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Solutions 13-14

13.1. A local parametrization x of a surface S in R? is called orthogonal provided F = 0 (so x, and
x, are orthogonal at each point). It is called principal if F = 0 and M = 0, where E, F, G (resp.
L, M, N) are the coefficients of the first (resp. second) fundamental form.

(a) Let @ be an orthogonal parametrization. Show that, at any point p = x(u,v) on S,

L M M N
—dNy(xy,) = Emu + gmv, —dNp(xy) = fx“ + 5:%,

where IN denotes the Gauss map.

(b) Assume now that the parametrization is principal. Show that k1 = L/FE and k2 = N/G are
the principal curvatures. Calculate the Gauss and mean curvature in terms of £, G, L, N.
Determine the principal directions.

Solution:

(a) Since d,N maps T,S into 7,5, we can express —d,N (x,) and —d,N (x,) as a linear combination of
x, and x,, i.e.,
—dp,N(x,) = axy + bz, and —d,N(z,) = cx, + dx,.
Multiplying both equations with -x, and -x, gives (using the definitions of the coefficients of the first
and second fundamental forms and the equalities N, - @, + N - @, = 0 etc.)

L=aE+bF, M=aF+bG, M=cE+dF, N =-cF+dG,

and, since F' = 0,

i.e., the desired equation.

(b) If M =0, then the equations from the first part are

L N
—x, and —dN,y(z,)=—

—dNp(xy,) = % e

.

Therefore, x, is an eigenvector with eigenvalue L/FE, as well as @, with eigenvalue N/G. Hence the
principal, Gauss and mean curvatures are

L N e _ LN =Y+ )_£+E_LG+7NE
B T BTmmE s BT MR = e T oG T T 2EG

R1 =

13.2. Calculation of the Weingarten map directly for surfaces of revolution

Let f: J — (0,00) and g: J — R be smooth functions on some open interval J in R and
let a: J — R3 be a space curve given by a(v) = (f(v),0,g(v)). Assume that this curve is
parametrized by arc length. Let S be the surface of revolution obtained by rotating ¢ around the
z-axis.



(a) Find suitable parametrizations «: U; — S of S and determine parameter domains U; and
Us covering the whole surface S. Calculate the normal vector N at @ (u,v)

(b) Express a,b,c,d € R in —dNy(x,) = ax, + bz, and —dN,(x,) = cx, + dx, in terms of f
and g.

(c) Calculate the principal directions and principal curvatures.

(d) Calculate the Gauss and mean curvatures.

(e) Compare your results with Example 9.13 from the lectures.

Solution: The generating curve is parametrized by arc length, so (/)% + (¢/)~1.
(a) The standard parametrization of a surface of revolution is given by
z(u,v) = (f(v) cosu, f(v)sinu, g(v)), (u,v) €U
where U = Uy or U = Uy and (for example)
Uy =(—m,m) X J, Us = (0,27) X J,

so that the first (angular) variable u covers all angles.
Make sure you understand why we need (at least) two parameter sets Uy and Us.
Moreover, (f, g have the argument v, and cos, sin have the argument u)

@y = (—fsin, fcos,0), @, = (f' cos, f'sin, g),

hence ¢, X &, = (¢’ cos, ¢’ sin, — f'). Since the generating curve is parametrized by arc length, x,, X x,
is a unit vector, so
N = (¢’ cos, ¢’ sin, — f").
Moreover,
E=z, z,=f? F=0 G=(f)’+()’=1

We also need (later on) the coefficients of the second fundamental form, so we calculate
Ty = (—f cos, — fsin, 0), Ty = (—f'sin, f’ cos,0), Ty = (f" cos, f sin, g")
so that
L=xu,  -N=-f¢, M=y, - N =0, N=zy, -N=f'g —fqg’
(b) We multiply both equations with x, and «,, so that
L=—-d,N(z,) -z, =aE +bF, M = —d,N(x,) -z, = aF + bG,
M = —-d,N(z,) x, =cE + dF, N = —d,N(z,) -, = cF + dG,

where we used the equalities N, - €, + N - ., = 0 etc.
The above equations simplify to

L=aFE, M =G,
M = cFE, N =dG.
If F=0, then
L M M N
a:E, bzg, C:f, d:a
If, in addition, M = 0, then
L N
Q—E, b—O, C—O, d—a



(¢) We have (using the above expressions for a, b, ¢ and d)

L N
—dp,N(x,) = HTu and —d,N(z,) = ekl
hence the basis vectors ¢, and x, are eigenvectors (principal directions) with eigenvalues (principal
curvatures)
L —fg g N
Kl:E: 2 :_? and Hz:a_f/// f///
(d) The Gauss and mean curvature are
/ 1 "/ 1 1
K:H1K2:g(fg ) and H = - (H1+K2)__7+ (f/// 7'q").
f 2f
13.3. Let S be the surface in R? defined by the equation
_ 1
I

Find the principal curvatures and the umbilic points (i.e., the points where the principal curvatures
are the same). Give a sketch of the surface showing the regions of the surface where the Gauss
curvature K is strictly positive and strictly negative.

