
Durham University
Anna Felikson

Differential Geometry 12.3.2020

Solutions 17-18

17.1. If x is a local parametrization of a surface S in R3 with E = 1, F = 0 and G is a function of u
only, write down the equations for s 7→ α(s) = x(u(s), v(s)) to be a geodesic. Conclude that the
coordinate curves, where v is constant, are geodesics.

Solution:

The curve α is a geodesic iff

u′′E +
1

2
(u′)2Eu + u′v′Ev + (v′)2

(
Fv −

1

2
Gu

)
+ v′′F = 0

v′′G+
1

2
(v′)2Gv + u′v′Gu + (u′)2

(
Fu −

1

2
Ev

)
+ u′′F = 0,

which reduces here to

u′′ − 1

2
Gu(v′)2 = 0

v′′G+ u′v′Gu = 0.

Now, for a coordinate curve with v constant, we have v′ = 0 and v′′ = 0, so that the second equation is
fulfilled. Moreover, the first one then becomes

u′′ = 0.

Since the speed of α is constant, we have

‖α′(s)‖2 = (u′)2 +G(v′)2 = const.

Since v′ = 0, we must have u′ 6= 0 (otherwise α′(s) = 0), so that u′′ = 0 as desired. Therefore u(s) = u0+as
(with a ∈ R \ {0}) and the geodesic has the form

α(s) = x(u0 + as, v0)

for some (u0, v0) in the parameter domain and some a ∈ R.

17.2. Let x : U −→ S be a parametrization of a surface S, and let α(s) = x(u(s), v(s)) be a curve
parametrized by arc length. Find an expression for the geodesic curvature κg of α involving u′, v′,
u′′, v′′, E, F , G, Γi

jk (i.e. the geodesic curvature is intrinsic, κg depends only on the curve and the
first fundamental form of the surface).

Solution:

The geodesic curvature is given by κg = α′′ · (N ×α′). Using the definition of the normal vector, and

α′ = u′xu + v′xv

and its derivative
α′′ = u′′xu + (u′)2xuu + 2u′v′xuv + (v′)2xvv + v′′xv
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we obtain

κg = α′′ · (N ×α′)

=
1

‖xu × xv‖
(
u′′xu + (u′)2xuu + 2u′v′xuv + (v′)2xvv + v′′xv

)
·
(
(xu × xv) × (u′xu + v′xv)

)
=

1

‖xu × xv‖

(
v′u′′xu ·

(
(xu × xv) × xv

)
+ (u′)3xuu ·

(
(xu × xv) × xu

)
+ (u′)2v′xuu ·

(
(xu × xv) × xv

)
+ 2(u′)2v′xuv ·

(
(xu × xv) × xu

)
+ 2u′(v′)2xuv ·

(
(xu × xv) × xv

)
+ u′(v′)2xvv ·

(
(xu × xv) × xu

)
+ (v′)3xvv ·

(
(xu × xv) × xv

)
+ u′v′′xv ·

(
(xu × xv) × xu

))
.

Note first that
‖xu × xv‖2 = EG− F 2

We now have to understand the expressions xu · ((xu × xv) × xv) etc. Using the rule

