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Solutions 9-10

9.1. Find the coefficients of the first fundamental forms of:

(a) the catenoid parametrized by

x(u, v) = (cosh v cosu, cosh v sinu, v), (u, v) ∈ U := (0, 2π)× R;

(b) the helicoid parametrized by

x̃(u, v) = (− sinh v sinu, sinh v cosu,−u), (u, v) ∈ U ;

(c) the surface Sϑ (for some ϑ ∈ R) parametrized by

yϑ(u, v) = (cosϑ)x(u, v) + (sinϑ)x̃(u, v), (u, v) ∈ U.

Solution:

(a) We have

∂ux(u, v) = (− cosh v sinu, cosh v cosu, 0),

∂vx(u, v) = (sinh v cosu, sinh v sinu, 1).

This implies that

E(u, v) = (− cosh)2v sin2 u+ cosh2 v cos2 u = cosh2 v,

F (u, v) = 0,

G(u, v) = sinh2 v cos2 u+ sinh2 v sin2 u+ 1 = sinh2 v + 1 = cosh2 v,

i.e., the first fundamental form at x(u, v) is just a multiple of the standard inner product in R2 by the factor
cosh2 v.

(b) We have

∂ux̃(u, v) = (− sinh v cosu,− sinh v sinu,−1),

∂vx̃(u, v) = (− cosh v sinu, cosh v cosu, 0).

This implies that

Ẽ(u, v) = (− sinh)2v cos2 u+ (− sinh)2v sin2 u+ (−1)2 = cosh2 v,

F̃ (u, v) = 0,

G̃(u, v) = (− cosh)2v sin2 u+ cosh2 v cos2 u = cosh2 v,

i.e., the first fundamental form at x̃(u, v) is again just a multiple of the standard inner product in R2 by
the factor cosh2 v.

(c) Now we choose
yϑ(u, v) = cosϑx(u, v) + sinϑx̃(u, v).
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We obviously have

∂uyϑ = cosϑ∂ux+ sinϑ∂ux̃,

∂vyϑ = cosϑ∂vx+ sinϑ∂vx̃.

We easily check that 〈∂ux, ∂ux̃〉 = 0 = 〈∂vx, ∂̃vx〉 and

〈∂ux, ∂̃vx〉+ 〈∂vx, ∂̃ux〉 = cosh2 v − (sinh2 v + 1) = 0.

This implies that

〈∂uyϑ, ∂uyϑ〉 = cos2 ϑE + sin2 ϑẼ + 2 sinϑ cosϑ〈∂ux, ∂̃ux) = cosh2 v,

〈∂uyϑ, ∂vyϑ〉 = cos2 ϑF + sin2 ϑF̃ + sinϑ cosϑ(〈∂ux, ∂̃vx〉+ 〈∂vx, ∂̃ux〉)
= cos2 ϑ · 0 + sin2 ϑ · 0 + sinϑ cosϑ · 0 = 0,

〈∂vyϑ, ∂vyϑ〉 = cos2 ϑG+ sin2 ϑG̃+ 2 sinϑ cosϑ〈∂vx, ∂vx̃) = cosh2 v,

i.e., the first fundamental form at yϑ(u, v) is again just a multiple of the standard inner product in R2 by
the factor cosh2 v.

9.2. Find the coefficients of the first fundamental form of

(a) S2(1) with respect to the local parametrization x defined in Exercise 6.2;

(b) the surface
S = {(x, y, z) ∈ R3 |x sin z − y cos z = 0}

parametrized by
x(u, v) = (sinh v cosu, sinh v sinu, u)

Solution:

(a) We have

x(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

Therefore,

∂ux(u, v) =

(
2(1− u2 + v2)

(u2 + v2 + 1)2
,

−4uv

(u2 + v2 + 1)2
,

4u

(u2 + v2 + 1)2

)
,

∂vx(u, v) =

(
−4uv

(u2 + v2 + 1)2
,

2(1 + u2 − v2)

