Homework 5-6 Starred problems due on Thursday, 21 November.

Space curves - 2

- **5.1.** (*) A curve $\alpha : I \to \mathbb{R}^3$ is called a *(generalized) helix* if its tangent lines make a constant angle with some fixed direction in \mathbb{R}^3 .
 - (a) Prove that the curve

$$\boldsymbol{\alpha}(s) = \left(\frac{a}{c} \int_{s_0}^s \sin \vartheta(v) \, \mathrm{d}v, \frac{a}{c} \int_{s_0}^s \cos \vartheta(v) \, \mathrm{d}v, \frac{b}{c}s\right),$$

with $s_0 \in I$, $c^2 = a^2 + b^2$, $a \neq 0$, $b \neq 0$ and $\vartheta'(s) > 0$ is a (generalized) helix.

(b) Assume that $\boldsymbol{\alpha} : I \to \mathbb{R}^3$ is a regular curve with $\tau(s) \neq 0$ for all $s \in I$. Prove that $\boldsymbol{\alpha}$ is a (generalized) helix if and only if κ/τ is constant.

5.2. Let α , β be regular curves in \mathbb{R}^3 such that, for each u, the principal normals $n_{\alpha}(u)$ and $n_{\beta}(u)$ are parallel. Prove that the angle between $t_{\alpha}(u)$ and $t_{\beta}(u)$ is independent of u. Prove also that if the line through $\alpha(u)$ in direction $n_{\alpha(u)}$ coincides with the line through $\beta(u)$ in direction $n_{\beta(u)}$ then

$$\boldsymbol{\beta}(u) = \boldsymbol{\alpha}(u) + r\boldsymbol{n}_{\boldsymbol{\alpha}}(u)$$

for some real number r.

5.3. (*) Let α be the curve in \mathbb{R}^3 given by

$$\boldsymbol{\alpha}(u) = e^u(\cos u, \sin u, 1), \qquad u \in \mathbb{R}.$$

If $0 < \lambda_0 < \lambda_1$, find the length of the segment of α which lies between the planes $z = \lambda_0$ and $z = \lambda_1$. Show also that the curvature and torsion of α are both inversely proportional to e^u .

5.4. Let α be a curve parametrized by arc length with nowhere vanishing curvature κ and torsion τ . Show that if the trace of α lies on a sphere then

$$\frac{\tau}{\kappa} = \left(\frac{\kappa'}{\tau\kappa^2}\right)'.$$

Is the converse true?

- **5.5.** Let α be a regular curve parametrized by arc length with $\kappa > 0$ and $\tau \neq 0$. Denote by \boldsymbol{n} and \boldsymbol{b} the principal normal and the binormal of α .
 - (a) If $\boldsymbol{\alpha}$ lies on a sphere with center $\boldsymbol{c} \in \mathbb{R}^3$ and radius r > 0, show that

$$\boldsymbol{\alpha} - \boldsymbol{c} = -\rho \boldsymbol{n} - \rho' \sigma \boldsymbol{b},$$

where $\rho = 1/\kappa$ and $\sigma = -1/\tau$. Deduce that $r^2 = \rho^2 + (\rho'\sigma)^2$.

(b) Conversely, if $\rho^2 + (\rho'\sigma)^2$ has constant value r^2 and $\rho' \neq 0$, show that α lies on a sphere of radius r.

Hint: Show that the curve $\alpha + \rho n + \rho' \sigma b$ is constant.

Surfaces - 1

6.1. Let $U \subset \mathbb{R}^2$ be an open set. Show that the set

$$\{(x, y, z) \in \mathbb{R}^3 \, | \, z = 0 \text{ and } (x, y) \in U\}$$

is a regular surface.

6.2. Stereographic projection

Let $S^2(1) = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ be a 2-dimensional unit sphere. For $(u, v) \in \mathbb{R}^2$, let $\boldsymbol{x}(u, v)$ be the point of intersection of the line in \mathbb{R}^3 through (u, v, 0) and (0, 0, 1) with $S^2(1)$ (different from (0, 0, 1)).

(a) Find an explicit formula for $\boldsymbol{x}(u, v)$.

(b) Let P be the plane given by $\{z = 1\}$, and for $(x, y, z) \in \mathbb{R}^3 \setminus P$, let $F(x, y, z) \in \mathbb{R}^2$ be such that $(F(x, y, z), 0) \in \mathbb{R}^3$ is the intersection with the (x, y)-plane of the line through (0, 0, 1) and (x, y, z). Show that

$$\boldsymbol{F}(x,y,z) = \frac{1}{1-z}(x,y)$$

(c) Show that $\mathbf{F} \circ \mathbf{x} = \mathrm{id} : \mathbb{R}^2 \to \mathbb{R}^2$ and deduce that \mathbf{x} is a local parametrization of $S^2(1) \setminus \{(0,0,1)\}$.

6.3. Show that each of the following is a surface:

(a) a cylinder $\{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\};$

(b) a two-sheet hyperboloid given by $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = -1\}$.

In each case find a covering of the surface by coordinate neighborhoods and give a sketch of the surface indicating the coordinate neighbourhoods you have used.

6.4. For a, b > 0, let

$$S := \left\{ (x, y, z) \in \mathbb{R}^3 \ \left| \ z = \frac{x^2}{a^2} - \frac{y^2}{b^2} \right. \right\}.$$

Show that S is a surface and show that at each point $p \in S$ there are two straight lines passing through p and lying in S (i. e. S is a *doubly ruled* surface).

6.5. (*) Let S be the surface in \mathbb{R}^3 defined by $z = x^2 - y^2$. Show that

 $\boldsymbol{x}(u,v) = (u + \cosh v, u + \sinh v, 1 + 2u(\cosh v - \sinh v)), \qquad u, v \in \mathbb{R},$

is a local parametrization of S. Does x parametrizes the whole surface S?

6.6. Show that

(a) the cone $\{x^2 + y^2 - z^2 = 0\}$ is not a regular surface;

(b) the one-sheet cone $\{x^2 + y^2 - z^2 = 0, z \ge 0\}$ is not a regular surface.

Hint: in (b) you need to prove that for *every* parametrization of the neighborhood of the origin the regularity condition fails.