a× (b× c) = (a · c)b− (a · b)c or, equivalently, (a× b) × c = (a · c)b− (b · c)a

we obtain

xu ·
(
(xu × xv) × xv

)
= xu ·

(
(xu · xv)xv − (xv · xv)xu

)
= F 2 − EG

xuu ·
(
(xu × xv) × xu

)
= xuu ·

(
(xu · xu)xv − (xv · xu)xu

)
= Exuu · xv − Fxuu · xu

= E
(
Fu −

1

2
Ev

)
− 1

2
FEu

= (EG− F 2)Γ2
11

xuu ·
(
(xu × xv) × xv

)
= xuu ·

(
(xu · xv)xv − (xv · xv)xu

)
= Fxuu · xv −Gxuu · xu

= F
(
Fu −

1

2
Ev

)
− 1

2
GEu

= −(EG− F 2)Γ1
11

xuv ·
(
(xu × xv) × xu

)
= xuv ·

(
(xu · xu)xv − (xv · xu)xu

)
= Exuv · xv − Fxuv · xu

=
1

2
EGu −

1

2
EvF

= (EG− F 2)Γ2
12

xuv ·
(
(xu × xv) × xv

)
= xuv ·

(
(xu · xv)xv − (xv · xv)xu

)
= Fxuv · xv −Gxuv · xu

=
1

2
FGu −

1

2
EvG

= −(EG− F 2)Γ1
12

xvv ·
(
(xu × xv) × xu

)
= xvv ·

(
(xu · xu)xv − (xv · xu)xu

)
= Exvv · xv − Fxvv · xu

=
1

2
EGv − F

(
Fv −

1

2
Gu

)
= (EG− F 2)Γ2

22

xvv ·
(
(xu × xv) × xv

)
= xvv ·

(
(xu · xv)xv − (xv · xv)xu

)
= Fxvv · xv −Gxvv · xu

=
1

2
FGv −G

(
Fv −

1

2
Gu

)
= −(EG− F 2)Γ1

22

xv ·
(
(xu × xv) × xu

)
= xv ·

(
(xu · xu)xv − (xv · xu)xu

)
= EG− F 2.
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Alltogether, we have

κg =
1√

EG− F 2

(
(u′v′′ − u′′v′)(EG− F 2)

+ (u′)3
(
E
(
Fu −

1

2
Ev

)
− 1

2
FEu

)
+ (u′)2v′

(
F
(
Fu −

1

2
Ev

)
− 1

2
GEu

)
+ 2(u′)2v′

(1

2
EGu −

1

2
EvF

)
+ 2u′(v′)2

(1

2
FGu −

1

2
EvG

)
+ u′(v′)2

(1

2
EGv − F

(
Fv −

1

2
Gu

))
+ (v′)3

(1

2
FGv −G

(
Fv −

1

2
Gu

)))
=
√
EG− F 2

(
Γ2
11u
′3 − Γ1

22v
′3 + (2Γ2

12 − Γ1
11)u′2v′ − (2Γ1

12 − Γ2
22)u′v′2 − u′′v′ + v′′u′

)
In particular, for an arbitrarily parametrized curve the geodesic curvatire can be computed as

κg =

√
EG− F 2

(
Γ2
11u
′3 − Γ1

22v
′3 + (2Γ2

12 − Γ1
11)u′2v′ − (2Γ1

12 − Γ2
22)u′v′2 − u′′v′ + v′′u′

)
(Eu′2 + 2Fu′v′ +Gv′2)3/2

(cf. Exercise 6.4).

17.3. Show that a curve of constant geodesic curvature c on the unit sphere S2(1) in R3 is a planar
circle of length 2π(1 + c2)−1/2.

Hint: If α is a curve of constant geodesic curvature c show that the vector e(s) = α(s) ×α′(s) +
cα(s) does not depend on s, where (·)′ denotes differentiation with respect to arc length).

Solution:

On the unit sphere we have N(α(s)) = α(s). Therefore,

e(s) = α(s) ×α′(s) + cα(s),

e′(s) = α′(s) ×α′(s)︸ ︷︷ ︸
=0

+ α(s)︸︷︷︸
=N(α(s))

×α′′(s) + cα′(s),

= N(α(s)) ×
(
κnN(α(s)) + κg︸︷︷︸

=c

(
N(α(s)) ×α′(s)

))
+ cα′(s),

= cN(α(s)) ×
(
N(α(s)) ×α′(s)

)
+ cα′(s).

Now, note that a := α′(s) and b := N(α(s)) are orthonormal vectors, therefore c := a× b is also a unit
vector orthogonal to a and b. In particular, {a, b, c} is a positively oriented orthonormal basis of R3. For
such a basis, we have b× (b× a) = −a, and hence e′(s) = 0, so e(s) = e is a constant vector.

We will now show that α(s) lies in a plane: We have

α(s) · e = α(s) ·
(
α(s) ×α′(s) + cα(s)

)
= cα(s) ·α(s) = c

for all s ∈ R as α(s) ∈ S2(1). But this means that α(s) makes a constant angle with e and thus lies in
a plane at distance c/‖e(s)‖ from the origin. Since ‖e(s)‖ =

√
1 + c2 (by Pythagoras’ theorem: {α(s) ×

α′(s),α′(s)} are orthonormal), the radius of the circle (the intersection of the plane with the unit sphere)
is r =

√
1− c2/(1 + c2) = 1/

√
1 + c2. Hence, the circle has circumference 2πr = 2π/

√
1 + c2.
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17.4. (∗) Let S be a surface in R3 and suppose that Π is a plane which intersects S orthogonally along
a regular curve γ. If α(s) is a parametrization of γ such that ‖α′(s)‖ is constant, show that α is
a geodesic of S.

