, f(©1), dp, f(W1)) (1)
=u (

(f D1
(f(p1))A(p1)(v1, w1)p,



using the chain rule for the first, the conformality of g for the second and the conformality of f for the
last equality. Hence we have shown that g o f) is a conformal map with conformal factor

(o f)-A: 81— (0,00,  p1+= p(f(p1))A(p1).

(c) The third part is again rather trivial. We want that (uo f) - A equals the constant function 1 on Si,

i.e., that
1
p(f(p1)) = 77—
( ( 1)) )\(pl)
for all p; € S1. In particular, we do not need any restriction on the behaviour of u outside the range
f(Sl) of f

11.4. Let S be the surface of revolution parametrized by

. . T
x(u,v) = (cosvcosu, cosvsinu, —sinv + logtan<1 + 5)),

where 0 < u < 27,0 < v < /2. Let S; be the region
Si={z(u,v)|0<u<m0<v<m/2}
and let S2 be the region
Sy ={x(u,v)|0<u<2m,7/3<v<m/2}.
Show that the map
x(u,v) — m(?u, arccos(% coS v))
is an isometry from .S7 onto Ss.

Solution:

The map f: S; — So is actually a bijection (see below), so one can prove that it gives rise to a local
parametrization; we will use Prop. 8.15 from the lectures and show that the coefficients E, F and G (w.r.t.
the parametrization x) are the same as the coefficients £, F' and G w.r.t the parametrization

~ 1
z(u,v) = :L'(Qu, arccos(i cos v))

Let us calculate FE, F' and G first. We have
., = (— cos v sinu, cosv cos u, 0), x, = (—sinvcosu, —sinvsinu, — cosv + 1/ cosv),
as the derivative of g with g(v) = —sinv + log tan(w/4 + v/2) is
, 1 T u\\"!,  ,/m v
g'0) = —cosot 5 (san( G+ 5)) o' (54 3)

cos(m/4 4+ v/2)
2sin(m/4 + v/2) cos?(mw /4 +v/2)

1
= cosvd sin(mw/2 4+ v)

= —COSV +

1 —cos?v+1 sin’ v
= —COsSV + = = .
Ccos v Ccos v Ccos v




In particular,
E(u,v) = cos® v, F(u,v) =0,

1 2
G(u,v) = sin®v + (— — cos v)
cosv

1
=1—cos’v+ 5 — 924 cos?v
COS* v
1 1 —cos®v 9
= 5 —l=—=—=tan"v
COS“ v COS? v

Let us now calculate the coefficients w.r.t. the parametrization Z (make sure you use the arguments of the
functions correctly):

fu(u,v) = Zyy (u,v) = 2@, (2u, arccos((cos v) /2))
fo(u,v) = x,(u,v) = ¢’ (v)x,(2u, arccos((cos v) /2))
bW oo U)/4:1;v(2u, arccos((cosv)/2))

since the derivative of ¢ given by ¢(v) = arccos((cosv)/2) is

sinv
24/1 — (cos?v) /4

¢'(v) = %(—sin v) arccos’ ((cosv)/2) =

In particular,
(fu(u,v), fu(u,v)) = E(u,v) = 4E(2u, arccos((cosv)/2)),
(fulu,v), folu,0)) = F(u,0) = 2¢/(0)F(...) = 0

sin’ v

(folu,v), fo(u,v)) = G(u,v) = 10 = (cos? U)/4)G(2u,arccos((cos v)/2)).

Let us now simplify these expressions in order to obtain £ = Eand G=G (F = F=0is aready clear):

E(u,v) = 4E(2u, arccos((cos v) /2))
= 4 cos? arccos((cos v)/2))

= 4((0081})/2)2 = cos’v = E(u,v),

as cos(arccos z) = z for z € [—1,1].
Moreover,

~ SlIl2 v

G(u,v) = (1 = (cos20)/4) G (2u, arccos((cosv)/2))
B sin? v ( 1)
~ 4(1 — (cosZw cos?(arccos((cosv)/2))
B sin? v ( 1)
~ 4(1 — (cosZw (C082
B sin? v (1 — cos v/4)
~ 4(1 — (cosZw (cos?v
.
sin“ v
= =G
cos? v (u,0)



12.1.

(where we use the expression of G(u,v) involving cosv only for the second equality).
Hence, by Proposition 8.15, f is a local isometry.
For f being an isometry, we also need that f: S; — Sy is a bijection: Basically, we map (u,v) € Uy =
(0,7) x (0,7/2) onto ®(u,v) := (2u, arccos((cosv)/2)) € Uy = (0,27) x (w/3,7/2), and as
Y: (0,7) — (0,27), ¥(u) =2u

and
w: (0,7/2) — (7/3,7/2), (v) = arccos((cosv)/2)

are both bijections, ®: U; — Uy is a bijection and hence also f = x o ® oz~ 1.

() Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an
isometry of S.

Solution:

Let S be parametrised by : U — S with
@(u,v) = (f(v) cosu, f(v) sinu, g(v))
and U = (—m,m) x J or U = (0,27) x J, where f: J — (0,00) and g: J — R are the functions of the

generating curve given by v — (f(v),0, g(v)). We know that

E(u,v) = f(v)?,  Flu,v)=0,  G(u,v) = f'(v)* +g'(v)?
The rotation R by an angle ¥ around the symmetry axis is define by
R(x(u,v)) = x(u+ 9,v)
(for appropriate parameter values (u,v) € U such that (u+ ¢, v) € U). Then we have

Ry(u,v) = (Rox)y(u,v) = xy(u +J,v)
Ry(u,v) = (Rox),(u,v) = x,(u+ 9,v),

hence

E(u,v) = (Ry(u,v), Ry(u,v)) = @y (u+9,0) - 2y (u+ 9, v) = E(u+9,v) = f(v)?
= E(u,v)

F(u,v) = (Ry(u,v), Ry(u,v)) = xy(u+9,v) - xy(u+9,v) =0=F(u,v)

G(u,v) = (Ry(u,v), Ry(u,v)) = @y(u+9,v) - &, (u+ 9,v)

g'(v)?

