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Solutions 7-8

7.1. (∗) (a) Parametrize the hyperbolic paraboloid S from Exercise 6.4 as a ruled surface (i.e., find a
curve α(v) ⊂ S and a curve w(v) such that x(u, v) = α(v) + uw(v) will be a parametrization of
S).

(b) Now let S be an arbitrary ruled surface, and let x : J × I → R3, x(u, v) = α(v) + uw(v) be
a parametrization of S such that |w(v)| = 1 for all v ∈ I, where α : I → R3 is a regular space
curve and I, J are intervals in R. A curve β : I → R3 lying in S is called a curve of striction if
β′(v) ·w′(v) = 0 for all v ∈ I. Find the curve of striction of the ruled surface in (a) with a = b = 1
(using either one of the rulings).

Solution:

(a) Take as α the intersection of the paraboloid with the plane y = 0:

α(v) = (v, 0, v2/a2)

From Exercise 6.4 we know that every point (x, y, z) ∈ S is contained in a line in the direction (1, b/a, 2x/a2−
2y/ab), and the line itself is entirely contained in S. Taking α(v) as (x, y, z) ∈ S, we see that the line through
α(v) has a direction vector w(v) = (1, b/a, 2v/a2). Thus, S can be parametrized as

x(u, v) = α(v) + uw(v) = (v, 0, v2/a2) + u(1, b/a, 2v/a2) = (v + u, ub/a, (v2 + 2uv)/a2)

(b) If a = b = 1, we have a parametrization of the paraboloid

x(u, v) = (v, 0, v2) + u(1, 1, 2v)

Normalizing the direction vector computed in (a), we can write this as

x(u, v) = (v, 0, v2) + u
(1, 1, 2v)√

2 + 4v2
= α(v) + uw(v),

so the new (unit) direction vector w(v) = (1, 1, 2v)/
√

2 + 4v2.

Now we write
β(v) = α(v) + u(v)w(v),

so
β′(v) = α′(v) + u′(v)w(v) + u(v)w′(v)

The assumption β′(v) ·w′(v) = 0 implies

0 = β′(v)·w′(v) = (α′(v)+u′(v)w(v)+u(v)w′(v))·w′(v) = α′(v)·w′(v)+u′(v)w(v) ·w′(v)︸ ︷︷ ︸
=0

+u(v)w′(v)·w′(v),

so we have

u(v) = −α
′(v) ·w′(v)

‖w′(v)‖2
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Let us compute w′(v), and then the numerator and the denominator of the expression above.

w′(v) =

(
(1, 1, 2v)√

2 + 4v2

)′
=

−4v

(2 + 4v2)3/2
(1, 1, 2v) +

(0, 0, 2)√
2 + 4v2

= − 4

(2 + 4v2)3/2
(v, v,−1),

so

‖w′(v)‖2 =
8

(2 + 4v2)2

Since α′(v) = (1, 0, 2v), we have

α′(v) ·w′(v) = −(1, 0, 2v) · 4

(2 + 4v2)3/2
(v, v,−1) =

4v

(2 + 4v2)3/2
,

and

u(v) = −α
′(v) ·w′(v)

‖w′(v)‖2
= − 4v

(2 + 4v2)3/2

/
8

(2 + 4v2)2
= −v

2
(2 + 4v2)1/2,

which implies

β(v) = α(v) + u(v)w(v) = (v, 0, v2)− v

2

√
2 + 4v2

(1, 1, 2v)√
2 + 4v2

= (v, 0, v2)− v

2
(1, 1, 2v) =

v

2
(1,−1, 0)

One can note that β(v) is one of the lines from the second family of lines forming S.

7.2. (a) Show that the set S of (x, y, z) ∈ R3 fulfilling the equation xz + y2 = 1 is a surface.

(b) Let α,w : R→ R3 be given by

α(v) = (cos v, sin v, cos v) and w(v) = (1 + sin v,− cos v,−1 + sin v).

