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Solutions 15-16

15.1. Show that the Gauss curvature K of the surface of revolution locally parametrized by

x(u, v) = (f(v) cos(u), f(v) sin(u), g(v)), (u, v) ∈ U,

(for some suitable parameter domain U) is given by

K =
1

2ff ′

( 1

1 + (f ′/g′)2

)′
.

If the generating curve is parametrized by arc length, show that K = −f ′′/f . Deduce Theorema
Egregium in the latter case.

Solution: We have already calculated the coefficients of the first and second fundamental forms for a surface
of revolution (see e.g. Example 9.13), so we just cite the result here again:

E = f2, F = 0, G = f ′2 + g′2

L =
−fg′√
f ′2 + g′2

, M = 0, N =
f ′′g′ − f ′g′′√
f ′2 + g′2

.

If we assume now that f(v) > 0 everywhere, then we have

κ1 =
L

E
=

−g′

f(f ′2 + g′2)1/2
, κ2 =

N

G
=

f ′′g′ − f ′g′′

(f ′2 + g′2)3/2

(see Prop. 9.12), hence the Gauss curvature is

K = κ1κ2 =
−g′(f ′′g′ − f ′g′′)
f(f ′2 + g′2)2

=
−(f ′/g′)′

fg′
(
(f ′/g′)2 + 1

)2
=
−2(f ′/g′)(f ′/g′)′

2f ′f
(
(f ′/g′)2 + 1

)2 =
1

2ff ′

( 1

(f ′/g′)2 + 1

)′
as desired (we have also implicitly assumed here that f ′(v) 6= 0 6= g′(v)). If the curve is parametrized by
arc length, then f ′2 + g′2 = 1, and

κ1 =
L

E
=
−g′

f
, κ2 =

N

G
= f ′′g′ − f ′g′′.

Moreover, differentiating f ′2 + g′2 = 1 gives f ′f ′′ + g′g′′ = 0, and we obtain

K = κ1κ2 = −g
′(f ′′g′ − f ′g′′)

f
= −g

′f ′′g′ + f ′(f ′f ′′)

f
= − (g′2 + f ′2)f ′′

f
= −f

′′

f

as desired (this could also be obtained by simplifying the formula for K obtained above).

Now we can deduce Gauss’ Theorema Egregium by expressing f in terms of the coefficients of the first
fundamental form: f =

√
E. Then we have

f ′ =
Ev

2
√
E
, f ′′ =

EvvE − E2
v/2

2E3/2
,

1



so that

−f ′′/f =
E2
v

4E2
− Evv

2E
= − 1

2
√
E

( Ev√
E

)
v

which is a special case (G = 1, i.e, Gu = 0) of the formula of Example 10.9.

15.2. Let x : U −→ S be a parametrization of a surface S for which E = G = 1 and F = cos(uv) (so
that uv is the angle between the coordinate curves). Determine a suitable parameter domain U on
which x(U) is a surface (i.e., where the coordinate curves are not tangential). Show that

K = − 1

sin(uv)
.

Solution:

Suitable parameter domain: The tangent vectors xu and xv are linearly dependent iff F = cosϑ = ±1,
where ϑ = uv.

Another way to see this restriction is as follows: we have to assure that

(
1 cosϑ

cosϑ 1

)
with ϑ = uv is a

positive definite matrix. Its determinant is 1 − cos2 ϑ, and this is positive iff cosϑ 6= ±1. Since its trace is
always positive (the trace is 2), the matrix is positive definite iff cosϑ 6= ±1.

So a maximal parameter domain could be

U := { (u, v) ∈ R2 |uv /∈ πZ },

or, if you prefer a connected domain, another choice could be

U := { (u, v) ∈ R2 | 0 < u < π/v, v > 0 }.

(choosing just the component 0 < uv < π).

The further calculations are similar to ones used in Example 10.7 (and in the proof of Theorema Egregium).
We amend the order a bit to avoid computations with some zeros, and thus to save time in this way.