Solution:

Consider S as a surface of revolution with the standard parametrization given by x(u,v) = (f(v) cosu, f(v) sinw, g(v))
with functions f and g to be determined. That x(u,v) is an element of the surface S = {(z,y,2)|z =

1/(1 + 22 + 9?) } means that
1

T

Choose e.g. f(v) = v then g(v) = 1/(1 4+ v?). As a parameter domain U we choose Uy = (—m,7) x (0, 00)
and Uz = (0,2m) x (0,00).

Note: This parametrization covers all points on S except the point (0,0,1) € S.

Calculating the coeflicients of the first and second fundamental forms, we obtain

4
E = f? =2, F=0, G:f’2—|—g’2:1+;(1+v2)2
B _fg/ N_f//g/_f-/g//
o [fr2 1 g2’ o 72 1 g2
(see Example 9.13). In our concrete case, we have

_ 2 o () = —2(1 4 v?) + 20v(2v)2 _ 2(3v? — 1)
(1+0v2)2’ (14 02)3 (14 02)3

Since the parametrization is principal (F' =0 and M = 0), the principal curvatures are

L —fg' g N (f"g" = f'9")
K = —_— = = — 5 K = —_— 5
YTE TR+ (9)2)? F2+ ()2 27 G ()2 + (9)2)32
which means here that
2 2(3v2 —
K1 = and ko = — (3v D) .
) ez )12 ) e
(1"‘1/ ) (1"‘ (1+U2)4) (1+U ) <1+ (1+’U2)4)



Now, a point is umbilic if kK1 = ko at this point, i.e., if
(3v% —1)

1=-— ,
(1—&-’02)(14‘(1?#22)4)

or, equivalently, (v > 0)

0= (1—|—v2)(1—|— (1%2)4) F (32— 1)
49?

=40? + —
SR G

which has no solution if v # 0. Therefore, the surface has no umbilic point on the points covered by the
parametrization as surface of revolution, i.e., the points p € S\ {(0,0,1)} are not umbilic.

What about the point (0,0,1)%

If we are just at the point (0,0,1) (with parameter values (u,v) = (0,0) in the parametrization given by
x(u,v) = (u,v,1/(1 4+ u? + v?))), we obtain

1 —2x —2y
f(xay)—m, fx(l‘,y)—m, fy(l‘,y)—m,

and

Foalny) = —2(1+2? +y?) + 22202 —2(1 — 32% +3?)

zx\ T, Y) = (14 22 +y2)3 T (T4 a2+ y2)3

and similarly

—2)(—22)(2y 8y —2(1 + 2% — 3y?

R finla) = 2 )

(1+$2+y2)3 (1+$2+y2)3’ (1+$2+y2)3
Hence, we obtain for the coefficients of the first and second fundamental form at (0,0) the expressions
E(O,O):1+fz(070):13 F(0,0):fz(0,0)fy(0,0):O, G(an):1+fy(070):1

Denote D =1+ f2(0,0) + f2(0,0) = 1, then

_ f22(0,0) _ fey(0,0) _ fw(0,0)
L(0,0) = D = 2, M(0,0) = D = 0, N(0,0) = D = 2.
Therefore, the Gauss and mean curvatures at the parameter value (0,0) are
LN — M? EN —-2FM +GL —-2-2
EG - F? ’ 2(EG — F?) 2 ’

so that the principal curvatures are the roots of
K2 —2Hk+K=0, or K +4+4=(k+2)?2=0,

i.e., R1 = Rg = —2.

Therefore, (0,0,1) is the only umbilic point of the surface (as one might already guess from the rotational
symmetry of the surface).

One could start with this parametrization (as a graph) right from the beginning, but it seems that the
formulas for the two principal curvaturs become much more complicated than as for a surface of revolution.