Solution:

By construction, we have that α′(s) and the normal N(α(s)) are parallel to Π for all s. Let e be a non-zero
vector normal to Π, then N(α(s))×α′(s) is parallel to e. From α′(s) · e = 0 (again, α′(s) is parallel to Π)
we deduce that (after taking the derivative) α′′(s) · e = 0 (as e is independent of s), so we see that

κg =
1

‖α′(s)‖3
(
α′(s) ×α′′(s)

)
·N(α(s)) =

1

‖α′(s)‖3
(
N(α(s)) ×α′(s)

)
·α′′(s) = 0.

Therefore, since the curve is also parametrized proportionally to arc length, it is a geodesic.

17.5. (a) Show that any constant speed curve on a surface S in R3 which is a curve of intersection of
S with a plane of reflectional symmetry of S is a geodesic.

(b) Show that the curves of intersection of the coordinate planes in R3 with the surface S defined
by the equation x4 + y6 + z8 = 1 are geodesics.

Solution:

(a) A plane of reflection leaving a surface invariant intersects the surface orthogonally (prove this!). There-
fore, the result follows immediately from the previous exercise.

(b) Note that the reflections (x, y, z) 7→ (−x, y, z), (x, y, z) 7→ (x,−y, z) and (x, y, z) 7→ (x,−y, z) all
leave the surface given by x4 + y6 + z8 = 1 invariant. Since these reflections are reflections along the
coordinate planes, the result follows.

17.6. Let α be a regular curve on a surface S in R3.

(a) If α is both a line of curvature and a geodesic, show that α is a planar curve.

Hint: Show that N ×α′ is constant along α.

(b) If α is both a geodesic and a planar curve with nowhere vanishing curvature show that α is
a line of curvature.

Solution:

(a) Denote
e(s) := (N ◦α)(s) ×α′(s)

so that its derivative is

e′(s) = (N ◦α)′(s) ×α′(s) + (N ◦α)(s) ×α′′(s)

= (dα(s)N)(α′(s)) ×α′(s) +N(α(s)) ×α′′(s)

Now, since α is a line of curvature, dα(s)N(α′(s)) is a multiple of α′(s), hence the first vector product
vanishes (as a× a = 0), and for the second term, note that as α is a geodesic, α′′(s) is a multiple of
N(α(s)), and hence this vector product also vanishes. Alltogether we have shown e′(s) = 0 for all s,
say

e(s) = e0
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for some vector e0 ∈ R3. Note that e0 6= 0, because α′ and α′′ are orthogonal (here we use the constant
speed property of a geodesic), so α′ and N(α(s)) are also orthogonal (and of course non-zero).

Let us now show that α(s) lies in a plane normal to e0, i.e., α(s) · e0 = const, or equivalently,
α′(s) · e0 = 0. Indeed,

α′ · e0 = α′ ·
(
(N ◦α) ×α′

)
= (N ◦α) ·

(
α′ ×α′

)
= 0.

In particular, α(s) lies in a plane for all s.

(b) If α is a geodesic, then α′′ = κnN . Moreover, there exist e0 ∈ R3 such that α(s) · e0 = const for all
s (as α lies in a plane), hence taking the derivatives give α′ · e0 = 0 and α′′ · e0 = 0. Using the fact
that κn(s) 6= 0 for all s we conclude that e0 is orthogonal to N(α(s)) and α′(s) for all s. Taking the
derivative of N(α(s)) · e0 = 0 gives

dα(s)N(α′(s)) · e0 = 0

for all s, and from the fact that N is a unit vector, we also obtain that dα(s)N(α′(s)) is orthognal to
N(α(s)). In particular we have shown that dα(s)N(α′(s)) and α′(s) both are orthogonal to e0 and
dα(s)N(α′(s)), hence there must be a scalar λ(s) ∈ R such that dα(s)N(α′(s)) = λ(s)α′(s), i.e., α is
a line of curvature.

18.1. Find all the geodesics on the flat torus S1(1) × S1(1) ⊂ R4, where S1(1) is the circle of radius
1 in R2 centered at the origin. Prove that there are infinitely many both closed and non-closed
geodesics through the point (1, 0, 1, 0) ∈ S1(1)× S1(1).

