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Solutions 3-4

3.1. Let α denote the catenary from Exercise 2.1. Show that

(a) the involute of α starting from (0, 1) is the tractrix from Exercise 1.6 (with x- and y-axes
exchanged and different parametrization);

(b) the evolute of α is the curve given by

β(u) = (u− sinhu coshu, 2 coshu)

(c) Find the singular points of β and give a sketch of its trace.

Solution:

(a) The involute of α has parametrization

γ(u) = a(u)− `(u)t(u)

Since
a′(u) = (1, sinhu),

we have

`(u) =

∫ u

0

‖α′(v)‖dv =

∫ u

0

cosh v dv = sinhu and t(u) =
1

coshu
(1, sinhu),

so

γ(u) = a(u)− sinhut(u) =

(
u− sinhu

coshu
, coshu− sinh2 u

coshu

)
=

1

coshu
(u coshu− sinhu, 1)

Exchanging coordinate axes, we obtain a curve parametrized by

γ̃(u) =
1

coshu
(1, u coshu− sinhu)

The tractrix from Exercise 1.6 is completely characterized by its property (d). Computing the corresponding
distance for the curve γ̃(u) we see that its trace is also a tractrix.

(b) As we have already computed in Exercise 2.1 and in (a),

t(u) =
1

coshu
(1, sinhu), κ(u) =

1

cosh2 u

In particular, κ(u) is never zero, and

n(u) =
1

coshu
(− sinhu, 1)

Now we can compute the evolute:

e(u) = α(u) +
1

κ(u)
n(u) = (u− sinhu coshu, 2 coshu)

as required.

(c) The singular points of e correspond to the vertices of α. We have

κ′(u) =

(
1

cosh2 u

)′

= −2 sinhu

cosh3 u
,

so κ′(u) = 0 if and only if u = 0. The only singular point of e is (0, 2).
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3.2. (∗) Parallels. Let α be a plane curve parametrized by arc length, and let d be a real number. The
curve β(u) = α(u) + dn(u) is called the parallel to α at distance d.

(a) Show that β is a regular curve except for values of u for which d = 1/κ(u), where κ is the
curvature of α.

(b) Show that the set of singular points of all the parallels (i.e., for all d ∈ R) is the evolute of α.

Solution:

(a) Assume κ(u) = 0 or dκ(u) 6= 1. The latter is automatically satisfied if κ(u) = 0. So we just assume that
dκ(u) 6= 1. We need to show that β′(u) 6= 0. Since α is unit speed, we have

β′(u) = t(u) + dn′(u) = t(u) + dAt′(u) = t(u) + dκ(u)An(u) =

= t(u) + dκ(u)A2t(u) = t(u)− dκ(u)t(u) = (1− dκ(u))t(u),

with A =

(
0 −1
1 0

)
and vectors t and n are understood as columns. Note that ‖t(u)‖ = 1, i.e., t(u) 6= 0.

The initial assumption implies that (1− dκ(u)) 6= 0 and, therefore β′(u) 6= 0, i.e., β(u) is regular.

In the case κ(u) 6= 0 and dκ(u) = 1, i.e., d = 1/κ(u), we obviously have β′(u) = 0, i.e., β(u) is singular.

(b) The evolute is only defined in the case that we have κ(u) 6= 0 for all u. So we assume this. We have
seen in (a) that the singular points of the parallels are precisely those β(u) for which we have dκ(u) = 1,
i.e., d = 1/κ(u). This means that the set fo singular points of all parallels is

{α(u) + dn(u) |u ∈ I, d = 1/κ(u)} = {α(u) +
1

κ(u)
n(u) |u ∈ I}

which is precisely the parametrization of the evolute of α.