(u2 + v2 + 1)2
,

4v

(u2 + v2 + 1)2

)
.
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Hence,

E = 〈∂ux , ∂ux〉

=
4(1− u2 + v2)2 + 16u2(v2 + 1)

(u2 + v2 + 1)4

=
4

(u2 + v2 + 1)2
,

F = 〈∂ux , ∂vx〉

=
−8uv(1− u2 + v2)− 8uv(1 + u2 − v2) + 18uv

(u2 + v2 + 1)4

= 0,

G = 〈∂vx , ∂vx〉

=
4(1 + u2 − v2)2 + 16v2(u2 + 1)

(u2 + v2 + 1)4

=
4

(u2 + v2 + 1)2
.

(b) We have

∂ux(u, v) = (− sinh v sinu, sinh v cosu, 1),

∂vx(u, v) = (cosh v cosu, cosh v sinu, 0).

This implies that

E(u, v) = (− sinh)2v sin2 u+ sinh2 v cos2 u+ 12 = cosh2 v,

F (u, v) = 0,

G(u, v) = cosh2 v cos2 u+ cosh2 v sin2 u = cosh2 v.

9.3. Let U = R × (0,∞), and let x : U → Rn be a parametrization of a surface H in R2 with
corresponding coefficients of the first fundamental form E(u, v) = G(u, v) = 1/v2 and F (u, v) = 0
for all (u, v) ∈ U . Then H is called the hyperbolic plane. For r > 0 denote by α : (0, π) → H the
curve given by

α(t) = x(r cos t, r sin t).

Show that the length of α in H from α(π/6) to α(5π/6) is equal to∫ 5π/6

π/6

1

sin t
dt.

(In fact, α is the curve of shortest length between its endpoints.) Now take r =
√

2 and find the
angle of intersection of α with the curve β(s) = x(1, s) at their point of intersection.

Solution:
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Let α(t) = x(c cos t, c sin t), π/6 ≤ t ≤ 5π/6 be a curve in the hyperbolic plane. Let u(t) = c cos t and
v(t) = c sin t. The lenght of α is

l(α) =

∫ 5π/6

π/6

‖α′(t)‖ dt

=

∫ 5π/6

π/6

(Eu′2 + 2Fu′v′ +Gv′2)1/2 dt

=

∫ 5π/6

π/6

(
1

c2 sin2 t

(
c2 sin2 t+ c2 cos2 t

))1/2

dt

=

∫ 5π/6

π/6

1

sin t
dt.

If c =
√

2 then α(t) intersects β(s) = x(1, s) at points where u(t) = 1 and v(t) = s. Solving theses equations
gives cos t = sin t =

√
2/2, so t = t0 = π/4 and s = s0 = 1.

At the point of intersection ∂ux(1, 1), we have E = G = 1 and F = 0.

At t0 = π/4,

α′(t0) = ∂ux(1, 1)u′(t0) + ∂vx(1, 1)v′(t0)

= −
√

2∂ux(1, 1) sin t0 +
√

2∂vx(1, 1) cos t0

= −∂ux(1, 1) + ∂vx(1, 1).

Similarly, at s0 = 1, β′(s0) = ∂vx(1, 1). Therefore, the angle of intersection of α and β at their point of
intersection is

cosϑ =
〈α′(t0),β′(s0)〉
‖α′(t0)‖‖β′(s0)‖

=
〈−∂ux(1, 1) + ∂vx(1, 1), ∂vx(1, 1)〉

√
1 + 1

√
1

=
1√
2
.

Thus, ϑ = π/4.

9.4. Let S be a surface parametrized by

x(u, v) = (u cos v, u sin v, log cos v + u), (u, v) ∈ U := R×
(
−π

2
,
π

2

)
.

For c ∈ (−π/2, π/2), let αc be the curve given by αcu = x(u, c). Show that the length of αc from
u = u0 to u = u1 does not depend on c.