Show that for all v ∈ R there are two straight lines through α(v), one of which is in direction
w(v), both of which lie on S. If x(u, v) = α(v) +uw(v), u ∈ R, 0 < v < 2π, show that x is a local
parametrization of S.

Solution:

(a) Computing the gradient of a smooth function f(x, y, z) = xz + y2 we see that

∇f(x, y, z) = (z, 2y, x)

is equal to zero if and only (x, y, z) = (0, 0, 0), which implies that 1 is a regular value of f , so S is a regular
surface.

(b) This can be solved similar to Exercise 6.4. We want to find a line in S through every point α(v), i.e. a
vector w(v) = (a(v), b(v), c(v)) such that the line βv(u) = α(v) + uw(v) lies in S. Then

βv(u) = (ua+ cos v, ub+ sin v, uc+ cos v)

and βv(u) ∈ S for every u ∈ R if and only if

(ua+ cos v)(uc+ cos v) + (ub+ sin v)2 = 1,

which is equivalent to
u2(ac+ b2) + u((a+ c) cos v + 2b sin v) + 1 = 1

for every u ∈ R, which implies

a(v)c(v) + b2(v) = (a(v) + c(v)) cos v + 2b(v) sin v = 0
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The equality (a(v) + c(v)) cos v + 2b(v) sin v = 0 implies, up to scaling, that a(v) + c(v) = 2 sin v and
b(v) = − cos v. Together with a(v)c(v) + b2(v) = 0 this leads to

w(v) = (a(v), b(v), c(v)) = (±1 + sin v,− cos v,∓1 + sin v)

As in Exercise 6.4, there is an easier way to proceed. Changing coordinates (orthogonally) by x = (x′−z′)/2
and z = (x′ + z′)/2 we get an equation of a one-sheeted hyperboloid, for which we know that it is doubly
ruled.

7.3. Determine all surfaces of revolution which are also ruled surfaces.

Solution:

Let S be such a surface. Since S is a surface of revolution, it contains a circle {r(cosu, sinu, 0)}. Since S
is a ruled surface, it contains a line through p = (r, 0, 0) ∈ S in the direction w = (a, b, c) (we assume that
S contains the entire line, otherwise we just get a piece of this surface). Then the whole S is obtained by
rotation of the line around z-axis. Therefore, the surface is completely defined by r > 0 and a direction
(a, b, c). The parameter r does not change the type of S and is responsible for “scaling” only. Let us look
how does S depend on (a, b, c).

If the vector (a, b, c) lies in xy-plane (i.e., c = 0), then S is not a surface of revolution (since there is no regular
curve α(v) in xz-plane). Thus, c 6= 0, and we may assume without loss of generality that w = (a, b, 1).

If a = b = 0, we get a cylinder
x2 + y2 = r2

If a 6= 0, b = 0, then the line meets z-axis at the point (0, 0,−r/a). Rotating this line around z-axis, we
obtain a cone with equation

x2

a2
+
y2

a2
−
(
z +

r

a

)2
= 0

(check this!)

If b 6= 0, then the line does not meet z-axis, and one can easily see that we get a one-sheeted hyperboloid
(shifted along z-axis). Since the hyperbolid is obtained by rotation around z-axis, it should have an equation

x2

c2
+
y2

c2
− (z − d)2 = k2

for some real numbers c, d and k (check this!). Now, proceeding as in Exercise 7.2(b), we compute an
equation to be

x2

a2 + b2
+

y2

a2 + b2
−
(
z +

ra

a2 + b2

)2

=
r2b2

(a2 + b2)2

One can easily check that the line through (r, 0, 0) in the direction (a, b, 1) is contained in S, and thus every
rotation of it as well (since the equation is invariant with respect to rotation around z-axis, i.e. with respect
to substitution (x, y, z) by (x cosu, y sinu, z)).
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7.4. (∗) Let f : R3 → R be given by f(x, y, z) = (x+ y + z − 1)2.

(a) Find the points at which grad f = 0.

(b) For which values of c the level set S := {p = (x, y, z) ∈ R3 | f(p) = c} is a surface?

(c) What is the level set f(p) = c?

