Homework 3-4 Starred problems due on Thursday, 7 November.

Evolute and involute

- **3.1.** Let α denote the catenary from Exercise 2.1. Show that
 - (a) the involute of α starting from (0,1) is the tractrix from Exercise 1.6 (with x- and y-axes exchanged and different parametrization);
 - (b) the evolute of $\boldsymbol{\alpha}$ is the curve given by

$$\boldsymbol{\beta}(u) = (u - \sinh u \cosh u, 2 \cosh u)$$

(c) Find the singular points of β and give a sketch of its trace.

3.2. (*) *Parallels.* Let α be a plane curve parametrized by arc length, and let d be a real number. The curve $\beta(u) = \alpha(u) + dn(u)$ is called the *parallel* to α at distance d.

(a) Show that β is a regular curve except for values of u for which $d = 1/\kappa(u)$, where κ is the curvature of α .

- (b) Show that the set of singular points of all the parallels (i.e., for all $d \in \mathbb{R}$) is the evolute of α .
- **3.3.** Let $\alpha(u) : I \to \mathbb{R}^2$ be a smooth regular curve. Suppose there exists $u_0 \in I$ such that the distance $||\alpha(u)||$ from the origin to the trace of α is maximal at u_0 . Show that the curvature $\kappa(u_0)$ of α at u_0 satisfies

$$|\kappa(u_0)| \ge 1/||\boldsymbol{\alpha}(u_0)||$$

3.4. Contact with circles. The points $(x, y) \in \mathbb{R}^2$ of a circle are given as solutions of the equation C(x, y) = 0 where

$$C(x, y) = (x - a)^{2} + (y - b)^{2} - \lambda$$

Let $\boldsymbol{\alpha} = (x(u), y(u))$ be a plane curve. Suppose that the point $\boldsymbol{\alpha}(u_0)$ is also on some circle defined by C(x, y). Then C vanishes at $(x(u_0), y(u_0))$ and the equation g(u) = 0 with

$$g(u) = C(x(u), y(u)) = (x(u) - a)^{2} + (y(u) - b)^{2} - \lambda$$

has a solution at u_0 . If u_0 is a multiple solution of the equation, with $g^{(i)}(u_0) = 0$ for i = 1, ..., k-1 but $g^{(k)}(u_0) \neq 0$, we say that the curve α and the circle have k-point contact at $\alpha(u_0)$.

(a) Let a circle be tangent to α at $\alpha(u_0)$. Show that α and the circle have at least 2-point contact at $\alpha(u_0)$.

(b) Suppose that $\kappa(u_0) \neq 0$. Show that α and the circle have at least 3-point contact at $\alpha(u_0)$ if and only if the centre of the circle is the centre of curvature of α at $\alpha(u_0)$.

(c) Show that $\boldsymbol{\alpha}$ and the circle have at least 4-point contact if and only if the centre of the circle is the centre of curvature of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u_0)$ and $\boldsymbol{\alpha}(u_0)$ is a vertex of $\boldsymbol{\alpha}$.

Space curves - 1

4.1. Check that for two curves $\boldsymbol{\alpha}, \boldsymbol{\beta}: I \to \mathbb{R}^3$ holds

$$(\boldsymbol{\alpha}(u) \times \boldsymbol{\beta}(u))' = \boldsymbol{\alpha}'(u) \times \boldsymbol{\beta}(u) + \boldsymbol{\alpha}(u) \times \boldsymbol{\beta}'(u),$$

where $\boldsymbol{\alpha} \times \boldsymbol{\beta}$ is the cross-product in \mathbb{R}^3 .

4.2. (*) Find the curvature and torsion of the curve

$$\boldsymbol{\alpha}(u) = (au, bu^2, cu^3).$$

- **4.3.** (*) Assume that $\alpha : I \to \mathbb{R}^3$ is a regular space curve parametrized by arc length.
 - (a) Determine all regular curves with vanishing curvature κ .

Hint: use Theorem 4.6

(b) Show that if the torsion τ of α vanishes, then the trace of α lies in a plane.

Hint: do NOT use Theorem 4.6

- **4.4.** Assume that $\alpha(s) = (x(s), y(s), 0)$, i.e., the trace of α lies in the plane z = 0. Calculate the curvature κ of α and its torsion τ . What is the relation of the curvature κ of the space curve α and the (signed) curvature $\overline{\kappa}$ of the plane curve $\overline{\alpha} : I \to \mathbb{R}^2$ defined by $\overline{\alpha}(s) = (x(s), y(s))$ (i.e., the projection of the space curve α to the plane z = 0)?
- **4.5.** Consider the regular curve given by

$$\boldsymbol{\alpha}(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right), \qquad s \in \mathbb{R},$$

where a, b, c > 0 and $c^2 = a^2 + b^2$. The curve α is called a *helix*.

- (a) Show that the trace of α lies on the cylinder $x^2 + y^2 = a^2$.
- (b) Show that α is parametrized by arc length.
- (c) Determine the curvature and torsion of α (and notice that they are both constant).

(d) Determine the equation of the plane through n(s) and t(s) at each point of α (this plane is called the *osculating plane*).

(e) Show that the line through $\alpha(s)$ in direction n(s) meets the axis of the cylinder orthogonally.

(f) Show that the tangent lines to α make a constant angle with the axis of the cylinder.

Remark: In fact, a helix can be characterized by (a) and (f). If we drop (a), then we obtain a *generalized helix* (see next homework). Another way how to characterize a helix is by (c), i.e., the fact that the curvature and torsion are constant. *Why?*