(a) Step 1: Christoffel symbols Γkij are functions defined by

xuu = Γ1
11xu + Γ2

11xv + LN (Γ1)

xuv = Γ1
12xu + Γ2

12xv +MN (Γ2)

xvv = Γ1
22xu + Γ2

22xv +NN (Γ3)

(and we have Γk12 = Γk21 since xuv = xvu).

Before calculating Γkij in terms of E, F and G, let us first see what we need (to save some time).

But we also need the following: Express xuu · xu etc. in terms of E, F , G:

xuu · xu =
1

2
(xu · xu)u =

1

2
Eu (= 0) (1)

xuv · xu =
1

2
(xu · xu)v =

1

2
Ev (= 0) (2)

xuv · xv =
1

2
(xv · xv)u =

1

2
Gu (= 0) (3)

xvv · xv =
1

2
(xv · xv)v =

1

2
Gv (= 0) (4)

xuu · xv = (xu · xv)u − xu · xuv = Fu −
1

2
Ev (= −v sin(uv)) (5)

xvv · xu = (xv · xu)v − xv · xuv = Fv −
1

2
Gu (= −u sin(uv)) (6)
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(the terms in parentheses correspond to our special case E = G = 1, F = cos(uv)).

Multiplying the defining equations for Γkij by ·xu and ·xv, we obtain equations

EΓ1
11 + FΓ2

11 =
1

2
Eu, EΓ1

12 + FΓ2
12 =

1

2
Ev, EΓ1

22 + FΓ2
22 = Fv −

1

2
Gu,

FΓ1
11 +GΓ2

11 = Fu −
1

2
Ev, FΓ1

12 +GΓ2
12 =

1

2
Gu, FΓ1

22 +GΓ2
22 =

1

2
Gv.

Plugging in E = G = 1 and F = cos(uv), we obtain

Γ1
11 + cos(uv)Γ2

11 = 0, Γ1
12 + cos(uv)Γ2

12 = 0, Γ1
22 + cos(uv)Γ2

22 = −u sin(uv),

cos(uv)Γ1
11 + Γ2

11 = −v sin(uv), cos(uv)Γ1
12 + Γ2

12 = 0, cos(uv)Γ1
22 + Γ2

22 = 0.

From this one could easily obtain that

Γ1
11 =

v cos(uv)

sin(uv)
, Γ1

12 = 0, Γ1
22 = − u

sin(uv)
,

Γ2
11 = − v

sin(uv)
, Γ2

12 = 0, Γ2
22 =

u cos(uv)

sin(uv)
.

However, we will see now that we can avoid computations of Γ1
22 and Γ2

22.

(b) Step 2: Calculate LN −M2:

From the equations above we have

LN = (LN) · (NN)

= (xuu − Γ1
11xu − Γ2

11xv) · (xvv − Γ1
22xu − Γ2

22xv)

= xuu · xvv − Γ1
22 xuu · xu︸ ︷︷ ︸

=0

−Γ2
22 xuu · xv︸ ︷︷ ︸

=−v sin(uv)

−Γ1
11 xvv · xu︸ ︷︷ ︸

=−u sin(uv)

−Γ2
11 xvv · xv︸ ︷︷ ︸

=0

+ Γ1
11Γ1

22E + (Γ1
11Γ2

22 + Γ2
11Γ1

22)F + Γ2
11Γ2

22G

= xuu · xvv + (Γ2
22v + Γ1

11u) sin(uv)

+ Γ1
11Γ1

22 + (Γ1
11Γ2

22 + Γ2
11Γ1

22) cos(uv) + Γ2
11Γ2

22

= xuu · xvv + Γ2
22

(
Γ1
11 + Γ2

11 + v sin(uv)
)

+ Γ1
22

(
Γ1
11 + Γ2

11 cos(uv)
)

+ Γ1
11u sin(uv).

Note that due to the defining equations on Γ1
11 and Γ2

11 the first and second parentheses in the expression
above vanish, i.e.,

LN = xuu · xvv + Γ1
11u sin(uv),

which means that all we needed is to calculate Γ1
11 = v cos(uv)

sin(uv) .