3.3. Let α(u) : I → R2 be a smooth regular curve. Suppose there exists u0 ∈ I such that the distance
||α(u)|| from the origin to the trace of α is maximal at u0. Show that the curvature κ(u0) of α at
u0 satisfies

|κ(u0)| ≥ 1/||α(u0)||

Solution:

Note first that the both sides of the inequality we want to prove do not depend on the parametrization, so
we may assume without loss of generality that α is parametrized by arc length.

Consider the function f(u) = ‖α‖2. Since f(u) has a maximum at u0, the first derivative of f(u) at u0
vanishes (cf. Exercise 1.4(b)), and the second derivative is non-positive. Thus, we have

0 ≥ f ′′(u0) = (α(u) ·α(u))′′|u0
= (2α′(u) ·α(u))′|u0

= α′′(u0) ·α(u0) + 2‖α′(u0)‖2 = α′′(u0) ·α(u0) + 2

To satisfy the inequality above, we must have α′′(u0) ·α(u0) ≤ −1, which implies |α′′(u0) ·α(u0)| ≥ 1, and
therefore

|κ(u0)| = ‖α′′(u0)‖ ≥ 1/‖α(u0)‖

3.4. Contact with circles. The points (x, y) ∈ R2 of a circle are given as solutions of the equation
C(x, y) = 0 where

C(x, y) = (x− a)2 + (y − b)2 − λ

2



Let α = (x(u), y(u)) be a plane curve. Suppose that the point α(u0) is also on some circle defined
by C(x, y). Then C vanishes at (x(u0), y(u0)) and the equation g(u) = 0 with

g(u) = C(x(u), y(u)) = (x(u)− a)2 + (y(u)− b)2 − λ

has a solution at u0. If u0 is a multiple solution of the equation, with g(i)(u0) = 0 for i = 1, . . . , k−1
but g(k)(u0) 6= 0, we say that the curve α and the circle have k-point contact at α(u0).

(a) Let a circle be tangent to α at α(u0). Show that α and the circle have at least 2-point contact
at α(u0).

(b) Suppose that κ(u0) 6= 0. Show that α and the circle have at least 3-point contact at α(u0) if
and only if the center of the circle is the center of curvature of α at α(u0).

(c) Show that α and the circle have at least 4-point contact if and only if the center of the circle
is the center of curvature of α at α(u0) and α(u0) is a vertex of α.

Solution:

Denote by c = (a, b) the center of the circle C(x, y) = 0. Then the function g(u) = C(x(u), y(u)) =
(x(u)− a)2 + (y(u)− b)2 − λ can be written as

g(u) = (α(u)− c) · (α(u)− c)− λ

(a) Differentiating g(u), we obtain
g′(u) = 2(α(u)− c) ·α′(u)

which vanishes if and only if α′(u) is orthogonal to α(u) − c. Note that α(u) − c is a radius of the circle,
and the vector α′(u) is orthogonal to a radius if and only if it is tangent to the circle.

(b) Differentiating g′(u), we obtain

g′′(u) = 2(α(u)− c) ·α′′(u) + 2‖α′(u)‖2

Since α(u) − c is orthogonal to α′(u), it is collinear with α′′(u), namely, it is equal to ±‖α(u) − c‖n.
Assume κ(u) > 0 (if κ(u) < 0 the computations are similar), then α′′(u) = −‖α(u)− c‖n. Thus, g′′(u) = 0
if and only if

−2‖α(u)− c‖n ·α′′(u) + 2‖α′(u)‖2 = 0,

which is equivalent to

‖α(u)− c‖ =
‖α′(u)‖2

n ·α′′(u)

The latter is equal to 1/κ(u) (see Exercise 2.2).