=Gu+9,v) = f'(v)+4¢'(v G(u,v)

(in other words, the coefficients do not depend on the angle variable u).
Hence, f is a local isometry. Moreover, R = Ry: S — S is obviously a bijection, so it is a global isometry.
Alternatively, one can note that R = Ry: R® — R? is a linear orthogonal map, so its differential d, Ry = Ry

preserves lengths of all tangent (to R3) vectors. This means that Ry is a global isometry of any surface onto
its image. Now, since Ry(S) = S, Ry is a global isometry of S.



12.2. The disc model of the hyperbolic plane.
Let D denote the unit disc {(x,y) € R?|2? + y? < 1} with first fundamental form

~ o~ 4 ~
E=G=—F5——5, F=0.
(1— 22— y2)2’

Let H be the hyperbolic plane with coordinates (u,v) € R x (0,00) and first fundamental form

)
)

1
E=G=—, F=0.
v
Show that the map f: H — D given by
z—1
= , = i €H7
f(2) P z=u+iv

is an isometry.

Solution: We can consider (z,y) = (Re(f),Im(f)) as a coordinate system on D (the bijectivity can be
checked easily, please also check that the differential is non-degenerate everywhere).

If we take a tangent vector w = (a,b) € T(y,,)H, then the square of its length is equal to

2 2
(w, w) () = (a b) (E(u,v) F(u,v)) (a> — @2E 1 2abF + 02G = & +b _ (W, wEyel

F(u,v) G(u,v)) \b v2 v?

by the definition of the coefficients of the first fundamental form, where (w,w)gyc is the Euclidean dot
product.

The differential of f can be written as

Oz (u,v) Oz (u,v)
d(u’v)f = Oy?;,v) ay?ﬁ,v) = (fu f’u) s

ou ov
where
azgu,v) Bmgu,v)
-fu = 8y?'g,v) = d(u,v)f((L O))a fy = ay?{i)"u) = d(u,v)f((07 1))
ou ov
Then
oz (u,v)  Oz(u,v) a
d(uﬂ’)f(w) = ay((aqu,'u) 8y?¢7,v) (b> = afu + bfv
ou ov
The square of the length of d(, .y f(w) is then can be computed as
E(u,v) F(u,v)
duv 7duv u,v) — duv =" ~ duv =
(o) F (W), A0y F (W) fu,0) = () f(w)) (F(WJ) Gl v) (deu,v) f(w))
4<d u,v f('lD), d u,v f(w)>Eu 1 4
( )(1 —x2(_y)2)2 - = (1 —x2 —y2)2 (a2<fu7fu>Eu01+2ab<fu’fU>EuC1+b2<-fv7fv>EUC1)'

To show that f is an isometry, We need to show that (w,w) ) = (deu,v) f (W), deyo) F(W)) £(uw)-



Writing

z4+iy = flut+iv)
U+ —1
U+ +1
(u+ v —1i)(u—iv —1)
u? 4+ (v+1)2
u? + 02 -1 . —2u
u? + (v +1)2 J”u2+(fu+1)2’

we have
fu,v) = (z(u,v),y(u,v)) = m(u2 +v® —1,—2u).
In particular, we can calculate that
l_xg_yzzl_(u2+1}2—1)2+(—2u)2: 4v
(u+ (v+1)?)2 u? + (v+1)2°

Taking partial derivatives gives

. u(v u? —2(v 2
f, = ;(—QUQ +2(v + 1)%, 4u(v + 1)).

(u? + (v +1)2)2

Computing the (Euclidean) inner products of the vectors above, we obtain

4 4
) _ A2 1)2 2 1)2)2) —
Fu Tu —(u2+(v+1)2)4( u?(v+1)% + (u? — (v +1)%)?) (CCESCFSIEER
w ' Jv = 07
4
Fo £ (u2 + (v +1)2)2°
Therefore,
4
fofu @ 1 L
(1— a2 —y2)? " 27 2 )
(u2+(u+1)2)
.fu'.fv
(17x27y2)2:0 = K
fv'fv _1 _
(1—$2—y2)2_v2 - G’
and thus

<d(u,v).f(w)7 d(u,v)f(w»f(u,v) = CL2E + 2abF + b2G = <’U), w>(u,v)

(compare to Proposition 8.15 from the lectures).

12.3. Hyperboloid model of the hyperbolic plane.
Let Q : R? — R be the quadratic form defined by

Q(w1, w2, 23) = 23 + 23 — 23, (21, 72,23) € R?



(the quadratic space (R3, Q) is usually denoted by R%1). Let

S = {(z1,22,23) € R? | Q(w1, 22, 23) = —1}

(i.e. S is a hyperboloid of two sheets).

Recall that the induced quadratic form Ip, on each tangent plane 73,5 is defined by Ip(w) = Q(w)
for every w € Tp(S). Show that I, is positive definite and that the map f: D — S from the disc
model of the hyperbolic plane (see the previous exercise) defined by

fz,y) = S (22,29, 1+ 2% + %), (z,y) €D,

1—2a%2—y

maps D isometrically onto the component of .S for which z3 > 0.

Solution:

Note that f is parametrization of the “upper” part of S (please check bijectivity!). In particular,

fe = -2 (14 2% —y?), 22y, 22),
2
fo = g ey (-2 +47),2),
which implies that
~ 4
F = 0,
- 4
G = Q(fy):m:a