13.4. (x¥) The pseudosphere

The pseudosphere is the surface of revolution obtained by rotating the tractrix with parametrization
a(s) = (1/cosh s,0,s—tanh s) around the z-axis. Prove that the pseudosphere has constant Gauss
curvature K = —1.

Solution:

Calculating the coefficients of the first and second fundamental forms, we obtain

E= F=o, G=f"+g"
_fg/ N:f//g/_f/g//

SRV v P

(see Example 9.13). Let us assume that v > 0 (the surface for negative values v is just the mirror image
w.r.t. the zy-plane).

In our case, we have

o) = 1 , f(v) = — sinhzv ’ () = _c05h2 v — zsinh2 v COSh2v3_ 2
coshv cosh” v cosh” v cosh” v
and
1 cosh®v — 1 sinh? v 2sinh v
v) = v — tanhv, ") =1- = = , "p) =2~
9(v) gv) cosh? v cosh? v cosh? v cosh® v

Moreover, we have

sinh?v +sinh*v  sinh?v(1 4 sinh?v)  sinh®vcosh®v  sinh?®v

"(0)2 + ¢ (v)2 = - = = = tanh? v
F)+g) cosh* v cosh® v cosh* v cosh? v
so that
1 2
E—= — F=0, G = tanh” v
cosh” v
L:—tanh2v/cosh07 M=o, N:M
tanh v \/W
_ sinhw _ (cosh® v — 2) tanh® v/ cosh® v + 2 sinh® v/ cosh’ v
cosh? v’ B tanh v
_ sinhw
cosh? v

Since the parametrization is principal (F = 0 and M = 0), the principal curvatures are

L sinh v i
Rl = F=—— % 5 — —SsSlnnv,
E cosh? v cosh™2 v
N sinh v 1
K:Q = —= = = - s
G cosh?vtanh?v  sinhwv
hence the Gauss curvature is K = k1Ko = —1, as desired.

14.1. Let S be the surface given by the graph of the function f: U — R (U C R? open). Calculate
the Gauss and mean curvature of S in terms of f and its derivatives.



Solution: We choose the standard parametrization for a graph of a function, i.e.,
z:U— S, x(u,v) = (u,v, f(u,v)),
where S = { (u, v, f(u,v))]|(u,v) € U}. Then we have

Ly = (laoafx)a Ty = (07 lvf’y)7 Ty X Ty = (_fl‘a _fya 1)7
LTyu = (070; fmc)a Lyv = (O7Oaf$y)7 Lyy = (anvfyu)

From this, we see that the normal vector is

1 S —

and we easily see that

E:mu‘muzlJfoza F=z, x, = f.fy, G:mv~mvzl+f5,
Jzz Ty Ty
L=z,  N=", M =2y, - N = —=, N =x,, N ===,
¥ D ¥ D ¥ D

Note that we have

BG—-F? =1+ )0+ f)— fofy =1+ f2 + f] = |zu x 2, |* = D*.
(observe that the equality EG — F? = ||z, X x,||? is always true, what is the geometrical meaning of this?)
Now, the Gauss curvature is given by

LN -M? _ feakyy — f2, _ det H(f)

K = =
EG — F? D+ D*

. where H(f) = Gzz f:;z)

is the Hessian matrix of f. Moreover, the mean curvature is given by

_EN—2FM+GL _ (1+ ) fyy = 2fafyfay + (F§ + 1) for

H
EG — F? D3

14.2. (%) Enneper’s surface
Consider the surface in R? parametrized by
u? v3
x(u,v) = <u—§+u02,’u—§+u2@,u2—v2>, (u,v) € R%,

Show that

(a) the coefficients of the first and second fundamental forms are given by
E(u,v) = G(u,v) = (1 +u?® +v*)?, F(u,v) =0 and L=2 M=0, N=-2

(b) the principal curvatures at p = x(u,v) are given by

2 2

Ko (p) = T

) = (2 22

1 +u? 4 v2)?’

