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Solutions 9-10

9.1. Find the coefficients of the first fundamental forms of:

(a) the catenoid parametrized by

x(u,v) = (cosh v cosu, coshvsinu, v), (u,v) € U :=(0,2m) x R;

(b) the helicoid parametrized by

Z(u,v) = (— sinh v sin u, sinh v cos u, —u), (u,v) € U;

(c) the surface Sy (for some ¥ € R) parametrized by

Yy(u,v) = (cosV)x(u,v) + (sind)x(u,v), (u,v) € U.

Solution:
(a) We have
Oux(u,v) = (—coshvsinu,coshvcosu,0),
Ovx(u,v) = (sinhwvcosu,sinhvsinu,1l).
This implies that
E(u,v) = (—cosh)?vsin®u 4 cosh® v cos?u = cosh® v,
F(u,v) = 0,
G(u,v) = sinh*vcos®u + sinh?vsin?u + 1 = sinh® v + 1 = cosh® v,
i.e., the first fundamental form at = (u,v) is just a multiple of the standard inner product in R? by the factor
cosh? v.
(b) We have
Oux(u,v) = (—sinhvcosu,—sinhvsinu,—1),
Op@(u,v) = (—coshwvsinu,coshvcosu,0).
This implies that
E(u,v) = (—sinh)?vcos®u + (—sinh)?vsin®u 4 (—1)? = cosh® v,
F(u,v) = 0,
G(u,v) = (—cosh)?vsin®u+ cosh?vcos? u = cosh? v,

i.e., the first fundamental form at Z(u,v) is again just a multiple of the standard inner product in R? by
the factor cosh? v.

(c¢) Now we choose
Yy (u,v) = cosVx(u,v) + sin V& (u, v).



We obviously have

OulYy cos V0, x + sin 99, x,
Ovyy = cosV0,x + sindo,x.

We easily check that (9,2, 8,Z) = 0 = (d,x, Dya) and
(B, By) + (D, D) = cosh® v — (sinh? v + 1) = 0.
This implies that
(8uyyg,0uyy) = cos>VE + sin® 9E + 2sind) cos (0, x, yx) = cosh? v,
04y, Ovyy) = cos>OF +sin>OF + sind) cos ({0, Dy) + (Byx, Dyz))

= cos?¥-0+sin?9-0+sindcosd -0 =0,
c0s2 9G + sin? 9G + 2sin Y cos HOpx, 0px) = cosh? v,

(OuYy, OulYy)

i.e., the first fundamental form at y,(u,v) is again just a multiple of the standard inner product in R? by
the factor cosh? v.

. Find the coefficients of the first fundamental form of
(a) S%(1) with respect to the local parametrization x defined in Exercise 6.2;
(b) the surface

S ={(z,y,2) € R®|xsinz — ycosz = 0}

parametrized by
@ (u,v) = (sinh v cos u, sinh v sin u, u)

Solution:
(a) We have
2u 2v u? +0% -1
w(u7 v) = ) ) *
w24+ 1w +02 41" w2402 41
Therefore,
2(1 — u? +v?) —4up 4u
8UCB(U, ’U) = ) ) )
(w402 +1)2" (W2 +02+1)?" (v +0v2+1)2

O (u,v) =

(( —4uv 2(1 + u? — v?) 4o )

w? + 02 +1)27 (u? 4+ 02 +1)27 (u? + 02+ 1)?



9.3.

Hence,

E = (Oyx, O0yx)
4(1 —u? +v?)? + 16u(v? + 1)
(u® + 02 + 1)
4
F = (Oyx, 0yx)
—8uv(l — u? + v?) — 8uv(l + u? — v?) + 18uw
(u® + 02 + 1)

= ()7
G = (Oyx, Oyx)
414 u? —v?)? + 1602 (u? + 1)
(u2 —‘r’UQ + 1)4
4

(b) We have
Oyx(u,v) = (—sinhvsinu,sinhvcosu,1),
Oyx(u,v) = (coshvcosu,coshvsinu,0).
This implies that
E(u,v) = (—sinh)?vsin®u + sinh?vcos?u 4+ 12 = cosh? v,
F(u,v) = 0,
G(u,v) = cosh?vcos?u + cosh? vsin? u = cosh® v.

Let U = R x (0,00), and let & : U — R" be a parametrization of a surface H in R? with
corresponding coefficients of the first fundamental form E(u,v) = G(u,v) = 1/v? and F(u,v) =0
for all (u,v) € U. Then H is called the hyperbolic plane. For r > 0 denote by a : (0,7) — H the
curve given by

a(t) = x(rcost,rsint).