Let us now calculate M2. First we observe that the linear system involving Γ1
12 and Γ2

12 is homogeneous
with non-zero determinant, so has a trivial solution only, i.e. Γ1

12 = 0 = Γ2
12. Hence,

M2 = (MN) · (MN)

= (xuv − Γ1
12xu − Γ2

12xv) · (xvv − Γ1
12xu − Γ2

12xv)

= xuv · xuv,

so that

LN −M2 = xuu · xvv − xuv · xuv + Γ1
11u sin(uv) = xuu · xvv − xuv · xuv + uv cos(uv).
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Finally, recall that

xuu · xvv − xuv · xuv = (xu · xvv)u − (xu · xuv)v
=
(
Fv −Gu/2

)
u
− (Ev/2)v

= (−u sin(uv))u − 0

= − sin(uv)− uv cos(uv),

so that finally,

LN −M2 = − sin(uv)− uv cos(uv) + uv cos(uv)

= − sin(uv).

(c) Step 3: Calculate K:

The Gauss curvature is

K =
LN −M2

EG− F 2
=

LN −M2

1− cos2(uv)
=

−1

sin(uv)

as desired.

15.3. (∗) If the coefficients of the first fundamental form of a surface S are given by

E = 2 + v2, F = 1, G = 1,

show that the Gauss curvature of S is given by

K = − 1

(1 + v2)2
.

Solution:

Calculations are similar to the previous exercise.

(a) Step 1: Christoffel symbols Γkij .

We have

EΓ1
11 + FΓ2

11 =
1

2
Eu, EΓ1

12 + FΓ2
12 =

1

2
Ev, EΓ1

22 + FΓ2
22 = Fv −

1

2
Gu,

FΓ1
11 +GΓ2

11 = Fu −
1

2
Ev, FΓ1

12 +GΓ2
12 =

1

2
Gu, FΓ1

22 +GΓ2
22 =

1

2
Gv.

Plugging in E = 2 + v2 and F = G = 1, we obtain

(2 + v2)Γ1
11 + Γ2

11 = 0, (2 + v2)Γ1
12 + Γ2

12 = v, (2 + v2)Γ1
22 + Γ2

22 = 0,

Γ1
11 + Γ2

11 = −v, Γ1
12 + Γ2

12 = 0, Γ1
22 + Γ2

22 = 0.

We see that the equations on Γ1
22 and Γ2

22 have only the trivial solution Γ1
22 = Γ2

22 = 0. For the others,
we obtain

Γ1
11 =

v

(1 + v2)
, Γ2

11 = −2v + v3

1 + v2
, Γ1

12 =
v

1 + v2
, Γ2

12 = − v

1 + v2
.
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(b) Step 2: Calculate LN −M2:

We have

LN = (LN) · (NN)

= (xuu − Γ1
11xu − Γ2

11xv) · (xvv − Γ1
22xu − Γ2

22xv)

= (xuu − Γ1
11xu − Γ2

11xv) · xvv
= xuu · xvv − Γ1

11xvv · xu − Γ2
11xvv · xv

So we only need xvv · xv = Gv/2 = 0 and xvv · xu = Fv −Gu/2 = 0 in our case here, hence we have

LN = xuu · xvv.

Similarly, for M2 we obtain

M2 = (MN) · (MN)

= (xuv − Γ1
12xu − Γ2

12xv) · (xvv − Γ1
22xu − Γ2

22xv)

= xuv · xuv − 2Γ1
12 xuv · xu︸ ︷︷ ︸

=Ev/2=v

−2Γ2
12 xuv · xv︸ ︷︷ ︸

=Gu/2=0

+ (Γ1
12)2 xu · xu︸ ︷︷ ︸

=E=2+v2

+2Γ1
12Γ2

12 xu · xv︸ ︷︷ ︸
=F=1

+(Γ2
12)2 xv · xv︸ ︷︷ ︸

=G=1

= xuv · xuv −
2v2

1 + v2

+
v2(2 + v2)

(1 + v2)2
− 2v2

(1 + v2)2
+

v2

(1 + v2)2

= xuv · xuv −
2v2

1 + v2

+
v2(1 + v2)

(1 + v2)2

= xuv · xuv −
v2

1 + v2

Hence

LN −M2 = xuu · xvv − xuv · xuv +
v2

1 + v2
.