Solution: The length of αc is given by

l(αc) =

∫ u1

u0

‖α′c(u)‖ du =

∫ u1

u0

‖∂ux(u, c)‖ du =

∫ u1

u0

√
E(u, c) du

We have
∂ux(u, v) = (cos v, sin v, 1),

so
E = 〈∂ux, ∂ux〉 = cos2 v + sin2 v + 1 = 2

Thus,

l(αc) =

∫ u1

u0

√
2 du =

√
2(u1 − u0)
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10.1. Let x : U → S be a local parametrization of a regular surface S, and denote by E,F,G the
coefficients of the first fundamental form in this parametrization. Show that the tangent vector
a ∂ux+ b ∂vx bisects the angle between the coordinate curves if and only if

√
G(aE + bF ) =

√
E(aF + bG).

Further, if
x(u, v) = (u, v, u2 − v2),

find a vector tangential to S which bisects the angle between the coordinate curves at the point
(1, 1, 0) ∈ S.

Solution:

The cosine of the angle of the vector w = a ∂ux+ b ∂vx with coordinate curve v = const is equal to

〈a ∂ux+ b ∂vx, ∂ux〉
‖w‖‖∂ux‖

=
aE + bF

‖w‖
√
E

Similarly, the cosine of the angle of w with coordinate curve u = const is equal to

〈a ∂ux+ b ∂vx, ∂vx〉
‖w‖‖∂vx‖

=
aF + bG

‖w‖
√
G

The equality of the cosines
aE + bF

‖w‖
√
E

=
aF + bG

‖w‖
√
G

is equivalent to √
G(aE + bF ) =

√
E(aF + bG)

as required.

For
x(u, v) = (u, v, u2 − v2),

we have

∂ux(u, v) = (1, 0, 2u),

∂vx(u, v) = (0, 1,−2v),

which implies that

E(u, v) = 1 + 4u2, F (u, v) = −4uv, G(u, v) = 1 + 4v2.

The point (1, 1, 0) has coordinates (u, v) = (1, 1), so we have E = G = 5, F = −4. Thus, we obtain the
following equation on (a, b): √

5(5a− 4b) =
√

5(−4a+ 5b),

which is equivalent to a = b. Thus, the vector ∂ux+ ∂vx bisects the angle.

10.2. Find two families of curves on the helicoid parametrized by

x(u, v) = (v cosu, v sinu, u)

which, at each point, bisect the angles between the coordinate curves.
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(Show that they are given by u± sinh−1 v = c, where c is a constant on each curve in the family.)

Solution: We have

∂ux(u, v) = (−v sinu, v cosu, 1),

∂vx(u, v) = (cosu, sinu, 0),

which implies that
E(u, v) = 1 + v2, F (u, v) = 0, G(u, v) = 1,

so the equation from Exercise 10.1 becomes

a
√
v2 + 1 = b.

The curve u− sinh−1 v = c can be parametrized by α(u) = (u, sinh(u− c)), so

α′(u, v) = ∂ux+ cosh(u− c)∂vx = ∂ux+ cosh(u− c)∂vx = ∂ux+
√
v2 + 1 ∂vx

as required.

The curve u+ sinh−1 v = c can be parametrized by β(u) = (u,− sinh(u− c)), so

β′(u, v) = ∂ux− cosh(u− c)∂vx = ∂ux− cosh(u− c)∂vx = ∂ux−
√
v2 + 1 ∂vx.

Then
〈α′,β′〉 = E − (v2 + 1)G = 0,

which implies that β′ bisects the angle between ∂ux and −∂vx.

10.3. The coordinate curves of a parametrization x(u, v) constitute a Chebyshev net if the lengths of
the opposite sides of any quadrilateral formed by them are equal.

(a) Show that a necessary and sufficient condition for this is

∂E

∂v
=
∂G

∂u
= 0.

(b) Show that if coordinate curves constitute a Chebyshev net, then it is possible to reparametrize
the coordinate neighborhood in such a way that the new coefficients of the first fundamental form
are

E = 1, F = cosϑ, G = 1,

where ϑ is the angle between coordinate curves.