Solution:



(a) We have
x,(u,v) = (1 —u® + 0%, 2uw, 2u), x,(u,v) = (2uv, 1 +u? — 0%, —20)
so that the coefficients of the first fundamental form are

E(u,v) = (1 —u? +v?)? + 4uv? + 4u® = (1 +u® 4+ 0?)?,
F(u,v) = 2uv(1 — u? +v%) + 2uv(1l + u? — v?) — duv = 0
G(u,v) = 4u*v® + (1 +u? — vH)? + 40% = (1 + u? +0v?)?

as desired. Moreover, we have

Loy (u,v) = (—2u, 2v, 2), Loy (u,v) = (20, 2u,0), Ty (u,v) = (2u, —2v, —2)
and
1— w2+ 2 14 u2 —?
Ty (U, v) X Ty (u,v) = 2uw X 2uw
2u 2v
—2u(1 + u? + v?) —2u
= 20(1 + u? +v?) = (1+u? +0?) 2v
(1 —u? —v?)(1+u? +v?) 1—u?—v?

and ||z, X z,|* = EG — F? = (1 + u? + v?)*, so that the normal vector is

1 —2u
Newo)=irere |2,
—u- —v

In particular, the coefficients of the second fundamental form are

A 4 407 +2(1 — u? —0?)

L(u,v) = @y - N(z(u,v)) = 14+ u2 + 02 =2
—4uv + duv
M = Lyv * N 5 = =—F—F =
(1,0) = @y - Nl@(u,0) =7y
—4u? — 402 —2(1 — u? —v?)
N(U,U):J}UU'N((B(U,’U)): 14+ u2 + 02 =2
again as desired.
(b) Let us first find the Gauss and mean curvature:
LN — M? —4
K= = d
EG—-F? (14u?+0?)* an
g EN-2FM+GL _ (-2+2)(1+uw’+v%)? _

EG — F? (14 u2+0v2)4
hence the principal curvatures are the solutions of k2 — 2Hk + K = 0, i.e., of

) 4 2

SR ) L

as desired.
Remark. Note that the mean curvature of the Enneper surface S vanishes, so it is a minimal surface.



14.3. If S is a surface in R? then a parallel surface to S is a surface S given by a local parametrization
of the form
y(u,v) = x(u,v) + alN (u,v), (u,v) € U,

where ¢: U — S is a local parametrization of S, N: U — S? the Gauss map in that parametriza-
tion, and a is some given constant.
(a) Show that
Yy X Y, = (1 —2Ha + Ka?) z, X x,
where H and K are the mean and Gauss curvatures of S.
(b) Assuming that 1 —-2Ha+ K a? is never zero on S, show that the Gauss curvature K and mean
curvature H of S are given by
~ K ~ H-K
K = . H-= S
1—-2Ha+ Ka? 1—-2Ha+ Ka?

(c) If S has constant mean curvature H = ¢ # 0 and the Gauss curvature K is nowhere vanishing,
show that the parallel surface given by a = 1/(2¢) has constant Gauss curvature 4c2.

Solution:

(a) First, note that
Yy = Ty + alNy, and Yy = Ty +alNy.

In order to express y, X vy, in the desired form, it is helpful to express the derivative with respect to
the basis {x,,x,}:

-N,=—(Noxz), =—d,N(x,) = Az, + Bz, and
-N,=—(Noxz), =—-d,N(z,) = Cz, + Dz,

This is useful as we can express easily the Gauss and mean curvatures as the determinant and trace
in terms of these coefficients as
A+ D

K =AD — BC and H= g

Now,
Y, =%y, +aN, =z, +a(Nox), =(1—-aA)x, —aBz, and
Y, =€y, +alN, =z, +a(Nox), = —aCx, + (1 —aD)x,
and therefore
(1 - ad)z, —aBz,) X (—aCx, + (1 — aD)x,)
(1 —aA)(1—aD) —a®BC)z, X x,
1—a(A+ D)+ a*(AD — BC))z, X x,
1—-2Ha+ Ka*)x, X x,

using the antisymmetry of the vector product (v X w = —w X v and v X v = 0), and we obtain the
desired formula.



(b) If P:=1—2Ha+ Ka® # 0, then y,, X y, is not vanishing, the normal vectors of S and S fulfil
No y=Nowx,

as y, Xy, and T, X x, point in the same direction by the first part and the condition on 1—2Ha+ Ka?.

Remark. Be careful with the statement N = N , as the parametrisation is lost in this espression.
This becomes important when taking derivatives (see below).

Let us use the same trick as for the surface S also for S

-N, = —(N oY)y = —dpﬁ(yu) = /Tyu + éyv and
-N, =~(Noy), = -d,N(y,) = Cy, + Dy,.
Similarly as above, we have
-~ A+D

K =AD — BC and H = 5

Taking the derivative of the equation No y = IN o x and combining the previous results gives

Az, + Bz, = —(Noxz), = —(N oy),
= Ay, + By,
= A((1 — aA)z, — aBz,) + B(—aCx, + (1 — aD)z,)
= (A(1 — aA) — BaC)z,, + (—AaB + B(1 — aD))x,.