(c) Again, assume κ(u) > 0. According to (b), we can write

g′′(u) = −2‖α(u)− c‖n ·α′′(u) + 2‖α′(u)‖2 =

= −2‖α(u)− c‖κ(u)‖α′(u)‖2 + 2‖α′(u)‖2 = 2‖α′(u)‖2(1− κ(u)‖α(u)− c‖)

Differentiating this expression, we get

g′′′(u) = 4α′′(u) ·α′(u)(1− κ(u)‖α(u)− c‖) + 2‖α′(u)‖2(−‖α(u)− c‖′κ(u)− ‖α(u)− c‖κ′(u))

Since the center c of the circle coincides with the center of curvature of α, the first summand iz equal to
zero. The derivative of ‖α(u) − c‖ is also zero since α′(u) is orthogonal to α(u) − c (cf. (a) or Exercise
1.4(b)). Thus, g′′′(u) = 0 if and only if κ′(u) = 0, or, equivalently, α(u) is a vertex of α.
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4.1. Check that for two curves α,β : I → R3 holds

(α(u)× β(u))′ = α′(u)× β(u) +α(u)× β′(u),

where α× β is the cross-product in R3.

Solution: One can do a direct calculation in coordinates similar to Exercise 1.3. Alternatively, one can

observe that coordinates of a cross-product are expressed via certain determinants which are miltilinear

functions.

4.2. (∗) Find the curvature and torsion of the curve

α(u) = (au, bu2, cu3).

Solution:

We use Theorem 4.6. Since

α′(u) = (a, 2bu, 3cu2),

α′′(u) = (0, 2b, 6cu),

α′′′(u) = (0, 0, 6c),

we have

κ(u) =
‖α′ ×α′′‖
‖α′‖3

=
‖(6bcu2,−6acu, 2ab)‖

(a2 + 4b2u2 + 9c2u4)3/2
=

2(9b2c2u4 + 9a2c2u2 + a2b2)1/2

(a2 + 4b2u2 + 9c2u4)3/2
,

τ(u) =
−(6bcu2,−6acu, 2ab) · (0, 0, 6c)

4(9b2c2u4 + 9a2c2u2 + a2b2)
=

−3abc

(9b2c2u4 + 9a2c2u2 + a2b2)

4.3. (∗) Assume that α : I → R3 is a regular space curve parametrized by arc length.

(a) Determine all regular curves with vanishing curvature κ.

Hint: use Theorem 4.6

(b) Show that if the torsion τ of α vanishes, then the trace of α lies in a plane.

Hint: do NOT use Theorem 4.6

Solution:

(a) By Theorem 4.6, κ(s) = 0 if and only if α′(s)×α′′(s) = 0. Note that since α is regular, α′(s) 6= 0.

If α′′(s) ≡ 0, then α′(s) = (a, b, c) for some constants a, b, c ∈ R, and thus

α(s) = α0 + s(a, b, c)

is a line.

Assume now that α′′(s) 6= 0 at some point s (and thus, in some neighborhood of s). Then the unit normal
n(s) is the unit vector defined by

n(s) =
α′′(s)

‖α′′(s)‖
,
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so,

κ(s) =
‖α′′(s)‖
‖n(s)‖

= ‖α′′(s)‖ 6= 0,

which leads to a contradiction.

Therefore, the only regular curve with zero curvature is a line.

(b) By Serret-Frenet equations, b′ = τn. Thus, if τ ≡ 0, then b is constant. In particular, all the planes
spanned by t(s) and n(s) are parallel. We want to show that they all coincide.

Choose any s0, and consider the function

f(s) = b · (α(s)−α(s0))

The derivative of this function is

f ′(s) = b′ · (α(s)−α(s0)) + b · (α(s)−α(s0))′ = 0 · (α(s)−α(s0)) + b ·α′(s) = 0

which implies that f(s) is constant. Since for f(s0) = 0, we see that α(s) satisfies

b · (α(s)−α0) = 0

for constant vectors b and α0. The equation above is an equation of a plane in R3.

4.4. Assume that α(s) = (x(s), y(s), 0), i.e., the trace of α lies in the plane z = 0. Calculate the
curvature κ of α and its torsion τ . What is the relation of the curvature κ of the space curve α
and the (signed) curvature κ of the plane curve α : I → R2 defined by α(s) = (x(s), y(s)) (i.e.,
the projection of the space curve α to the plane z = 0)?