(d) Repeat (a) and (b) using the function f(x, y, z) = xyz2.

Solution:

(a) ∇f(x, y, z) = 2(x+ y + z − 1)(1, 1, 1), which implies that ∇f = 0 if and only if x+ y + z = 1.

(b) According to (a), ∇f = 0 if and only if x + y + z − 1 = 0, which is equivalent to f(x, y, z) = 0. Thus,
the only singular value of f is 0, and for any c 6= 0 the level set f(p) = c is a regular surface.

However, although c = 0 is a singular value of f , for c = 0 the level set f(p) = c is also a regular surface:
f(p) = 0 is a plane x+ y + z = 1 which is clearly regular.

(c) The equation (x+ y+ z − 1)2 = c is equivalent to (x+ y+ z− 1) = ±
√
c, so it is a union of two parallel

planes for c 6= 0, one plane for c = 0 and empty set for c < 0.

(d) ∇f(x, y, z) = (yz2, xz2, 2xyz) = z(yz, xz, 2xy), which implies that ∇f = 0 if and only if z = 0 or
x = y = 0, so the only singular value of f is 0, and for any c 6= 0 the level set f(p) = c is a regular surface.
The level set f(p) = 0 is a union of three coordinate planes, so it is not a regular surface (the “bad” points
are ones lying on coordinate axes, check this!)

7.5. Möbius band
Let S be the image of the function f : R× (−ε, ε)→ R3, (ε > 0), defined by

f(u, v) =
((

2− v sin
u

2

)
sinu,

(
2− v sin

u

2

)
cosu, v cos

u

2

)
.

Show that, for ε sufficiently small, S is a surface in R3 which may be covered by two coordinate
neighborhoods. Give a sketch of the surface indicating the curves u = const and v = const (such
curves are called coordinate curves).

Solution:

(a) Let us write f(u, v) as

f(u, v) = (2 sinu, 2 cosu, 0)︸ ︷︷ ︸
=:α(u)

+v
(
− sin

u

2
sinu, − sin

u

2
cosu, cos

u

2

)
︸ ︷︷ ︸

=:w(u)

By the form of f , S is a ruled surface, and one can easily see that α(u) is regular, and α′(u) and w(u) are
not collinear for all u ∈ R. Now, to have a regular surface, we need the intervals through different points of
α(u) to be disjoint. A straightforward calculation shows that this holds for small ε (say, for 0 < ε < 2).

In fact, the latter can be shown geometrically. One can note that the line lu(v) = f(u, v) through α(u) in
the direction w(u) meets the z-axis at the point (0, 0, cotu/2) (unless u = 0: in this case lu(v) is parallel to
z-axis). Therefore, if two such lines lu1

(v) and lu2
(v) intersect, they should be contained in a plane passing

through the z-axis, and thus intersect the circle {x2 + y2 = 4, z = 0} (which is the trace of α) in two
opposite points only, which is clearly not the case (unless u2 = u1 + nπ) since the lines meet α at α(u1)
and α(u2). The condition that the intervals lying on lines lu(v) and lu+π(v) do not intersect is guaranteed
by the assumption ε < 2.

(b) Clearly, f is not injective: α has a period 2π, so f(u0+2π, 0) = f(u0, 0). However, if we take an open set
U1 = (0, 2π)× (−ε, ε), then the restriction of f on U1 is injective, and the image of U1 is the whole Möbius
strip except one interval f(0× (−ε, ε)). Taking U2 = (−π, π)× (−ε, ε), we see that f(U1) ∪ f(U2) = S.
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7.6. Real projective plane (bonus problem)
Let f : R3 → R5 be defined by

f(x, y, z) =
(
yz, zx, xy,

1

2
(x2 − y2), 1

2
√

3
(x2 + y2 − 2z2)

)
.

Show that:

(a) f(x, y, z) = f(x′, y′, z′) if and only if (x, y, z) = ±(x′, y′, z′);

(b) the image S = f(S2(1)) of the unit sphere S2(1) in R3 is a surface in R5.