Recall again that

xuu · xvv − xuv · xuv = (xu · xvv)u − (xu · xuv)v

=
(
Fv −

1

2
Gu

)
u
−
(1

2
Ev

)
v

= −1,

so that finally

LN −M2 = −1 +
v2

1 + v2
= − 1

1 + v2

(c) Step 3: Calculate K:

The Gauss curvature is

K =
LN −M2

EG− F 2
=
−1/(1 + v2)

(2 + v2)− 1
=

−1

(1 + v2)2

as desired.
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15.4. Let x be a local parametrization of a surface S such that E = 1, F = 0 and G is a function of u
only. Show that

Γ2
12 = Γ2

21 =
Gu
2G

, Γ1
22 = −Gu

2

and that all the other Christoffel symbols are zero. Hence show that the Gauss curvature K of S
is given by

K = −(
√
G)uu√
G

.

Solution:

Again, the calculations are similar to the previous exercise.

(a) Step 1: Christoffel symbols Γkij .

Since E = 1, F = 0 and Gv = 0, we have

Γ1
11 = 0, Γ1

12 = 0, Γ1
22 = −1

2
Gu,

GΓ2
11 = 0, GΓ2

12 =
1

2
Gu, GΓ2

22 = 0,

which implies

(Γ2
21 =)Γ2

12 =
Gu
2G

and Γ1
22 = −Gu

2
,

and all other Christoffel symbols are 0, as desired (note that G cannot vanish as the first fundamental
form is positive definite).

(b) Step 2: Calculate LN −M2.

We have

LN = (LN) · (NN)

= (xuu − Γ1
11xu − Γ2

11xv) · (xvv − Γ1
22xu − Γ2

22xv)

= xuu · (xvv − Γ1
22xu)

= xuu · xvv − Γ1
22 xuu · xu︸ ︷︷ ︸

=Eu/2=0

= xuu · xvv.

Similarly, for M2 we obtain

M2 = (MN) · (MN)

= (xuv − Γ1
12xu − Γ2

12xv) · (xvv − Γ1
22xu − Γ2

22xv)

= (xuv − Γ2
12xv) · (xvv − Γ2

12xv)

= xuv · xuv − 2Γ2
12 xuv · xv︸ ︷︷ ︸

=Gu/2

+(Γ2
12)2 xv · xv︸ ︷︷ ︸

=G

= xuv · xuv −
(Gu)2

2G
+

(Gu)2

4G
= xuv · xuv −

(Gu)2

4G

Hence,

LN −M2 = xuu · xvv − xuv · xuv +
(Gu)2

4G
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Recall again that

xuu · xvv − xuv · xuv = (xu · xvv)u − (xu · xuv)v

=
(
Fv −

1

2
Gu

)
u
−
(1

2
Ev

)
v

= −1

2
Guu,

so that finally

LN −M2 = −1

2
Guu +

(Gu)2

4G
.

(c) Step 3: Calculate K.

The Gauss curvature is

K =
LN −M2

EG− F 2
=
−Guu/2 + (Gu)2/4G

G
= −Guu

2G
+

(Gu)2

4G2
.

Finally, we have

(
√
G)uu√
G

=
1√
G

( Gu

2
√
G

)
u

=
1√
G

( Guu
2
√
G
− (Gu)2

4G3/2

)
=
Guu
2G
− (Gu)2

4G2
= −K

so that we obtain the desired formula.

Remark. A particular example of such coefficients is given by a surface of revolution with a generating
curve parametrized by arc length with u and v interchanged.

16.1. Let {e1, e2} be an orthonormal basis of TpS consisting of eigenvectors of the Weingarten map
−dpN with corresponding eigenvalues κ1, κ2. If e = (cosϑ)e1 + (sinϑ)e2, show, that the normal
curvature κn of a curve tangential to e is given by

κn(ϑ) = κ1 cos2 ϑ+ κ2 sin2 ϑ.

