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Solutions 13-14

13.1. A local parametrization x of a surface S in R3 is called orthogonal provided F = 0 (so xu and
xv are orthogonal at each point). It is called principal if F = 0 and M = 0, where E,F,G (resp.
L,M,N) are the coefficients of the first (resp. second) fundamental form.

(a) Let x be an orthogonal parametrization. Show that, at any point p = x(u, v) on S,

−dNp(xu) =
L

E
xu +

M

G
xv, −dNp(xv) =

M

E
xu +

N

G
xv,

where N denotes the Gauss map.

(b) Assume now that the parametrization is principal. Show that κ1 = L/E and κ2 = N/G are
the principal curvatures. Calculate the Gauss and mean curvature in terms of E,G,L,N .
Determine the principal directions.

Solution:

(a) Since dpN maps TpS into TpS, we can express −dpN(xu) and −dpN(xv) as a linear combination of
xu and xv, i.e.,

−dpN(xu) = axu + bxv and − dpN(xv) = cxu + dxv.

Multiplying both equations with ·xu and ·xv gives (using the definitions of the coefficients of the first
and second fundamental forms and the equalities Nu · xu +N · xuu = 0 etc.)

L = aE + bF, M = aF + bG, M = cE + dF, N = cF + dG,

and, since F = 0,

a =
L

E
, b =

M

G
, c =

M

E
, d =

N

G
,

i.e., the desired equation.

(b) If M = 0, then the equations from the first part are

−dNp(xu) =
L

E
xu and − dNp(xv) =

N

G
xv.

Therefore, xu is an eigenvector with eigenvalue L/E, as well as xv with eigenvalue N/G. Hence the
principal, Gauss and mean curvatures are

κ1 =
L

E
, κ2 =

N

G
, K = κ1κ2 =

LN

EG
, H =

1

2
(κ1 + κ2) =

L

2E
+

N

2G
=
LG+NE

2EG
.

13.2. Calculation of the Weingarten map directly for surfaces of revolution

Let f : J −→ (0,∞) and g : J −→ R be smooth functions on some open interval J in R and
let α : J −→ R3 be a space curve given by α(v) = (f(v), 0, g(v)). Assume that this curve is
parametrized by arc length. Let S be the surface of revolution obtained by rotating α around the
z-axis.
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(a) Find suitable parametrizations x : Ui −→ S of S and determine parameter domains U1 and
U2 covering the whole surface S. Calculate the normal vector N at x(u, v)

(b) Express a, b, c, d ∈ R in −dNp(xu) = axu + bxv and −dNp(xv) = cxu + dxv in terms of f
and g.

(c) Calculate the principal directions and principal curvatures.

(d) Calculate the Gauss and mean curvatures.

(e) Compare your results with Example 9.13 from the lectures.

Solution: The generating curve is parametrized by arc length, so (f ′)2 + (g′)=1.

(a) The standard parametrization of a surface of revolution is given by

x(u, v) = (f(v) cosu, f(v) sinu, g(v)), (u, v) ∈ U

where U = U1 or U = U2 and (for example)

U1 = (−π, π)× J, U2 = (0, 2π)× J,

so that the first (angular) variable u covers all angles.

Make sure you understand why we need (at least) two parameter sets U1 and U2.

Moreover, (f , g have the argument v, and cos, sin have the argument u)

xu = (−f sin, f cos, 0), xv = (f ′ cos, f ′ sin, g′),

hence xu×xv = (g′ cos, g′ sin,−f ′). Since the generating curve is parametrized by arc length, xu×xv

is a unit vector, so
N = (g′ cos, g′ sin,−f ′).

Moreover,
E = xu · xu = f2, F = 0, G = (f ′)2 + (g′)2 = 1.

We also need (later on) the coefficients of the second fundamental form, so we calculate

xuu = (−f cos,−f sin, 0), xuv = (−f ′ sin, f ′ cos, 0), xvv = (f ′′ cos, f ′′ sin, g′′)

so that

L = xuu ·N = −fg′, M = xuv ·N = 0, N = xvv ·N = f ′′g′ − f ′g′′

(b) We multiply both equations with xu and xv, so that

L = −dpN(xu) · xu = aE + bF, M = −dpN(xu) · xv = aF + bG,

M = −dpN(xv) · xu = cE + dF, N = −dpN(xv) · xv = cF + dG,

where we used the equalities Nu · xu +N · xuu = 0 etc.