The surface S is often written as RP 2 and is called the real projective plane. Note that it can be
identified with the set of lines through the origin in R3.

Hint: you may find it helpful to consider the open subsets Wx, Wy, Wz of R5 given by

Wx =
{

(x1, x2, x3, x4, x5) |x4 + 1√
3
x5 + 1

3 > 0
}
,

Wy =
{

(x1, x2, x3, x4, x5) | − x4 + 1√
3
x5 + 1

3 > 0
}
,

Wz =
{

(x1, x2, x3, x4, x5) |x5 < 1
2
√
3

}
,

and use the fact that the intersections of S with Wx Wy and Wz are the images of the hemispheres
of S2(1) given by x > 0, y > 0 and z > 0, respectively.

8.1. (a) Let x : U → S be a local parametrization of a surface S in some neighborhood of a point
p = (x0, y0, z0) ∈ S. Show that the tangent plane to S at p has an equation(

∂x

∂u
(p)× ∂x

∂v
(p)

)
· (x− x0, y − y0, z − z0) = 0

(b) Let f : R3 → R be a smooth function, and let c ∈ f(R3) be a regular value of f . Show that
the tangent plane of a regular surface

S = {(x, y, z) | f(x, y, z) = c}

at the point p = (x0, y0, z0) ∈ S has equation

∂f

∂x
(p)(x− x0) +

∂f

∂y
(p)(y − y0) +

∂f

∂z
(p)(z − z0) = 0

Solution:

(a) By definition, the tangent plane to S at p ∈ S is spanned by vectors ∂x
∂u (p) and ∂x

∂v (p) and passes through

p. Let Π be the plane defined by the equation above. Since ∂x
∂u (p) × ∂x

∂v (p) is orthogonal to both ∂x
∂u (p)

and ∂x
∂v (p), the both partial derivatives lie in Π. Now, the point p = (x0, y0, z0) itself clearly satisfies the

equation.

(b) If α : (−ε, ε)→ S is any curve with α(0) = p, then f(α(u)) ≡ c. Differentiating, we obtain

∇f(p) ·α′(0) = 0,

which implies that the tangent plane is orthogonal to the gradient ∇f(p) =
(
∂f
∂x (p), ∂f∂y (p), ∂f∂z (p)

)
.
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8.2. (∗) Show that the tangent plane of one-sheeted hyperboloid x2 + y2 − z2 = 1 at point (x, y, 0) is
parallel to the z-axis.

Solution:

Using Exercise 8.1(b), we see that the tangent plane at point (x0, y0, 0) of the hyperboloid has an equation

x0(x− x0) + y0(y − y0) = 0

which is clearly parallel to z-axis.

8.3. Let f : R→ R be a smooth function. Define a surface S as

S = {(x, y, z) |xf(y/x)− z = 0, x 6= 0}

Show that all tangent planes of S pass through the origin (0, 0, 0).

Solution:

The surface is the graph of a smooth function z = xf(y/x), so it has a parametrization

x(x, y) = (x, y, xf(y/x))

First, we compute ∂x
∂x and ∂x

∂y , and then use Exercise 8.1(a).