Show that the length of e in H from «(7/6) to a(57/6) is equal to

57/6 1
[ o
x/6 Sint

(In fact, a is the curve of shortest length between its endpoints.) Now take r = v/2 and find the
angle of intersection of a with the curve 3(s) = x(1, s) at their point of intersection.

Solution:



9.4.

Let a(t) = x(ccost,csint), 7/6 < t < 57/6 be a curve in the hyperbolic plane. Let u(t) = ccost and
v(t) = esint. The lenght of « is

57/6

(o) = / o ()] dt

/6

57/6
= / (Bu? + 2Fu'v' + Gu)Y2 dt
/6

57/6 1 1/2
= / (2 (02 sint + ¢? cos? t)) dt
- t

/6 c? sin
57/6 1
x/6 Sint

If ¢ = /2 then a(t) intersects 3(s) = x(1, s) at points where u(t) = 1 and v(t) = s. Solving theses equations
gives cost = sint = /2/2,s0t =tg = /4 and s = 59 = 1.

At the point of intersection 9,x(1,1), we have E =G =1 and F = 0.
At to = 71'/4,

a'(tg) = Ouz(1,1)u' (o) + dpx(1, 1)/ ()
= —\/iauw(l, 1)sinty + \/i@vw(l, 1) costy
= —0ux(1,1) + Jpx(1,1).

Similarly, at so = 1, 3'(so) = 9,2(1,1). Therefore, the angle of intersection of o and 3 at their point of
intersection is

<a/<t0)aﬁ/(80)> <_auw(1a1) +8U113(1»1),8v113(1,1)> 1

cos? = = ———
lee’ (to) 1118 (s0) VI+IVI V2
Thus, ¢ = 7/4.
Let S be a surface parametrized by
. T
x(u,v) = (ucosv,usinv,logcosv + u), (u,v) € U :=R x (—5, 5)

For ¢ € (—m/2,7/2), let o be the curve given by a.u = x(u, c). Show that the length of a. from
u = ug to u = uy does not depend on c.

Solution: The length of a is given by

too) = [ o)l du = [ o (o) du = [ VE(, 9 du

We have
Oux(u,v) = (cosv,sinv, 1),
S0
E = (0,x,0,x) = cos® v +sin®v +1 =2
Thus,

lae) = /“1 V2du = V2(u; — o)

0



10.1. Let « : U — S be a local parametrization of a regular surface S, and denote by F,F,G the
coefficients of the first fundamental form in this parametrization. Show that the tangent vector
adyx + bJ,x bisects the angle between the coordinate curves if and only if

VG(aE + bF) = VE(aF + bG).

Further, if

x(u,v) = (u,v,u* —v?),

find a vector tangential to S which bisects the angle between the coordinate curves at the point
(1,1,0) € S.

Solution:

The cosine of the angle of the vector w = a d,x + b d,x with coordinate curve v = const is equal to

(aOux +b0yx,04x) aE+bF

[[wl[[|Ouz]] |w||vVE

Similarly, the cosine of the angle of w with coordinate curve u = const is equal to

(a Oy + b0y, 0px) oF +0G

[wlll|Ov| wlvV@

The equality of the cosines
aE+bF  aF +bG

lw|VE — |wllVG

is equivalent to

VG(aE + bF) = VE(aF + bG)

as required.

For
x(u,v) = (u,v,u* —v?),
we have
Oux(u,v) = (1,0,2u),
Ohx(u,v) = (0,1,—2v),

which implies that
E(u,v) = 1+ 4u?, F(u,v) = —4uv, G(u,v) = 1+ 40

The point (1,1,0) has coordinates (u,v) = (1,1), so we have E = G = 5, FF = —4. Thus, we obtain the
following equation on (a,b):

V5(5a — 4b) = V/5(—4a + 5b),

which is equivalent to a = b. Thus, the vector d,x + 9, bisects the angle.

10.2. Find two families of curves on the helicoid parametrized by
x(u,v) = (vcosu,vsinu, u)

which, at each point, bisect the angles between the coordinate curves.



(Show that they are given by u=+ sinh™' v = ¢, where ¢ is a constant on each curve in the family.)

Solution: We have

Oux(u,v) = (—vsinu,vcosu,l),

&

8

S
|

(cosu, sinu, 0),

which implies that
E(u,v) =1+ v2, F(u,v) =0, G(u,v) =1,

so the equation from Exercise 10.1 becomes

avv?+1=0.

The curve u — sinh ™' v = ¢ can be parametrized by a(u) = (u,sinh(u — c)), so
o' (u,v) = Oy + cosh(u — ¢)0yx = Oyx + cosh(u — ¢)dyx = Oy + V2 +10,x

as required.