Comparing the coefficients gives the linear system

1—aA —aC \ [A) (A4
—aB 1—-aD)\B|) \B
for (A, B). The determinant of the coefficient matrix is

(1—-aA)(1—-aD)—a’BC=1—(A+D)a+ (AD — BC)a* =1—-2Ha + Ka®> = P # 0,

so that we can take the inverse and obtain
A\ 1 (1-aD aC \[(A\ _ 1 ((1—aD)A+aCB\ 1 (A—aK
B)] P\ aB 1-aA)\B) P\aBA+(1-aA)B) P\ B )’
Similarly, we have (taking the derivative w.r.t. v) that

Cx, + Dz, = —(Noz), = —(Noy),
= Cy, + Dy,
= 5((1 — aA)z, — aBx,) + 5(—aCazu + (1 —aD)x,)
= (CN'(l —aA) — 5aC)wu + (—C'aB +D(1— aD))x,.

Comparing the coefficients gives the linear system

(it D) (5)-(5)



for (E, ﬁ), and as above, we obtain

(5) =5 (s 2 (5) =5 (s 2eR) =3 (0 Cu)

Now, we have

~ 1 ~ =~ 1 1 H—aK
and
~ ~n 1
K:AD—BC:ﬁ((A—aK)(D—aK)—BC)
1
= ﬁ(AD — BC—a(A+ D)K +d°K)
=K
_K(1—2aH—|—a2K) B K
(1 -2aH +a2K)? 1-2aH +a?K
as claimed.

(¢) If S has constant mean curvature H = ¢ # 0 and K # 0, then

~ K K 42K
K ¢ = 4¢?

T 1-2aH + 2K 1—2¢/2c+ K/4c2 K

(and we have P =1 —2aH + a’K = K/4c®> # 0 as K #0).

14.4. Let f be a smooth real-valued function defined on a connected open subset U of R2,

(a) Show that the graph S of f is a minimal surface in R? (i.e., its mean curvature H vanishes)
if and only if
fyy(l -+ fg) - 2fmfyfzy + f:cm(l + fy2) =0.
(b) Deduce that if f(z,y) = g(z) then S is minimal if and only if S is a plane with normal vector
parallel to the (z, z)-plane but not parallel to the z-axis.

(c¢) If f(z,y) = g(z) + h(y), find the most general form of f in order for S to be minimal.
Hint: Use separation of variables

Solution:

(a) Let us take the formulae for the mean curvature of a surface which is a graph of a function from
Exercise 4.1 (feel free to repeat the calculations, it is a good exercise). We have

_ BEN—-2FM+GL _ (1+ ) fyy = 2fafyfey + (f§ + 1) for

H
EG — F? D3

where D = (1+ f2 + f;)l/ 2. In particular, a surface is a minimal surface iff

L+ [ fyy = 2fefyfoy + (fy + 1) foa =0,

as desired.

10



(b)

If f(z,y) = g(x), then f, = ¢, f, =0, and the equation H = 0 becomes just ¢ = 0 (only the third
summand is non-zero). In particular, g(x) = ax +b for some constants a,b € R, i.e., f is the graph of a
plane, and the normal vector of this plane is proportional to (—a,0,1), i.e., parallel to the (z, z)-plane,
but not to the z-axis (as the z-component is never 0).

If f(z,y) = g(x) + h(y), we obtain
fx = glv fy = h/, fmx = g”, fzy =0, fyy = h//,
so that the equation H = 0 becomes

) ) g// h
1 YR (B! e = ——
(L g+ 0)g" =0, e = it

(separation of variables). Now, since the LHS depends on z only, while the RHS depends on y only,

we have "

9 _
g/2+1

for some constant cy. Integrating gives (substituting s = ¢/(z), i.e., ds = ¢"(x) dx)

Co

1
/27_‘_1 ds =cpr+ 1, ie. arctang’(z) =cor+c1 or ¢'(z)=tan(cor + c1).
s

Integrating gives g(x) = —log| cos(cox + ¢1)|/co + 2.
Similarly, h(y) = log | cos(—coy + ¢3)|/co + ca. So the most general form of f is

1 1
f(z,y) = — log | cos(—cozx + ¢3)| — - log | cos(coy + ¢1)|/co + ¢5
0

co
1 cos(—cox + ¢3)

= —log|——F—— Cs
co cos(coy + ¢1)

where cg, ¢1, c3, c5 are constants.
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