The above equations simplify to

L = aE, M = bG,

M = cE, N = dG.

If F = 0 , then

a =
L

E
, b =

M

G
, c =

M

E
, d =

N

G
.

If, in addition, M = 0, then

a =
L

E
, b = 0, c = 0, d =

N

G
.
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(c) We have (using the above expressions for a, b, c and d)

−dpN(xu) =
L

E
xu and − dpN(xv) =

N

G
xv,

hence the basis vectors xu and xv are eigenvectors (principal directions) with eigenvalues (principal
curvatures)

κ1 =
L

E
=
−fg′

f2
= −g

′

f
and κ2 =

N

G
= f ′′g′ − f ′g′′

(d) The Gauss and mean curvature are

K = κ1κ2 =
g′(f ′g′′ − f ′′g′)

f
and H =

1

2
(κ1 + κ2) = − g

′

2f
+

1

2
(f ′′g′ − f ′g′′).

13.3. Let S be the surface in R3 defined by the equation

z =
1

1 + x2 + y2
.

Find the principal curvatures and the umbilic points (i.e., the points where the principal curvatures
are the same). Give a sketch of the surface showing the regions of the surface where the Gauss
curvature K is strictly positive and strictly negative.

Solution:

Consider S as a surface of revolution with the standard parametrization given by x(u, v) = (f(v) cosu, f(v) sinu, g(v))
with functions f and g to be determined. That x(u, v) is an element of the surface S = { (x, y, z) | z =
1/(1 + x2 + y2) } means that

g(v) =
1

1 + f(v)2
.

Choose e.g. f(v) = v then g(v) = 1/(1 + v2). As a parameter domain U we choose U1 = (−π, π) × (0,∞)
and U2 = (0, 2π)× (0,∞).

Note: This parametrization covers all points on S except the point (0, 0, 1) ∈ S.

Calculating the coefficients of the first and second fundamental forms, we obtain

E = f2 = v2, F = 0, G = f ′2 + g′2 = 1 +
4

v

2

(1 + v2)2

L =
−fg′√
f ′2 + g′2

, M = 0, N =
f ′′g′ − f ′g′′√
f ′2 + g′2

(see Example 9.13). In our concrete case, we have

f ′(v) = 1, f ′′(v) = 0, g′(v) =
−2v

(1 + v2)2
, g′′(v) =

−2(1 + v2) + 2v(2v)2

(1 + v2)3
=

2(3v2 − 1)

(1 + v2)3
.

Since the parametrization is principal (F = 0 and M = 0), the principal curvatures are

κ1 =
L

E
=

−fg′

f2((f ′)2 + (g′)2)1/2
= − g′

f((f ′)2 + (g′)2)1/2
, κ2 =

N

G
=

(f ′′g′ − f ′g′′)
((f ′)2 + (g′)2)3/2

,

which means here that

κ1 =
2

(1 + v2)2
(

1 + 4v2

(1+v2)4

)1/2 and κ2 = − 2(3v2 − 1)

(1 + v2)3
(

1 + 4v2

(1+v2)4

)3/2 .
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Now, a point is umbilic if κ1 = κ2 at this point, i.e., if

1 = − (3v2 − 1)

(1 + v2)
(

1 + 4v2

(1+v2)4

) ,
or, equivalently, (v > 0)

0 = (1 + v2)
(

1 +
4v2

(1 + v2)4

)
+ (3v2 − 1)

= 4v2 +
4v2

(1 + v2)3

which has no solution if v 6= 0. Therefore, the surface has no umbilic point on the points covered by the
parametrization as surface of revolution, i.e., the points p ∈ S \ {(0, 0, 1)} are not umbilic.

What about the point (0, 0, 1)?

If we are just at the point (0, 0, 1) (with parameter values (u, v) = (0, 0) in the parametrization given by
x(u, v) = (u, v, 1/(1 + u2 + v2))), we obtain

f(x, y) =
1

1 + x2 + y2
, fx(x, y) =

−2x

(1 + x2 + y2)2
, fy(x, y) =

−2y

(1 + x2 + y2)2
,

and

fxx(x, y) =
−2(1 + x2 + y2) + 2x2x2

(1 + x2 + y2)3
=
−2(1− 3x2 + y2)

(1 + x2 + y2)3

and similarly

fxy(x, y) =
(−2)(−2x)(2y)

(1 + x2 + y2)3
=

8xy

(1 + x2 + y2)3
, fyy(x, y) =

−2(1 + x2 − 3y2)

(1 + x2 + y2)3
.