Solution:

The plane R2 and the flat torus T = S1(1)× S1(1) are locally isometric via

f(u, v) = (cosu, sinu, cos v, sin v)

(as it can be easily seen from fu · fu = 1, fu · fv = 0 and fv · fv = 0, and the fact that E = G = 1, F = 0 are
also the coefficients of the first fundamental form of the plane). Local isometries preserve geodesics, hence
images of lines under f are geodesics of T : examples through (1, 0, 1, 0) are

αr : R −→ T, αp,q(s) = (cos(ps), sin(ps), cos(qs), sin(qs)).

for some p, q ∈ R such that p2 + q2 = 1 (these are images of the lines s 7→ (ps, qs) in the plane, having
unit speed). Note that αr(0) = (1, 0, 1, 0). Moreover, if r = p/q is rational (w.l.o.g., p, q both rational, say,
p = a/c and q = b/c, a, b ∈ Z, c ∈ N), then αp,q(s + 2πc) = αp,q(s) and hence αp,q is a closed geodesic on
T . Obviously, there are infinitely many such parameters p and q.

If p/q is irrational, then αp,q(s1) = αp,q(s2) implies p(s1 − s2), q(s1 − s2) ∈ 2πZ, i.e.,

2π(s1 − s2) ∈ (p−1Z) ∩ (q−1Z).

But since p/q is irrational, the latter set only contains {0}, and hence s1 = s2, i.e., the curve αp,q is injective,
i.e., the line R is embedded injectively into T . Again, there are infinitely many such parameters p and q.

18.2. Let H be the hyperbolic plane, i.e. the surface R×(0,∞) with coefficients of the first fundamental
form E(u, v) = G(u, v) = 1/v2 and F (u, v) = 0. Show that the geodesics in H are the intersections
of H with the lines and circles in R2 which meet the u-axis orthogonally.

Hint: After obtaining the differential equations you may not try to solve them but, instead, just
check that the curves above are indeed geodesics, and then prove that there are no others.
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Solution:

The equation of a geodesic in a local parametrization is

u′′E +
1

2
(u′)2Eu + u′v′Ev + (v′)2

(
Fv −

1

2
Gu

)
+ v′′F = 0,

v′′G+
1

2
(v′)2Gv + u′v′Gu + (u′)2

(
Fu −

1

2
Ev

)
+ u′′F = 0,

which reduces here to

1

v2
u′′ − 2

1

v3
u′v′ = 0,

1

v2
v′′ − 1

v3
(v′)2 +

1

v3
(u′)2 = 0,

which is equivalent to ( u′
v2

)′
= 0, and v′′ +

u′2 − v′2

v
= 0.

These are equivalent to

u′ = cv2 and v′′ +
u′2 − v′2

v
= 0

for some constant c ∈ R.

Consider vertical lines first, i.e. u = u0. Then the first equation clearly holds for c = 0, and the second

reduces to v′′ = v′2

v , which also holds if we parametrize a vertical line by v(s) = kes for any positive k.

Consider now semicircles orthogonal to the real axis, each of these can be parametrized by

α(s) = (u(s), v(s)) = (u0 + a cos f(s), a sin f(s))

for some u0 ∈ R, a ∈ R>0 and a smooth monotone function f . The first equation then becomes

f ′(s) = −ca sin f(s),

so assume the function f satisfies this. We need to verify that the second equation is then also fulfilled. In
view of the relation above, we have

v′(s) =af ′(s) cos f(s) = −ca2 sin f(s) cos f(s) =
−ca2

2
sin 2f(s),

v′′(s) =
−ca2

2
2f ′(s) cos 2f(s) = c2a3 sin f(s) cos 2f(s),

u′(s) =ca2 sin2 f(s).

Therefore,

v′′+
u′2 − v′2

v
= c2a3 sin f(s) cos 2f(s)+

c2a4 sin4 f(s)− c2a4 sin2 f(s) cos2 f(s)

a sin f(s)
= c2a3 sin f(s)

(
cos 2f(s)+(sin2 f(s)−cos2 f(s))

)
= c2a3 sin f(s)

(
cos 2f(s)−cos 2f(s)

)
= 0,

so the second equation also holds.

Finally, for a given point p ∈ H and a tangent vector w ∈ TpH there exists a unique circle (or line) through
p and tangent to w intersecting the real axis orthogonally. By the uniqueness theorem, this implies that
there are no other geodesics except for the ones described above.
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18.3. How many closed geodesics are there on the surface of revolution in R3 obtained by rotating the
curve z = 1/x2, (x > 0) around the z-axis?