The curve u + sinh ™ v = ¢ can be parametrized by 8(u) = (u, — sinh(u — ¢)), so
B (u,v) = d,x — cosh(u — ¢)0,x = O, — cosh(u — ¢)d,x = Fyx — Vv + 19, x.
Then
(&,8)=E~ (" +1)G =0,
which implies that 3’ bisects the angle between d,x and —d,x.

10.3. The coordinate curves of a parametrization x(u,v) constitute a Chebyshev net if the lengths of
the opposite sides of any quadrilateral formed by them are equal.

(a) Show that a necessary and sufficient condition for this is

o8 _oa _,
v Ou

(b) Show that if coordinate curves constitute a Chebyshev net, then it is possible to reparametrize
the coordinate neighborhood in such a way that the new coefficients of the first fundamental form
are

E=1, F = cos v, G =1,

where 9 is the angle between coordinate curves.

Solution:

(a) Assume that coordinate curves constitute a Chebyshev net. Consider a quadrilateral with vertices
(uo,v0), (u1,v0), (ug, v1), (u1,v1) formed by coordinate curves. The length of the side with vertices (ug, v1), (u1,v1)
is equal to

/H@uw(u,vl)Hdu:/\/E(u,vl)du
) uo

Thus, the integral f:ol v/ E(u,v1) du does not depend on w1, i.e. it is a function of u; only. Differentiating

it by u;, we see that \/E(uj,v1) is also a function of u; only, so E(u,v) does not depend on v. The
considerations for G are similar, and the converse statement is straightforward.
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10.5.

(b) Take
a(u) :/\/E(u) du

Then @ is parametrized by arc length, so E(@) = 1. Similarly, we can make G(%) = 1. Now F is equal to
the cosine of the angle by definition.

Show that a surface of revolution can always be parametrized so that

E=E{), F=0, G=1

Solution: Parametrize the surface by
2 = (f(v) cosu, f(v) sinu, g(v)),

where a(v) = (f(v),0, g(v)) is the generating curve. Then

Owx = (—f(v)sinu, f(v)vcosu,O0),

dpyr = (f'(v)cosu, f(v)sinu,g (v)),
which implies that

B(u,v) = f*(v),  Flu,v)=0,  G(u,v)=f?*(v)+g%@) = ||

Parametrizing a(v) by arc length we obtain a required parametrization of the surface.

Let S be the surface {(x,y,2) € R?|z = 22 — 52} and let F be the family of curves on S obtained
as the intersection of S with the planes z = const. Find the family of curves on S which meet F
orthogonally and show that they are the intersections of S with the family of hyperbolic cylinders
xy = const.

Solution:
2 — 4% =¢; on S can be parametrized by a(y) = (1/y2 + ¢,y), so
Y

O e

A curve zy = c3 on S can be paranetrized by B(z) = (z, £), so

A (part of a) curve x

@+@:%@+%

/ C2 Yy
Now we recall that the coefficients of the first fundamental form found in Exercise 10.1 are
E(u,v) =1+ 422, F(u,v) = —4ay, G(u,v) =1+ 4y?,

so we compute the inner product of o’ and B’ to get

2
(.8) = (L0, + 0,0, - L0,) = LB+ F - Lp - Yo =
x T x T x
2 4 4
:y(1+4x2)+4xy(yz—1> —g(1+4y2):g+4xy+—y—4xy—g——y:0
x T x T T r oz

Note that we could avoid computations on S: one could consider a and 3 as curves in R?, and keeping in mind
that z-coordinate of o is equal to zero, the dot product of o’ and 3’ is equal to <(%, 1, 0) . ( , =2, z’(az))> =
0.



10.6. Using the notation of Exercise 10.2, show that the family of curves orthogonal to the family
U COS U = const

is the family defined by (1 + v?)sin? u = const.

Solution:

The coefficients of the first fundamental form found in Exercise 10.2 are
E(u,v) =1+ 02, F(u,v) =0, G(u,v) = 1.

A curve vcosu = ¢; on S can be parametrized by a(u) = (u, c1/ cosu), so

o (u) = (1, —cy sinu/ cos? u) = (1, —vtanu).

A curve (1 +v?)sin?u = ¢, on S can be paranetrized by B(u) = (u, — Cz - 1), S0

sin” u
, B 1 1
Alw) = (1’ tanu (U+ v>) '

Computing the inner product of o’ and 3’ we obtain

1 1
(a«/,B') = E —vtanu (v+>:1+v2—(v2+1):o.
tanu v