Hence, we obtain for the coefficients of the first and second fundamental form at (0, 0) the expressions

E(0, 0) = 1 + fx(0, 0) = 1, F (0, 0) = fx(0, 0)fy(0, 0) = 0, G(0, 0) = 1 + fy(0, 0) = 1.

Denote D = 1 + f2x(0, 0) + f2y (0, 0) = 1, then

L(0, 0) =
fxx(0, 0)

D
= −2, M(0, 0) =

fxy(0, 0)

D
= 0, N(0, 0) =

fyy(0, 0)

D
= −2.

Therefore, the Gauss and mean curvatures at the parameter value (0, 0) are

K =
LN −M2

EG− F 2
= 4, H =

EN − 2FM +GL

2(EG− F 2)
=
−2− 2

2
= −2,

so that the principal curvatures are the roots of

κ2 − 2Hκ+K = 0, or κ2 + 4 + 4 = (κ+ 2)2 = 0,

i.e., κ1 = κ2 = −2.

Therefore, (0, 0, 1) is the only umbilic point of the surface (as one might already guess from the rotational
symmetry of the surface).

One could start with this parametrization (as a graph) right from the beginning, but it seems that the
formulas for the two principal curvaturs become much more complicated than as for a surface of revolution.
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13.4. (∗) The pseudosphere

The pseudosphere is the surface of revolution obtained by rotating the tractrix with parametrization
α(s) = (1/ cosh s, 0, s−tanh s) around the z-axis. Prove that the pseudosphere has constant Gauss
curvature K = −1.

Solution:

Calculating the coefficients of the first and second fundamental forms, we obtain

E = f2, F = 0, G = f ′2 + g′2

L =
−fg′√
f ′2 + g′2

, M = 0, N =
f ′′g′ − f ′g′′√
f ′2 + g′2

(see Example 9.13). Let us assume that v > 0 (the surface for negative values v is just the mirror image
w.r.t. the xy-plane).

In our case, we have

f(v) =
1

cosh v
, f ′(v) = − sinh v

cosh2 v
, f ′′(v) = −cosh2 v − 2 sinh2 v

cosh3 v
=

cosh2 v − 2

cosh3 v
,

and

g(v) = v − tanh v, g′(v) = 1− 1

cosh2 v
=

cosh2 v − 1

cosh2 v
=

sinh2 v

cosh2 v
, g′′(v) =

2 sinh v

cosh3 v

Moreover, we have

f ′(v)2 + g′(v)2 =
sinh2 v + sinh4 v

cosh4 v
=

sinh2 v(1 + sinh2 v)

cosh4 v
=

sinh2 v cosh2 v

cosh4 v
=

sinh2 v

cosh2 v
= tanh2 v

so that

E =
1

cosh2 v
, F = 0, G = tanh2 v

L =
− tanh2 v/ cosh v

tanh v
, M = 0, N =

f ′′g′ − f ′g′′√
f ′2 + g′2

= − sinh v

cosh2 v
, =

(cosh2 v − 2) tanh2 v/ cosh3 v + 2 sinh2 v/ cosh5 v

tanh v

=
sinh v

cosh2 v

Since the parametrization is principal (F = 0 and M = 0), the principal curvatures are

κ1 =
L

E
= − sinh v

cosh2 v cosh−2 v
= − sinh v,

κ2 =
N

G
=

sinh v

cosh2 v tanh2 v
=

1

sinh v
,

hence the Gauss curvature is K = κ1κ2 = −1, as desired.

14.1. Let S be the surface given by the graph of the function f : U −→ R (U ⊂ R2 open). Calculate
the Gauss and mean curvature of S in terms of f and its derivatives.
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Solution: We choose the standard parametrization for a graph of a function, i.e.,

x : U −→ S, x(u, v) = (u, v, f(u, v)),

where S = { (u, v, f(u, v)) | (u, v) ∈ U }. Then we have

xu = (1, 0, fx), xv = (0, 1, fy), xu × xv = (−fx,−fy, 1),

xuu = (0, 0, fxx), xuv = (0, 0, fxy), xvv = (0, 0, fyy).