Solution:

Since α lies in the plane z = 0, the tangent and normal vectors also lie in the plane, so the binormal vector
is constant. Using the equation b′ = τn we see that τ ≡ 0. The curvature of α is clearly the absolute value
of the curvature of α.

4.5. Consider the regular curve given by

α(s) =
(
a cos

s

c
, a sin

s

c
, b
s

c

)
, s ∈ R,

where a, b, c > 0 and c2 = a2 + b2. The curve α is called a helix.

(a) Show that the trace of α lies on the cylinder x2 + y2 = a2.

(b) Show that α is parametrized by arc length.

(c) Determine the curvature and torsion of α (and notice that they are both constant).

(d) Determine the equation of the plane through n(s) and t(s) at each point of α (this plane is
called the osculating plane).

(e) Show that the line through α(s) in direction n(s) meets the axis of the cylinder orthogonally.

(f) Show that the tangent lines to α make a constant angle with the axis of the cylinder.

Solution:

(a)

x(s)2 + y(s)2 = a2
(

cos2
s

c
+ sin2 s

c

)
= a2,
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i.e., the trace of α lies on the cylinder x2 + y2 = a2.

(b) We have

α′(s) =

(
−a
c

sin
s

c
,
a

c
cos

s

c
,
b

c

)
,

which implies

‖α′(s)‖2 =
a2

c2
+
b2

c2
= 1.

This shows that α is unit speed.

(c) We have

α′′(s) =
(
− a

c2
cos

s

c
,− a

c2
sin

s

c
, 0
)
,

α′′′(s) =
( a
c3

sin
s

c
,− a

c3
cos

s

c
, 0
)
.

This implies

α′(s)×α′′(s) =

(
ab

c3
sin

s

c
,−ab

c3
cos

s

c
,
a2

c3

)
.

We conclude that

‖α′(s)×α′′(s)‖2 =
a2(a2 + b2)

c6
=
a2

c4
,

i.e.,

κ =
‖α′ ×α′′‖
‖α′‖3

=
a

c2
.

Moreover, we have

(α′(s)×α′′(s)) ·α′′′(s) =
a2b

c6
sin2 s

c
+
a2b

c6
cos2

s

c
=
a2b

c6
.

This implies that

τ = −a
2b

c6
· c

4

a2
= − b

c2
.

(d) The osculating plane is orthogonal to the binormal vector b(s), and thus to α′(s) × α′′(s) which is
collinear to b(s). We have already computed in (c) that

α′(s)×α′′(s) =

(
ab

c3
sin

s

c
,−ab

c3
cos

s

c
,
a2

c3

)
.

Therefore, the equation of the osculating plane at α(s) = (x(s), y(s), z(s)) can be written as

ab

c3
sin

s

c
(x− x(s))− ab

c3
cos

s

c
(y − y(s)) +

a2

c3
(z − z(s)) = 0.

After plugging in the explicit expressions for α(s) and multiplying by c3/a we obtain

xb sin
s

c
− yb cos

s

c
+ az − abs

c
= 0

(e) Normalizing the expression for α′′(s) obtained in (c), we see that n(s) =
(
− cos s

c ,− sin s
c , 0
)
. Since the

z-coordinate of n(s) is zero, n(s) is orthogonal to the z-axis (which is also the axis of the cylinder). Note
also that an(s) is a projection of −α(s) onto the horizontal plane, so the line α(s) +un(s) meets the z-axis
at u = a.
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(f) To find the cosine of the angle, we need to compute the dot product of the unit tangent vector and the
unit vector in the direction of the axis of the cylinder. The latter has coordinates (0, 0, 1), so the cosine is
equal to

(0, 0, 1) ·
(
−a
c

sin
s

c
,
a

c
cos

s

c
,
b

c

)
=
b

c

which is constant.
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