Deduce that
1

2π

∫ 2π

0
κn(ϑ) dϑ = H,

where H denotes the mean curvature of S at p. (This justifies the term mean curvature).

Solution:

Note first that
Ip(e) = ‖e‖2 =

∥∥(cosϑ)e1 + (sinϑ)e2
∥∥2 = cos2 ϑ+ sin2 ϑ = 1

by Pythagoras’ Theorem (as e1, e2 are orthonormal). The normal curvature κn of a curve with tangent
vector e at p is given by

κn(ϑ) =
IIp(e)

Ip(e)
= IIp(e)

= IIp
(
(cosϑ)e1 + (sinϑ)e2

)
= −

〈
dpN((cosϑ)e1 + (sinϑ)e2), (cosϑ)e1 + (sinϑ)e2

〉
=
〈
κ1(cosϑ)e1 + κ2(sinϑ)e2), (cosϑ)e1 + (sinϑ)e2

〉
= κ1 cos2 ϑ+ κ2 sin2 ϑ
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by Meusnier’s theorem (first equality), the definition of the second fundamental form (fourth equality), the
fact that e1, e2 are eigenvectors of −dpN (fifth equality) and that e1, e2 are orthonormal (last equality).
This shows the first formula.

For the second, just note that

1

2π

∫ 2π

0

κn(ϑ) dϑ =
1

2π

∫ 2π

0

(κ1 cos2 ϑ+ κ2 sin2 ϑ) dϑ =
1

2π
(κ1π + κ2π) =

1

2
(κ1 + κ2) = H(p)

as
∫ 2π

0
cos2 ϑ dϑ = π and similarly for the integral over sin2 ϑ.

16.2. Let α be the curve defined by

α(t) = εt(cos t, sin t, 1) for t ∈ R.

Observe that α lies on the circular cone S = { (x, y, z) ∈ R3 |x2 + y2 = z2 }.
Show that the normal curvature of α in S is inversely proportional to εt.

Solution:

Clearly,
(εt cos t)2 + (εt sin t)2 = (εt)2,

so α(t) ∈ S for all t ∈ R. For further purposes, we also need

α′(t) = εt(cos t− sin t, sin t+ cos t, 1).

Calculation of the normal curvature — reparametrization by arc length: Since ‖α′(t)‖ =√
3εt we set

s =

∫ t

−∞

√
3εu du =

√
3εt

so that t = log(s/
√

3) = log s− (log 3)/2. Let us now call the reparametrized curve β, i.e., we set

β(s) = α(log(s/
√

3)) =
s√
3

(
cos log

s√
3
, sin log

s√
3
, 1
)

and therefore, we have

β′(s) =
1√
3

(
cos log

s√
3
− sin log

s√
3
, sin log

s√
3

+ cos log
s√
3
, 1
)
,

β′′(s) =
1

s
√

3

(
− sin log

s√
3
− cos log

s√
3
, cos log

s√
3
− sin log

s√
3
, 0
)

How can we efficiently calculate the normal vector for a surface defined by an equation?
At p = (x, y, z), for a surface S = { (x, y, z) | f(x, y, z) = 0 } we have (here with f(x, y, z) = x2 + y2 − z2,
hence ∇f(x, y, z) = 2(x, y,−z))

N(p) =
1

‖∇f(p)‖
∇f(p) =

1√
x2 + y2 + z2

(x, y,−z)
(

=
1

‖p‖
(x, y,−z) here.