From this, we see that the normal vector is

N =
1

D
, D =

√
1 + f2x + f2y

and we easily see that

E = xu · xu = 1 + f2x , F = xu · xv = fxfy, G = xv · xv = 1 + f2y ,

L = xuu ·N =
fxx
D
, M = xuv ·N =

fxy
D
, N = xvv ·N =

fyy
D
.

Note that we have

EG− F 2 = (1 + f2x)(1 + f2y )− f2xf2y = 1 + f2x + f2y = ‖xu × xv‖2 = D2.

(observe that the equality EG−F 2 = ‖xu × xv‖2 is always true, what is the geometrical meaning of this?)

Now, the Gauss curvature is given by

K =
LN −M2

EG− F 2
=
fxxfyy − f2xy

D4
=

detH(f)

D4
, where H(f) =

(
fxx fxy
fxy fyy

)
is the Hessian matrix of f . Moreover, the mean curvature is given by

H =
EN − 2FM +GL

EG− F 2
=

(1 + f2x)fyy − 2fxfyfxy + (f2y + 1)fxx

D3
.

14.2. (∗) Enneper’s surface

Consider the surface in R3 parametrized by

x(u, v) =
(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
, (u, v) ∈ R2.

Show that

(a) the coefficients of the first and second fundamental forms are given by

E(u, v) = G(u, v) = (1 + u2 + v2)2, F (u, v) = 0 and L = 2, M = 0, N = −2;

(b) the principal curvatures at p = x(u, v) are given by

κ1(p) =
2

(1 + u2 + v2)2
, κ2(p) = − 2

(1 + u2 + v2)2
.

Solution:
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(a) We have

xu(u, v) = (1− u2 + v2, 2uv, 2u), xv(u, v) = (2uv, 1 + u2 − v2,−2v)

so that the coefficients of the first fundamental form are

E(u, v) = (1− u2 + v2)2 + 4uv2 + 4u2 = (1 + u2 + v2)2,

F (u, v) = 2uv(1− u2 + v2) + 2uv(1 + u2 − v2)− 4uv = 0

G(u, v) = 4u2v2 + (1 + u2 − v2)2 + 4v2 = (1 + u2 + v2)2

as desired. Moreover, we have

xuu(u, v) = (−2u, 2v, 2), xuv(u, v) = (2v, 2u, 0), xvv(u, v) = (2u,−2v,−2)

and

xu(u, v) × xv(u, v) =

1− u2 + v2

2uv
2u

×

1 + u2 − v2
2uv
2v


=

 −2u(1 + u2 + v2)
2v(1 + u2 + v2)

(1− u2 − v2)(1 + u2 + v2)

 = (1 + u2 + v2)

 −2u
2v

1− u2 − v2


and ‖xu × xv‖2 = EG− F 2 = (1 + u2 + v2)4, so that the normal vector is

N(x(u, v)) =
1

1 + u2 + v2

 −2u
2v

1− u2 − v2

 .

In particular, the coefficients of the second fundamental form are

L(u, v) = xuu ·N(x(u, v)) =
4u2 + 4v2 + 2(1− u2 − v2)

1 + u2 + v2
= 2

M(u, v) = xuv ·N(x(u, v)) =
−4uv + 4uv

1 + u2 + v2
= 0

N(u, v) = xuu ·N(x(u, v)) =
−4u2 − 4v2 − 2(1− u2 − v2)

1 + u2 + v2
= −2

again as desired.

(b) Let us first find the Gauss and mean curvature:

K =
LN −M2

EG− F 2
=

−4

(1 + u2 + v2)4
and

H =
EN − 2FM +GL

EG− F 2
=

(−2 + 2)(1 + u2 + v2)2

(1 + u2 + v2)4
= 0

hence the principal curvatures are the solutions of κ2 − 2Hκ+K = 0, i.e., of

κ2 =
4

(1 + u2 + v2)4
, or κ = ± 2

(1 + u2 + v2)2
,

as desired.