∂x

∂x
(x, y) =

(
1, 0, f

(y
x

)
− y

x
f ′
(y
x

))
,

∂x

∂y
(x, y) =

(
0, 1, f ′

(y
x

))
Thus,

∂x

∂x
× ∂x

∂y
(x, y) =

(
−f
(y
x

)
+
y

x
f ′
(y
x

)
,−f ′

(y
x

)
, 1
)
,

and an equation of the tangent plane at (x0, y0, z0) ∈ S is(
−f
(
y0
x0

)
+
y0
x0
f ′
(
y0
x0

)
,−f ′

(
y0
x0

)
, 1

)
· (x− x0, y − y0, z − z0) = 0

This plane passes through the origin if and only if(
−f
(
y0
x0

)
+
y0
x0
f ′
(
y0
x0

)
,−f ′

(
y0
x0

)
, 1

)
· (x0, y0, z0) = 0

Indeed, taking into account that

f

(
y0
x0

)
=
z0
x0
,

we have(
−f
(
y0
x0

)
+
y0
x0
f ′
(
y0
x0

)
,−f ′

(
y0
x0

)
, 1

)
· (x0, y0, z0) = − z0

x0
x0 + y0f

′
(
y0
x0

)
− y0f ′

(
y0
x0

)
+ z0 = 0
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8.4. Let U ⊂ R2 be open, and let S1 and S2 be two regular surfaces with parametrizations x : U → S1
and y : U → S2. Define a map ϕ = y ◦ x−1 : S1 → S2. Let p ∈ S1, w ∈ TpS1, and let
α : (−ε, ε) → S1 be an arbitrary regular curve in S1 such that p = α(0) and α′(0) = w. Define
β : (−ε, ε)→ S2 as β = ϕ ◦α.

(a) Show that β′(0) does not depend on the choice of α.

(b) Show that the map dpϕ : TpS1 → Tϕ(p)S2 defined by dpϕ(w) = β′(0) is linear.

Solution:

(a) Define a curve γ : (−ε, ε)→ U by α = x ◦ γ, and define q ∈ U by x(q) = p. Then, by the chain rule,

w = α′(0) = (x ◦ γ)′(0) = dγ(0)x(γ′(0)) = dqx(γ′(0))

Thus,
γ′(0) = ( dqx)−1(w),

where by ( dqx)−1 we mean the left inverse of dqx, namely, a linear map from R3 to R2 satisfying ( dqx)−1 ◦
dqx = idR2 (notice that dqx has no inverse since it is a linear map from R2 to R3). In particular, we see
that γ′(0) does not depend on the choice of α but on the vector w only.

Now, we can write
β = y ◦ γ,

and differentiating this we get

β′(0) = (y ◦ γ)′(0) = dγ(0)y(γ′(0)) = dqy(γ′(0))

Therefore, β′(0) is completely defined by dqy and γ′(0) which do not depend on the choice of α.

(b) As we have seen in (a),

dpϕ(w) = β′(0) = dqy(γ′(0)) = dqy(( dqx)−1(w)) = ( dqy ◦ ( dqx)−1)(w),

which implies
dpϕ = dqy ◦ ( dqx)−1

which is clearly linear as a composition of two linear maps.

8.5. Let α : I → R3 be a regular curve with nonzero curvature parametrized by arc length. Recall that
a canal surface (or tubular surface) S is a surface parametrized by

x(u, v) = α(u) + r(n(u) cos v + b(u) sin v),

where n and b are unit normal and binormal vectors, and r > 0 is a sufficiently small constant.
Find the equation of the tangent plane to S at x(u, v). In particular, show that the tangent plane
at x(u, v) is parallel to α′(u).

Solution: We use Exercise 8.1(a) to compute an equation of the tangent plane.

∂x

∂u
(u, v) = α′(u) + r(n′(u) cos v + b′(u) sin v) = t+ r(−κt− τb) cos v + rτn sin v =

= t(1− rκ cos v) + n(rτ sin v) + b(−rτ cos v),

and
∂x

∂v
(u, v) = r(n(u)(− sin v) + b(u) cos v) = n(−r sin v) + b(r cos v)
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Now, computing the cross-product, we get(
∂x

∂u
× ∂x

∂v

)
(u, v) = −r(1− rκ cos v)(n(u) cos v + b(u) sin v)

An equation of the tangent plane to S at point x(u0, v0) with respect to variable q ∈ R3 can be written as

(n(u0) cos v0 + b(u0) sin v0) · (q − (α(u0) + r(n(u0) cos v0 + b(u0) sin v0)) = 0

Since n(u0) cos v0 + b(u0) sin v0 is a unit vector, this is equivalent to

(n(u0) cos v0 + b(u0) sin v0) · (q −α(u0)) = r

In particular, the vector n(u0) cos v0 + b(u0) sin v0 is orthogonal to t(u0) as a linear combination of n(u0)
and b(u0), so the plane is parallel to t(u0).
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