)
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— So there is no need to find a parametrization and then calculate xu × xv etc. —

Now, the normal curvature of the curve β (and hence α) is

κn,β(s) = β′′(s) ·N(β(s))

=
1

s
√

3‖β(s)‖

((
− sin log

s√
3
− cos log

s√
3

) s√
3

cos log
s√
3

+
(

cos log
s√
3
− sin log

s√
3

) s√
3

sin log
s√
3

)
=

−1

3‖β(s)‖

(
cos2 log

s√
3

+ sin2 log
s√
3

)
= − 1

3‖β(s)‖

and since

‖β(s)‖2 =
s2

3

(
cos2 log

s√
3

+ sin2 log
s√
3

+ 1
)

=
2s2

3
,

we have κn,β(s) = −1/(3
√

2s2/3) = −(
√

3/2)/(3s) and finally

κn,α(t) = κn,β(
√

3εt) = −
√

3

2
· 1

3
√

3εt
= − 1

3
√

2εt

which is inversely proportional to εt as desired.

Alternative approach: Calculation of the normal curvature using a local parametriza-
tion. If we parametrize the surface S as a surface of revolution by

x(u, v) = (v cosu, v sinu, v), (u, v) ∈ (−π, π)× (0,∞) or (u, v) ∈ (0, 2π)× (0,∞)

then α is given in these parametrization as

α(t) = (εt cos t, εt sin t, εt)x(u(t), v(t))

which means that
u(t) = t and v(t) = εt.

Now, the formula for the normal curvature of α in a local parametrization is given by

κn =
(u′)2L+ 2u′v′M + (v′)2N

(u′)2E + 2u′v′F + (v′)2G
,

so we need the coefficients of the first and second fundamental form. Since

xu = (−v sinu, v cosu, 0) and xv = (cosu, sinu, 1),

we have xu × xv = v(cosu, sinu,−1), hence

N =
1√
2

(cosu, sinu,−1)

and E(u, v) = v2, F = 0 and G = 2. Moreover,

xuu = (−v cosu,−v sinu, 0), xuv = (− sinu, cosu, 0), xvv = (0, 0, 0),
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so that

L = xuu ·N = − v√
2
, M = 0, N = 0.

Moreover, u′(t) = 1 and v′(t) = εt, so that finally

κn =
−(u′)2v/

√
2

(u′)2v2 + 2(v′)2
=
−εt/

√
2

ε2t + 2ε2t
= − 1

εt3
√

2

16.3. Show that an asymptotic curve can only exist in the hyperbolic or flat region { p ∈ S |K(p) ≤ 0 }.
(In other words, if a surface is elliptic everywhere, then there is no asymptotic curve.)

Solution:

A curve is an asymptotic curve iff IIα(s)(α
′) = 0. If K(p) > 0, then LN −M2 > 0, which implies that the

second fundamental form is either positive definite or negative definite (recall the Krammer’s rule), any of
these implies that IIα(s) never takes zero values.

16.4. Let S be a surface in R3 with Gauss map N , and let β be a regular curve on S not necessarily
parametrized by arc length. Show that the geodesic curvature κg of β is given by

κg =
1

‖β′‖3
(β′ × β′′) ·N .

Solution:

Assume that β : [t0, t1] −→ S is the parametrization of the curve. Let us first parametrize the curve by arc
length, i.e., set

s = ϕ(t) :=

∫ t

t0

‖β′(u)‖ du,

then ds/ dt = ϕ′(t) = ‖β′(t)‖ and we set

α := β ◦ ϕ−1, i.e. α(s) := β(ϕ−1(s)) = β(t)

if t = ϕ(s). Clearly (as we did in the first term),

α′(s) = (ϕ−1)′(s)β′(ϕ−1(s)) =
1

‖β′(t)‖
β′(t)

since (ϕ−1)′(s) = 1/ϕ′(t) = 1/‖β′(t)‖ which we can also write formally as

d

ds
=

1

‖β′(t)‖
d

dt
.