Solution:

Assume that α(s) = x(u(s), v(s)) is a closed geodesic, where

x(u, v) = (f(v) cosu, f(v) sinu,
1

f2(v)
),

where f is monotonic and the curve (f(v), 1/f2(v)) has unit speed. The Clairaut relation then says that

f(v(s)) cos Θ(s) = const,

where Θ(s) is the angle formed by α′(s) and the parallel through α(s). Let zmin and zmax be the minimal
and maximal values of z along α, denote zmin = 1/f(v2(smin)) and zmax = 1/f2(v(smax)), these defines the
values of s uniquely since f is monotonic. Then Θ(smin) = Θ(smax) = 0, which implies that f(v(smin)) =
f(v(smax)), so zmin = zmax, i.e. α must be a parallel. However, it is easy to see that no parallel is a geodesic
(as f ′(v) never vanishes). This proves that the surface has no closed geodesics.

18.4. (∗) Let S be the cone obtained by rotating the line z = βx (z > 0) around the z-axis, where β is
a positive constant. Let α(s) = (x(s), y(s), z(s)) be a geodesic on S intersecting the parallel z = 1
at an angle ϑ0. Find the smallest value of z(s). Investigate whether α has self-intersections.

Solution:

Parametrize the generating curve by (v, 0, βv). Then the Clairaut equation reduces to

v(s) cosϑ(s) = const,

where ϑ(s) is the angle formed by α with the parallel at α(s).The constant here is the value of v(s) cosϑ at
z = 1, i.e. at v = 1/β. Thus, we have an equation

v(s) cosϑ(s) =
cosϑ0
β

.

By symmetry, at the pointα(s0) ofα closest to the origin the angle ϑ(s0) is equal to zero, so v(s0) = cosϑ0/β.
Therefore,

z(s0) = βv(s0) = cos(ϑ0),

so it is independent of β! Note that if ϑ0 = π/2, then the distance is 0 which means that the geodesic goes
through the apex.

Alternatively, we could use the fact the geodesics on a cone are just images of lines under the local isometry
between the plane and a cone. In particular, by considering the preimage of the cone under an isometry in
R2, one can easily see that the α is self-intersecting if and only if the total angle of the cone in the apex is
strictly less that π. By Pythagoras’ Theorem, the latter is equivalent to 2/

√
1 + β2 < 1, which is the same

as β >
√

3 or arctanβ > π/3.

18.5. Let α : I −→ R3 be a curve parametrized by arc length with everywhere non-zero curvature, and
let b(s) be a vector such that the map

x(s, v) = α(s) + vb(s), s ∈ I, v ∈ (−ε, ε),

is a parametrization of a regular surface S for some ε > 0 (S is a ruled surface — you don’t have
to show that the surface is regular).
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(a) Is the curve β : (−ε, ε) −→ S given by β(v) = x(s0, v) for some s0 ∈ I a geodesic? Justify
your answer.

(b) Assume now that b(s) is the binormal of the space curve α at α(s). Prove that α is a geodesic
on S (i.e., show that the generating curve is a geodesic on the ruled surface generated by a
curve and its binormal.)

Solution:

(a) Any line in a surface is a geodesic (as in its standard parametrisation, α(s) = p + sv has derivatives
α′(s) = v and α′′(s) = 0, hence κg = 0.

(b) The normal Nα and binormal b of the curve α are given by

Nα(s) =
1

‖α′′(s)‖
α′′(s) and b(s) = α′(s) ×Nα(s)

(assuming that α′′(s) 6= 0, see Section 4 of the notes of the first term). The two tangent vectors of the
ruled surface are xs = α′ and xv = b, hence the normal vector N of the surface is

N =
1

‖α′ × b‖
α′ × b,

and hence, the vector N×α′ is proportional to (α′×b)×α′ and therefore proportional to b (since α′

and b are orthonormal). Now, b is, by definition, orthogonal to α′′ and hence κg = α′′ · (N ×α′) = 0.

Alternative solution: You can also verify that α′′(s) is orthogonal to Tα(s)S for all s by checking

α′′ · xs = α′′ ·α′ !
= 0 and α′′ · xv = α′′ · b !

= 0.

Now, α′′ ·α′ = 0 as ‖α′‖2 = 1, which implies 2α′′ ·α′ = 0. Moreover, b is by definition orthogonal to
α′′, and hence the second orthogonality condition is also satisfied.
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