Solution:

(a) Assume that coordinate curves constitute a Chebyshev net. Consider a quadrilateral with vertices
(u0, v0), (u1, v0), (u0, v1), (u1, v1) formed by coordinate curves. The length of the side with vertices (u0, v1), (u1, v1)
is equal to

u1∫
u0

‖∂ux(u, v1)‖ du =

u1∫
u0

√
E(u, v1) du

Thus, the integral
∫ u1

u0

√
E(u, v1) du does not depend on v1, i.e. it is a function of u1 only. Differentiating

it by u1, we see that
√
E(u1, v1) is also a function of u1 only, so E(u, v) does not depend on v. The

considerations for G are similar, and the converse statement is straightforward.
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(b) Take

ũ(u) =

∫ √
E(u) du

Then ũ is parametrized by arc length, so Ẽ(ũ) ≡ 1. Similarly, we can make G̃(ṽ) ≡ 1. Now F is equal to

the cosine of the angle by definition.

10.4. Show that a surface of revolution can always be parametrized so that

E = E(v), F = 0, G = 1

Solution: Parametrize the surface by

x = (f(v) cosu, f(v) sinu, g(v)),

where α(v) = (f(v), 0, g(v)) is the generating curve. Then

∂ux = (−f(v) sinu, f(v)v cosu, 0),

∂vx = (f ′(v) cosu, f ′(v) sinu, g′(v)),

which implies that

E(u, v) = f2(v), F (u, v) = 0, G(u, v) = f ′2(v) + g′2(v) = ‖α′‖2

Parametrizing α(v) by arc length we obtain a required parametrization of the surface.

10.5. Let S be the surface {(x, y, z) ∈ R3 | z = x2− y2} and let F be the family of curves on S obtained
as the intersection of S with the planes z = const. Find the family of curves on S which meet F
orthogonally and show that they are the intersections of S with the family of hyperbolic cylinders
xy = const.

Solution:

A (part of a) curve x2 − y2 = c1 on S can be parametrized by α(y) = (
√
y2 + c, y), so

α′(y) =
y√

y2 + c1
∂x + ∂y =

y

x
∂x + ∂y

A curve xy = c2 on S can be paranetrized by β(x) = (x, cx ), so

β′(x) = ∂x −
c2
x2
∂y = ∂x −

y

x
∂y

Now we recall that the coefficients of the first fundamental form found in Exercise 10.1 are

E(u, v) = 1 + 4x2, F (u, v) = −4xy, G(u, v) = 1 + 4y2,

so we compute the inner product of α′ and β′ to get

〈
α′,β′

〉
=
〈y
x
∂x + ∂y, ∂x −

y

x
∂y

〉
=
y

x
E + F − y2

x2
F − y

x
G =

=
y

x
(1 + 4x2) + 4xy

(
y2

x2
− 1

)
− y

x
(1 + 4y2) =

y

x
+ 4xy +

4y

x
− 4xy − y

x
− 4y

x
= 0

Note that we could avoid computations on S: one could considerα and β as curves in R3, and keeping in mind
that z-coordinate of α′ is equal to zero, the dot product of α′ and β′ is equal to

〈(
y
x , 1, 0

)
·
(
1,− yx , z

′(x)
)〉

=
0.
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10.6. Using the notation of Exercise 10.2, show that the family of curves orthogonal to the family

v cosu = const

is the family defined by (1 + v2) sin2 u = const.

Solution:

The coefficients of the first fundamental form found in Exercise 10.2 are

E(u, v) = 1 + v2, F (u, v) = 0, G(u, v) = 1.

A curve v cosu = c1 on S can be parametrized by α(u) = (u, c1/ cosu), so

α′(u) = (1,−c1 sinu/ cos2 u) = (1,−v tanu).

A curve (1 + v2) sin2 u = c2 on S can be paranetrized by β(u) =

(
u,−

√
c2

sin2 u
− 1

)
, so

β′(u) =

(
1,

1

tanu

(
v +

1

v

))
.

Computing the inner product of α′ and β′ we obtain

〈
α′,β′

〉
= E − v tanu

1

tanu

(
v +

1

v

)
= 1 + v2 − (v2 + 1) = 0.
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