Moreover,

α′′(s) =
d

ds

( 1

‖β′(t)‖
β′(t)

)
=

1

‖β′(t)‖
d

dt

( 1

‖β′(t)‖
β′(t)

)
=

1

‖β′(t)‖
d

dt

( 1

‖β′(t)‖

)
β′(t)︸ ︷︷ ︸

proportional to α′

+
1

‖β′(t)‖2
β′′(t).
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Let now N be the normal to the surface (at α(s) = β(t)). We have

κg(s) = α′′(s) · (N(α(s)) ×α′(s)) =
1

‖β′(t)‖2
β′′(t) · (N(α(s)) ×α′(s))

=
1

‖β′(t)‖3
β′′(t) · (N(β(t)) × β′(t))

=
1

‖β′(t)‖3
(β′(t) × β′′(t)) ·N(β(t))

as β′ is proportional to α′, hence orthogonal to N ×α′ (for the second equality) and where we used

b · (c× a) = c · (a× b) = (a× b) · c.

In particular, we have shown the desired formula.

16.5. Let S be Enneper’s surface (see Problem 4.2) parametrized by

x(u, v) =
(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
, (u, v) ∈ R2.

(a) Calculate the lines of curvature.

(b) Show that the asymptotic curves are given by u± v = const.

Solution:

We have calculated the coefficients of the first and second fundamental form w.r.t. x in Problem 4.2 as

E(u, v) = G(u, v) = (1 + u2 + v2)2, F (u, v) = 0 and L = 2, M = 0, N = −2;

(a) Since the parametrization if principal (i.e., F = 0 and M = 0), the lines of curvature are just the
coordinate curves (see, e.g., Prop. 11.18, or this can be easily computed explicitly). Hence they are
given by s 7→ x(s, v0) and s 7→ x(u0, s) for u0, v0 ∈ R.

(b) A curve α with local parametrization α(s) = x(u(s), v(s)) is an asymptotic curve if κn = 0, i.e., if
IIα(s)(α

′(s) = 0, or,

(u′)2L+ 2u′v′M + (v′)2N = 0

Here it means that

2(u′)2 − 2(v′)2 = 2(u′ + v′)(u′ − v′) = 0 or, equivalently (u− v)′ = 0 or (u+ v)′ = 0,

which is equivalent to u± v = const.

16.6. (a) (∗) Show that the asymptotic curves on the surface given by x2 + y2 − z2 = 1 are straight
lines.

(b) Let S be a ruled surface. What are necessary and sufficient assumptions on S for all asymptotic
curves being straight lines?

Hint: use linear algebra.

11



Solution:

(a) The surface is a one-sheeted hyperboloid, so it is doubly ruled (i.e. there are two lines through every
point). As we have already proved, all lines are asymptotic curves, so we only need to prove that there
are no others.

If {e1, e2} is a basis of TpS consisting of eigenvectors of −dpN , then IIp(ei) = κi, where κi are principal
curvatures, and 〈e1, e2〉 = 0 (there are no umbilic points since K < 0 everywhere). Therefore,

IIp(ae1 + be2) = a2κ1 + b2κ2,

which vanishes in the only case when b = ±a
√
−κ1/κ2, so there are exactly two directions on which

IIp vanishes. This completes the proof.

Equivalently, we could say that any indefinite form of rank 2 looks like x2 − y2 in some basis, so there
are two vectors with zero value only.

Alternatively, one could parametrize the hyperboloid as a ruled surface via

x(u, v) =
(
cos(u), sin(u), 0) + v(sin(u),− cos(u), 1),

then compute the coefficients of the second fundamental form, solve the differential equation

(u′)2L(u, v) + 2u′v′M(u, v) + (v′)2N(u, v) = 0

and observe that the solutions will be precisely the lines.

(b) The proof of (a) can be applied to any doubly ruled surface, so for these surfaces indeed all the
asymptotic curves are lines. The statement is obviously true for planes as well. Let us prove that for
all other surfaces the statement does not hold.

So, assume that S is neither a plane nor a doubly ruled surface. As we have already seen above, since
S is ruled all the points are either hyperbolic or flat, which means that there are no umbilic points
(except for some isolated planar ones), and every point p ∈ S has precisely two directions on which IIp
vanishes, one of which is the direction of the ruling. Note that these lines do not intersect each other
in a ruled surface, so we can take another asymptotic curve through every point which will not be a
line (formally speaking here we use the theorem of existence of a solution of differential equation with
given initial data).
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