Remark. Note that the mean curvature of the Enneper surface S vanishes, so it is a minimal surface.
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14.3. If S is a surface in R3 then a parallel surface to S is a surface S̃ given by a local parametrization
of the form

y(u, v) = x(u, v) + aN(u, v), (u, v) ∈ U,

where x : U −→ S is a local parametrization of S,N : U −→ S2 the Gauss map in that parametriza-
tion, and a is some given constant.

(a) Show that
yu × yv = (1− 2Ha+Ka2) xu × xv,

where H and K are the mean and Gauss curvatures of S.

(b) Assuming that 1−2Ha+Ka2 is never zero on S, show that the Gauss curvature K̃ and mean
curvature H̃ of S̃ are given by

K̃ =
K

1− 2Ha+Ka2
, H̃ =

H −Ka
1− 2Ha+Ka2

.

(c) If S has constant mean curvature H ≡ c 6= 0 and the Gauss curvature K is nowhere vanishing,
show that the parallel surface given by a = 1/(2c) has constant Gauss curvature 4c2.

Solution:

(a) First, note that
yu = xu + aNu, and yv = xu + aNv.

In order to express yu × yv in the desired form, it is helpful to express the derivative with respect to
the basis {xu,xv}:

−Nu = −(N ◦ x)u = −dpN(xu) = Axu +Bxv and

−Nv = −(N ◦ x)v = −dpN(xv) = Cxu +Dxv

This is useful as we can express easily the Gauss and mean curvatures as the determinant and trace
in terms of these coefficients as

K = AD −BC and H =
A+D

2
.

Now,

yu = xu + aNu = xu + a(N ◦ x)u = (1− aA)xu − aBxv and

yv = xv + aNv = xv + a(N ◦ x)v = −aCxu + (1− aD)xv

and therefore

yu × yv =
(
(1− aA)xu − aBxv

)
×
(
−aCxu + (1− aD)xv

)
=
(
(1− aA)(1− aD)− a2BC

)
xu × xv

=
(
1− a(A+D) + a2(AD −BC)

)
xu × xv

= (1− 2Ha+Ka2)︸ ︷︷ ︸
=:P

xu × xv

using the antisymmetry of the vector product (v×w = −w× v and v× v = 0), and we obtain the
desired formula.
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(b) If P := 1− 2Ha+Ka2 6= 0, then yu × yv is not vanishing, the normal vectors of S and S̃ fulfil

Ñ ◦ y = N ◦ x,

as yu×yv and xu×xv point in the same direction by the first part and the condition on 1−2Ha+Ka2.

Remark. Be careful with the statement Ñ = N , as the parametrisation is lost in this espression.
This becomes important when taking derivatives (see below).

Let us use the same trick as for the surface S also for S̃:

−Ñu = −(Ñ ◦ y)u = −dpÑ(yu) = Ãyu + B̃yv and

−Ñv = −(Ñ ◦ y)v = −dpÑ(yv) = C̃yu + D̃yv.

Similarly as above, we have

K̃ = ÃD̃ − B̃C̃ and H̃ =
Ã+ D̃

2
.

Taking the derivative of the equation Ñ ◦ y = N ◦ x and combining the previous results gives

Axu +Bxv = −(N ◦ x)u = −(Ñ ◦ y)u

= Ãyu + B̃yv

= Ã
(
(1− aA)xu − aBxv

)
+ B̃

(
−aCxu + (1− aD)xv

)
=
(
Ã(1− aA)− B̃aC

)
xu +

(
−ÃaB + B̃(1− aD)

)
xv.

Comparing the coefficients gives the linear system(
1− aA −aC
−aB 1− aD

)(
Ã

B̃

)
=

(
A
B

)

for (Ã, B̃). The determinant of the coefficient matrix is

(1− aA)(1− aD)− a2BC = 1− (A+D)a+ (AD −BC)a2 = 1− 2Ha+Ka2 = P 6= 0,

so that we can take the inverse and obtain(
Ã

B̃

)
=

1

P

(
1− aD aC
aB 1− aA

)(
A
B

)
=

1

P

(
(1− aD)A+ aCB
aBA+ (1− aA)B

)
=

1

P

(
A− aK

B

)
.

Similarly, we have (taking the derivative w.r.t. v) that

Cxu +Dxv = −(N ◦ x)v = −(Ñ ◦ y)v

= C̃yu + D̃yv

= C̃
(
(1− aA)xu − aBxv

)
+ D̃

(
−aCxu + (1− aD)xv

)
=
(
C̃(1− aA)− D̃aC

)
xu +

(
−C̃aB + D̃(1− aD)

)
xv.

