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1. The aim of this question is to verify the Gauss-Bonnet theorem for a region R on the surface S given by
the local parametrisation x(u, v) = (v cosu, v sinu, v2), where the region R is defined by 0 ≤ u ≤ 2π,
0 ≤ v < 1.

(a) State the global Gauss-Bonnet Theorem.

(b) Compute the coefficients of the first and second fundamental forms on S.

(c) Compute Gauss curvature K, calculate
∫
R
KdA.

(d) Show that the curve γ(u) = x(u, 1) is unit speed. Find the geodesic curvature κg and compute∫
∂R
κgds.

(e) Compute the Euler characteristic χ(R) of the region R. Verify the Gauss-Bonnet theorem for the
region R.

Solution:

(a) Let R be a region in an oriented surface S. Then∫
R

K dA+

∫
∂R

κg ds+

r∑
j=1

θj = 2πχ(R).

(b) As xu = (−v sinu, v cosu, 0) and xv = (cosu, sinu, 2v), we have :

E = v2, F = 0 G = 1 + 4v2.

(You can either compute it explicitely, or to use that for a surface of revolution with parametri-
sation x(u, v) = (f(v) cosu, f(v) sinu, g(v)) one gets E = f2, F = 0, G = f ′2 + g′2.)

Next, we have ||xu × xv|| =
√
EG− F 2 = v

√
1 + 4v2 and

N =
1√

1 + 4v2
(2v2 cosu, 2v2 sinu,−v) =

(2v cosu, 2v sinu,−1)√
1 + 4v2

.

Also,
xuu = (−v cosu,−v sinu, 0), xuv = (− sinu, cosu, 0), −xvv = (0, 0, 2),

and we have

L = − 2v2√
1 + 4v2

, M = 0, N = − 2√
1 + 4v2

.

(c) The region R is a lower part of this paraboloid of revolution (looks as a tea cup).

We have

K =
LN −M2

EG− F 2
=

4v/(1 + 4v2)

v2(1 + 4v2)
=

4

(1 + 4v2)2
.

and
dA =

√
EG− F 2 dudv = v

√
1 + 4v2 dudv.

So, we get∫
R

K dA =

∫ 2π

0

du

∫ 1

0

4

(1 + 4v2)2
· v
√

1 + 4v2 dv = 2π

∫ 1

0

4v

(1 + 4v2)3/2
dv =

− 2π

∫ 1

0

((1 + 4v2)−1/2)′ dv = −2π
1√

1 + 4v2

∣∣∣∣1
0

= −2π(
1√
5
− 1) = 2π(1− 1√

5
).
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(d) As γ(u) = x(u, 1) = (cosu, sinu, 1), we have γ′(u) = xu(u, 1) = (− sinu, cosu, 0), so γ is a unit
speed curve. Therefore, we can compute the geodesic curvature as follows:

kg = (γ′ × γ′′) ·N .

Since γ′(u) = (− sinu, cosu, 0) and γ′′(u) = (− cosu,− sinu, 0), we get γ′ × γ′′ = (0, 0, 1). (this
makes sense as γ is a plane curve!).

Plugging v = 1 into the expression for N , we get

N =
1√
5

(2 cosu, 2 sinu,−1).

Hence, kg = (γ′ × γ′′) ·N = − 1√
5
.

To compute
∫
∂R
κg ds we need to choose the correct orientation of the curve γ, which means,

when we walk on the surface slong the boundary the the region stays on the left. Notice, that the
normal N has negative third coordinate, so it is looking downwards (i.e. the surfaces is outside
of the paraboloid. Walking the boundary of R from outside of the paraboloid and so, that the
surface is on the left is following the circle (cosu, sinu, 1) from u = 2π to u = 0. Hence,∫

∂R

κg ds =

∫ 0

u=2π

(− 1√
5

) du =
2π√

5
.

(e) The region R is homeomorphic to a disc, so χ(R) = 1, also, there are no vertices on the boundary
(the boundary is smooth), so that

∑r
j=1 θj = 0. Hence, veryfying Gauss-Bonnet theorem is

equivalent to checking that ∫
R

K dA+

∫
∂R

κg ds = 2π,

which is true:

(2π − 2π
1√
5

) +
2π√

5
= 2π.

2. Oriented closed surfaces of constant curvature:

It is known that an oriented closed surface is a sphere with a non-negative integer number of handles
(a sphere with g handles is called a surface of genus g and will be denoted by Sg).

(a) (was not planned for discussion in the Problems Class) Show by induction on g that χ(Sg) = 2−2g.

(b) Suppose that Sg is a surface of constant curvature K. Show that

- if g = 0 then K > 0;

- if g = 1 then K = 0;

- if g > 1 then K < 0.

Solution for (b): If S is a closed surface, then it has no boundary and no boundary vertices, so that
Gauss-Bonnet theorem is reduced to ∫

R

K dA = 2π(2− 2g).

In assumption of constant curvature, this further reduces to

K · area(S) = 2π(2− 2g).

As area is positive, this imlies that when g = 0 we get K > 0, when g = 1 we get K = 0, and otherwise
K < 0.
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