Comparing the coefficients gives the linear system(
1− aA −aC
−aB 1− aD

)(
C̃

D̃

)
=

(
C
D

)
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for (B̃, D̃), and as above, we obtain(
C̃

D̃

)
=

1

P

(
1− aD aC
aB 1− aA

)(
C
D

)
=

1

P

(
(1− aD)C + aCD
aBC + (1− aA)D

)
=

1

P

(
C

D − aK

)
.

Now, we have

H̃ =
1

2
(Ã+ D̃) =

1

2P
(A− aK +D − aK) =

1

P
(H − aK) =

H − aK
1− 2aH + a2K

and

K̃ = ÃD̃ − B̃C̃ =
1

P 2

(
(A− aK)(D − aK)−BC

)
=

1

P 2

(
AD −BC︸ ︷︷ ︸

=K

−a(A+D)K + a2K
)

=
K(1− 2aH + a2K)

(1− 2aH + a2K)2
=

K

1− 2aH + a2K

as claimed.

(c) If S has constant mean curvature H = c 6= 0 and K 6= 0, then

K̃ =
K

1− 2aH + a2K
=

K

1− 2c/2c+K/4c2
=

4c2K

K
= 4c2

(and we have P = 1− 2aH + a2K = K/4c2 6= 0 as K 6= 0).

14.4. Let f be a smooth real-valued function defined on a connected open subset U of R2.

(a) Show that the graph S of f is a minimal surface in R3 (i.e., its mean curvature H vanishes)
if and only if

fyy(1 + f2x)− 2fxfyfxy + fxx(1 + f2y ) = 0.

(b) Deduce that if f(x, y) = g(x) then S is minimal if and only if S is a plane with normal vector
parallel to the (x, z)-plane but not parallel to the x-axis.

(c) If f(x, y) = g(x) + h(y), find the most general form of f in order for S to be minimal.
Hint: Use separation of variables

Solution:

(a) Let us take the formulae for the mean curvature of a surface which is a graph of a function from
Exercise 4.1 (feel free to repeat the calculations, it is a good exercise). We have

H =
EN − 2FM +GL

EG− F 2
=

(1 + f2x)fyy − 2fxfyfxy + (f2y + 1)fxx

D3

where D = (1 + f2x + f2y )1/2. In particular, a surface is a minimal surface iff

(1 + f2x)fyy − 2fxfyfxy + (f2y + 1)fxx = 0,

as desired.
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(b) If f(x, y) = g(x), then fx = g′, fy = 0, and the equation H = 0 becomes just g′′ = 0 (only the third
summand is non-zero). In particular, g(x) = ax+b for some constants a, b ∈ R, i.e., f is the graph of a
plane, and the normal vector of this plane is proportional to (−a, 0, 1), i.e., parallel to the (x, z)-plane,
but not to the x-axis (as the z-component is never 0).

(c) If f(x, y) = g(x) + h(y), we obtain

fx = g′, fy = h′, fxx = g′′, fxy = 0, fyy = h′′,

so that the equation H = 0 becomes

(1 + g′2)h′′(h′2 + 1)g′′ = 0, i.e.
g′′

1 + g′2
= − h′′

h′2 + 1

(separation of variables). Now, since the LHS depends on x only, while the RHS depends on y only,
we have

g′′

g′2 + 1
= c0

for some constant c0. Integrating gives (substituting s = g′(x), i.e., ds = g′′(x) dx)∫
1

s2 + 1
ds = c0x+ c1, i.e. arctan g′(x) = c0x+ c1 or g′(x) = tan(c0x+ c1).

Integrating gives g(x) = − log | cos(c0x+ c1)|/c0 + c2.

Similarly, h(y) = log | cos(−c0y + c3)|/c0 + c4. So the most general form of f is

f(x, y) =
1

c0
log | cos(−c0x+ c3)| − 1

c0
log | cos(c0y + c1)|/c0 + c5

=
1

c0
log
∣∣∣cos(−c0x+ c3)

cos(c0y + c1)

∣∣∣+ c5

where c0, c1, c3, c5 are constants.
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